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Preface I 

Tensegrity structures are the most recent addition to the array of systems available to 
the designer, the concept itself is about eighty years old, and it came not from within 
the construction industry, but from the world of arts! Although its basic building 
blocks are very simple- a compression element and a tension element-  the manner 
in which they are assembled in a complete, stable system is by no means obvious. It 
is also not intuitively obvious how a tensegrity system transfers loads. This stands in 
marked contrast to such structures as, say, suspension bridges, where the mechanism 
of the load transfer can be immediately grasped by even small children. 

Perhaps because of these conceptual difficulties, progress in the realization of 
tensegrity structures has been rather slow. Apart from the tower, until very recently 
the one notable field of application was the tensegrity dome, a number of which are 
in existence. 

The author of this book, Ren6 Motto, is widely recognized as one of the pre- 
eminent experts in the field, to which he devoted much of his career. I am convinced 
that this volume will go a long way toward making the concept, the theory and the 
practicalities of tensegrity much more accessible. As always, those willing to devote 
significant energies to the task will reap rich rewards, the design professionals will 
be able to design better structures. Interested non-professionals will experience the 
great pleasure of being able to say "I understand why the Hisshom tower stands up". 

I thank Professor Motro for writing the book, and I wish the readers many happy 
hours contemplating the secrets of tensegrity. 

Stefan J. Medwadowski 
Past President of the 

International Association for Shell and Spatial Structures 
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Preface 11 

Ren6 Morro's "Tensegrity" is the most elaborate and most comprehensible 
publication on tensegrity structures I have read. Many of the books on tensegrity or 
tensegric structures deal with this structural system simply from the viewpoint of 
geometry and structural mechanics. But Motro goes deeper to understand the 
structural system, by investigating first the def'mition of tensegrity with the widest 
applicability. According to Motto "A tensegrity system is a system in a stable self 
equilibrated state comprising a discontinuous set of compressed components inside a 
continuum of tensioned components". Starting from the well-known description by 
Richard Buckminster Fuller of tensegrity as "islands of compression inside an ocean 
of tension", he deliberately tried to define the system in the most rational way, and 
reached the "extended definition " shown above. In his definition the term "inside" 
is a key word, and all the components on the boundary surface should be tensioned 
members. Thus what is called a "cable dome" as adopted by David Geiger and 
Matthys Levy is excluded from tensegrity according to the definition, as it has the 
boundary members in compression, although its structural effectiveness is 
recognized. 

A unique idea of a balloon analogy is introduced when he tries to explain such 
fundamental concepts as prestress and selfstress states, formf'lnding, infinitesimal 
and finite mechanisms. Readers can understand those important concepts more 
easily with introduction of the balloon analogy. 

Foldable tensegrities is a topic unique to this book, since it is a result of the author's 
study for more than ten years, the information of this chapter may be helpful in 
research of deployable structures. In the final chapter on Actuality of Tensegrity he 
conf'u'ms that tensegrity is now applicable to architecture as an established structural 
system, while it can be applied to other fields as well. 

I am sure the reader will benefit very much from this book in terms of a profound 
understanding of tensegrity and of grasping the general nature of structural systems. 

Mamoru Kawaguchi 
Professor, Hosei University 

President, International Association for Shell and Spatial Structures, 2002 
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This part of the book is certainly the most difficult to write, since it is difficult fo 
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and to be enriched by many people, mainly in the Research Centre of Spac( 
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Centre, and Zigmund Stanislas Makowski provided me with numerous opportunitie~ 
to understand space structures. He would always do whatever he could to help me 
What would be the best possible solution? It would be to work in Guildford witt 
Hoshyar Nooshin. I have been shuttling regularly between Montpellier am 
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Guildford since 1973, and, unless I am mistaken, my feeling is that we have 
certainly become the closest of friends. 

"The development of form" was the title of the first International Association for 
Shell and Spatial Structures (lASS) symposium where I delivered a lecture in 
Morgantown (1978). This was my first opportunity to meet and listen to Heinz Isler 
who shared his great passion for shells with all those attending. Listening to him 
speak has always been an inspirational experience, even if he refers to "cushions" as 
a source of inspiration, lASS symposia have always been most rewarding for me. It 
was President Steve Medwadowski who encouraged me to write this book, and 
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simple terms, or, more precisely everything seems to be so simple when he explains 
the basic structural principles that he applies in his engineering activity. 

I cannot forget the role of Sergio Pellegrino, who always has a pertinent question to 
ask and numerous explanations to give. It is also my pleasure to thank Ariel Hanaor: 
his own studies on tensegrity are very important and our scientific exchanges most 
fruitful. I met Maurice Lemaire during our engineering student days; it is an 
appropriate moment, therefore, to acknowledge our close personal friendship and to 
thank him for his advice and his confidence in me. 

Last but not least, a special mention for Kenneth Snelson. He invited me to his 
studio, back in 1994, and I listened to him with much pleasure as he spoke about 
tensegrity. 

My research has always been carried out in two places: the "Laboratoire de 
M~canique et G~nie Civil" (University Montpellier II), and the research group 
"Structures L~g~,res pour l'Architecture" (Ecole d'Architecture Languedoc 
Roussillon). I have worked with numerous people and it is not possible for me here 
to classify each and every aspect of this co-operation. What I do know however is 
that everyone has been very important in helping me to understand what I have tried 
to explain in this book. No one objected when I asked to use our joint research and 
for this I am grateful, the simplest way of thanking them is to produce the 
impressive list below. Some were particularly involved in specific parts of this book, 
their names being quoted in reference lists. Others are not, since their help was of a 
different nature. What I can express here is the sentiment that they are very much a 
part of my consciousness. Of course these people could have been listed 
chronologically but I agree with Ren~ Daumal when he writes: 



Acknowledgements xvii 

"the last step depends on the first, but the first depends on the last" 

I agree with him because every single step I have taken is indeed dependent on 
another. 

Autuori B. De Gobbi E. Maurin B. 
Averseng J. Denaeyer G Mohri F .  
Belkacem S. Djouadi S. Moussa B. 
Bouderbala M. Foucher O. Najari S. 
Brakchi R. Kazi N. NoOl O. 
Brochiero E. Kebiche K. Pauli N. 
Ballouard P. Grandjean A. Pons J.C. 
Bonnet Causse R. Hammadi H. Quirant J. 
Carr6re C. Joubert A. Raducanu V. 
Clary A. Laporte R. Rampon A. 
Cevaer F. Le Saux C. Sanchez R. 
Crosnier B. Martin V. Smaili A. 
Debeaud S. Marty A. Tuset J. 

Vassart N. 

Rend Morro 



"The world is a harmony of tensions" 
(Heraclites of Ephesus) 



Introduction 

"Wonder is the first step to knowledge" 
(W.J. Emerson) 

More often than not, "surprise" and "fascination" are the words, which convey the 
reactions of people who discover tensegrity systems. It is through consulting the 
work of D.G. Emmerich - entitled "Constructive Geometry" [Ref l- l]  - that my 
interest in "syst~mes autotendants" (as Emmerich referred to them) was born. The 
paucity of available literature on this subject, apart from that relating to patent texts, 
prompted me to develop research in this area. There did indeed exist a paper by this 
very same author which was published in the proceedings of the fast International 
Conference on Space Structures 1. But it provided no clear answer to the fundamental 
question of stability that these systems produced. In this text David Georges 
Emmerich presented several illustrations, which he referred to as "Divers 
equilibrium et r6seaux autotendants" (Figure 1.1) [Ref 1-2]. 

Figure 1.1 "Equilibrium" 

This conference was organised in 1966 by Z.S. Makowski, at the Space Structures Research 
Centre (Guildford, UK). Three others have followed it in 1975, 1984 and 1993. These 
conferences had a major impact mainly among architects and engineers. 
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How can these assemblies be stable, since their heaviest elements seem to float in 
space and their lightest elements appear to escape the eye? Is there some secret 
involved here? The reply to this last question, needless to say, is negative. Simple 
explanations can be and indeed are provided for the stability of tensegrity systems. 
But David Georges Emmerich's text did not provide such mechanical clarification. 
In 1978, some ten years after its publication, my interest in the subject took a new 
dimension during a stay in Washington, when, having admired the challenge to 
equilibrium of Calder mobiles (Figure 1.2) in the Museum of Modem Art renovated 
by I.M. Pei, I walked into the Hisshom Museum. 

Figure 1.2 Mobile by Calder 

Within the walls of its garden, I discovered first with surprise and then fascination 
K. Snelson's works. And, in particular, a sculpture some thirty meters high, the 
aesthetics, purity and rhythm of which could not fail to surprise the visitor: it was a 
mast named "Needle Tower" (Figure 1.3). 

Figure 1.3 Needle Tower 
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How did it worK? From a purely geometrical point of view, the multiplication of 
cells with identical composition (but of different size), organised the system around 
a vertical axis. The geometrical composition became obvious; when placing myself 
opportunely at the mast's basis my eye discovered ordaining symmetries (Figure 
1.4): it was at that moment that I came to understand and have since gone on to 
explain its structural composition [Ref 1-3]. 

Figure 1.4 Needle Tower organising geometry 

But many other questions remained unanswered. What was the static principle of 
this sculpture? How was it completed? What was the principle of its structural 
composition? Equally important-  what sequence of events had led Snelson to 
achieve this sculpture? Did this tower, whose top one could not perceive, have any 
particular symbolism? The meaning of this work, or at least one of the approaches I 
could make, related with this duality traction-compression and to this verticality that 
came back to me several years later, when I read the "Pendulum of Foucault" 
written by Umberto Eco [Ref 1-4]. Elsewhere on Washington Mall there was a 
science museum where a pendulum was exhibited. The question was and remains 
the search for a handling point in the sky for the pendulum. But for all its 
obviousness there was no such point.., and the question of stability would thus 
remain unresolved. 

All people who have been surprised and fascinated when seeing tensegrity systems 
have not escaped these very same questions. Some of these have a reply, mainly 
mechanical interrogations. The object of the "Fundamental concepts" chapter is to 
give a view about fundamental mechanical concepts which these systems obey; 
consequently it offers the possibility for the reader to create models for himself that 
will help him to confront his thoughts, through direct and physical contact with 
tensegrity systems. 

One of the best introductions to tensegrity systems and therefore to this book is 
certainly to build a small model. Effective realisation always appears useful; it is 
possible, for example, to simply construct "elementary equilibrium". It will be 
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composed of three compressed elements of equal length and nine tensioned elements 
of equal length (Figure 1.5). 

Figure 1.5 Elementary equilibrium 

This equality of lengths for each of the two classes of elements justifies the 
qualification "regular" th~ we will adopt for this elementary system. It is necessary 
in this specific case that the ratio "r" between the length of compressed elements "s" 
and that of tensioned elements "c" be equal to 1.4682. A different choice of these 
values creates either a system without rigidity, a system to which one cannot give a 
shape ("r" is too small), or a system which will be very difficult and perhaps even 
impossible to assemble ("r" too great). 

Figure 1.6 Diagram of assembly for the "Elementary equilibrium" 

The assembly of elements 3 can be made by placing them on a desk, in the first 
instance, according to the disposition shown in Figure 1.6. 

Then all you have to do is to establish the connections as illustrated on this diagram 
and to constitute "elementary equilibrium" (represented in Figure 1.5). 

2 This value results from a "form-finding" process, which will be explained in subsequent 
chapters. 
3 Wooden rods with small nails at their ends and fishing line are well adapted for this purpose. 
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This is the first step on the road to knowledge concerning tensegrity systems. Keep 
hold of your first own tensegrity system; it will open the keys in respect of the 
following chapters! 

There are six chapters. The first "History and Definitions" is the opportunity to refer 
to the pioneers of tensegrity and to discuss possible definitions. The concept of 
tensegfity can be applied outside the simple scope of architecture and engineering, 
and we submit a definition that can be applied for material as well as for non- 
material systems (like sociological systems). 

When tensegrity is applied to material systems, it is useful to describe the 
"Fundamental Concepts": relational structure, forms and forces are discussed in this 
chapter. Coupling between forms and forces is omnipresent in these systems with 
initial stresses. Associate self-stress states and mechanisms are illustrated with 
simple examples. 

Even if tensegrity systems are simultaneously characterised by mechanical and 
geometrical features, "Typologies" have first been established with regard to their 
shape: cells and assemblies of cells are described in this chapter that has to be 
considered as a historical classification of typologies. 

How can tensegrity systems be studied? Which design process do we need? The 
reply is, of course, that there is no single solution. Several "Models" are available: 
depending on the problem to solve, one or the other might be more appropriate, 
sometimes several have to be used simultaneously. Even if this book is not a 
theoretical book, the reader will find in this chapter some thoughts relating to these 
models, and also references to scientific literature. We have tried to give a 
comprehensive approach of form-finding- which is certainly the main problem to 
solve: experimental and theoretical design processes are studied. Self-stress and 
related questions are also raised in this chapter, the last paragraph of which is 
devoted to active control of tensegrity leading to smart structures. 

Mechanisms and self-stress states are an asset of tensegrity systems; they allow us to 
design "Foldable Tensegrities", using alternatively activation of f'mite mechanisms 
in order to fold the system and the stiffening effect of self-stress to deploy them. 
Some design examples are described in this chapter, the last part dealing with 
theoretical problems which occur during the modification of shapes. 

Finally, aware that we are only at the beginning of the use of tensegrity systems, we 
refer under the heading "Tensegrity: latest and future developments" to some current 
projects: that is to say new tensegrity grids and other projects under completion. The 
future of tensegrity now has to be written; considering tensegrity systems as a 
structural principle will certainly be fruitful, avoiding the belief that everything can 
be reduced to architecture and engineering. 
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2 

History and Definitions 

2-1. History 

2-1.1. loganson and constructivism 

D.G. Emmerich has reported what appeared to him to have been the f'trst structure 
that can be placed in the proto-tensegrity system category [Ref 2-1]. He refers to the 
research carried out by the Russian constructivists, which is described in a book by 
Laszlo Moholy Nagy, "Von Materiel zu Architektur", first published in 1929 and 
republished in 1968. Laszlo Moholy Nagy included two photographs of an 
exhibition held in Moscow in 1921 showing an equilibrium structure 
(Gleichgewichtkonsmaktion) by a certain Ioganson. 

A recent exhibition held at the Guggenheim Museum, "The Russian and Soviet 
Avant-Garde, 1915-1932", gives more details on the work of constructivists who 
organised their first exhibition manifestation, the Obmokhu (the Society of Young 
Artists) in May 1921. Rodchenko, one of the constructivists, claimed in January 
1921 [Ref 2-2]: 
"All new approaches to art arise from technology and engineering and move towards 
organisation and construction". 

One year at~er Karl Ioganson wrote: 
"From painting to sculpture, from sculpture to construction, from construction to 
technology and invention - this is my chosen path, and will surely be the ultimate 
goal of every revolutionary artist .... ". 

In the exhibition mentioned above, Ioganson displayed a "sculpture-structure" 
completed during 1920 (Figure 2.1). 
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Figure 2.1 loganson sculpture 

As Emmerich put it: 
"This curious structure consists of three bars and seven cables and is handled by 
means of an eighth unstressed cable, the whole being deformable". 

Moholy Nagy illustrated this structure as a "Study in Balance", explaining 
"...that if the string was pulled, the composition would change to another position 
and configuration, while maintaining its equilibrium". 

"The similarity between the manner ofjointing in Study in Balance and that of other 
constructions by Ioganson suggests that all the works could be adjusted. He was 
exploring the movement of skeletal geometric structures in a more pragmatically 
experimental and explicitly technical manner than was Rodchenko in his hanging 
constructions. Ioganson's works do not evoke any specific structure, yet the use of 
standardised elements and the emphasis on the transformation of form might appear 
to have more direct application to utilitarian structures such as portable, fold-up 
kiosks or collapsible items of furniture." 

This transformable structure was the result of a very clever structural design, even if 
it doesn't relate to any kind of pre-stress or self-stress, which characterise tensegrity 
systems. In fact, recently, a similar prototype has been completed for research 
purposes, to investigate the foldability of tensegrity systems [Ref 2-3]. The various 
states of static equilibrium can be understood as funicular states and Ioganson's 
construction is very well adapted to explain mechanisms. According to structural 
morphology it illustrates the fact that several shapes can be linked to a single 
structure (this word being understood in its relational meaning). 

2-1.2. Concept, words and design 

Many works have been devoted to the history of tensegrity systems. The two main 
references are contained in special issues of the International Journal of Space 
Structures, published in 1992 [Ref 2-4], and in 1996 respectively [Ref 2-5]. One will 
bear in mind that, as always, a controversy exists between three people, namely 
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David Georges Emmerich, Richard Buckminster Fuller and Kenneth Snelson. It 
might not have escaped your attention that, as a precaution, I have named them in 
alphabetical order! All three have applied for patents that give ample testimony to 
faith in the subject, at least in legal terms. It is necessary to note, and this is 
important, that all three protaganists described identical structures, deriving from a 
module comprising three struts and nine cables. 

Generally, so far as a concept is concerned, one can not define it completely. 
Nevertheless we can illustrate i t -  and my memory retains mainly the idea of 
Richard Buckminster Fuller describing tensegrity systems as "islands of  
compression in an ocean of  tension", as is quoted in the International Journal of 
Space Structures (1996 special issue): 

Fuller wrote in "Designing a New Industry", a booklet published by the Fuller 
Research Foundation, Wichita, Kansas, 1945-46: 

"We f ind in the mechanical structuring of  the universe, that compressive 
organisation is limited to the dimensional confines of  heavenly spheres themselves, 
and that vaster structural integrity o f  the universe is maintained within the infinite 
limits of  tensile stress principles only, which we identify as gravitational attraction. 
This is truth, I am going to pursue this truth into demonstrated technical advantage 
by man. These are principles I must employ in a big way in putting environment 
under man's direct control." 

In a talk given by Fuller at the University of Michigan Mid Century Conference on 
Housing, in April, 1949 and published in 1963 in Ideas and Integrities, he is a little 
more specific: 

"'...Tension is comprehensive. Universe tensionally coheres non-simultaneous 
events. 
... Universe is tensional integrity .l 

Indisputably, Fuller was the promoter of the concept of "tensional integrity", even if 
his writings are difficult to understand line by line. When this concept is applied to 
structural systems, many of them fit, and one can for example claim that a balloon 
and more generally an inflated membrane conforms satisfactorily to Fuller's idea, 
since no precision of matter or shape is given in his approach. On the other hand, 
indications are provided on isolation of a matter in a state of compression immersed 
in matter in a state of tension: air is compressed inside a tensioned envelope. 

l It would be wrong to read Fuller's texts as scientific, since some of his propositions are not 
sufficiently explicit from a scientific point of view. But his texts can be considered as 
visionary since currently some people such as Donald lngber use the tensegrity principle in 
biology. 
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If we are indebted to Fuller for the concept, in the author's opinion the birth of its 
application to space structures comprising struts and cables seems to be the result of 
Snelson's work. 

The word "Tensegrity" itself results from the natural contraction of "tensional" and 
"integrity". Fuller made this contraction as he did for the three words "Dynamic", 
"Ion" and "Maximum" to create the famous term "Dymaxion", which qualified 
many of his projects. 

2-1.3. Patents 

2-13.1. Chronology 

Several documents show that R. Buckminster Fuller applied for patents in the USA 
almost simultaneously with D.G. Emmerich in France, at the very beginning of the 
1960s. R. Maculet [Ref 2-6] gives the list of patents taken out by D.G. Emmerich 
and his comments on the reception of a patent concerning "frame assembly 
elements, in particular for the building industry..." (June 1959). The first patent 
referring to self-stressing 2 systems is dated on 1963. 

R. Maculet found four inventions published by Buckminster Fuller concerning 
tensegrity systems, the oldest (1962), in a work dated 1985 with no author's name 
[Ref 2-7]. The same date is mentioned in the journal Synergetica [Ref 2-8] 
concerning a patent application by Gwilliam et al. The numerous patents that he has 
mentioned on this occasion showed the increase in patent applications in the 
preceding years. 

Emmerich and Fuller patents were applied for between 1959 and 1964; Snelson's is 
dated 1965. 

If we look to chronology, no precise conclusion can be reached. David Georges 
Emmerich patented a first system called "Pearl Frameworks " at the INPI (Institut 
National de la Propri6t6 Industrielle) [Ref 2-9], but it was not correctly registered. 
His second patent is dated 1963 and granted in 1964 and was entitled "Construction 
de rdseaux autotendants" (Figure 2.2). Fuller's main patent was registered in 1959 
and granted in 1962 (Figure 2.3). Fuller chose the name "Tensile Integrity" [Ref 2- 
7]. Snelson's patent "Continuous tension, discontinuous compression structures" 
was registered in 1960 and granted in 1965 (Figure 2.4). 

2 The word "self-stressing" is the translation of the word "autotendants" in French. 
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What happened thereatter is a source of controversy between Snelson and Fuller. 
Furthermore, David Georges Emmerich in France, claimed that he was the inventor 
of this new structural system, which he referred to as "autotendants". 

Readers interested in a more precise description of these controversies may refer to 
papers published in 1996 in the International Journal o f  Space Structures. Two 
points may be underlined. Firstly, the structural system described by the three men is 
the same. Secondly, it was Fuller who created the word 'Tensegrity'. 

Patents are the administrative proof for intellectual property. Searching for the 
earliest patents is the domain of specialist organisations; it will be more fruitful for 
us to look at the way which led to what is called tensegrity systems, and to 
understand the work carded out by several people in relation to this specific kind of 
structure. If a preview of tensegrity systems was achieved by Ioganson, the birth of 
the elementary tensegrity unit, the so-called "elementary equilibrium" (name given 
by D.G. Emmerich), clearly appears in Snelson's patent as a sub product of an 
assembly of planar units. Patents from Fuller and Emmerich are not so explicit. A 
precise comparative analysis of the three patents could be useful but this work has 
yet to be carried out, since the controversies described in the special issue of the 
International Journal of Space Structures in 1996 does not give a clear explanation 
on the initial design process. An attempt has been made last year (2001) in our 
laboratory and it will be detailed in Chapter 5 ("Models"). Moreover a remaining 
question is the link with Ioganson's sculpture" we know that Emmerich saw this 
sculpture. Did Ioganson also inspire Snelson? The answer is not clear. It is perhaps 
better not to attribute too much importance to finding out who was first but rather to 
examine the future of these systems. 

2-13.2. "Continuous tension, discontinuous compression structures" 

"Continuous tension, discontinuous compression structures" is the title of the patent 
awarded to K. Snelson (Feb. 16, 1965, Patent No 3,169,611) [Ref 2-10]. We must 
pay particular attention to the birth of the concept included simultaneously in this 
patent and in the description of the earliest works carded out by Snelson, which will 
be described further in this section and also in Chapter 5. It is not my aim to 
nominate Snelson as the father of Tensegrity Systems. I am not qualified to do such 
a thing, but information subsequently acquired, in my opinion, is certainly of great 
interest for people who wish to know more about the birth of Tensegrity systems. 

Correspondence between K. Snelson and myself sheds interesting light on the 
respective roles of Fuller and Snelson 3. And this was confirmed when I met K. 
Snelson in 1984. 

Fuller defined the emergence oftensegrity as follows: 
"The word tensegrity is an invention: it is a contraction of  tensional integrity ... 
tension is omnidirectionally coherent. Tensegrity is an inherently non-redundant 

3 K. Snelson, private correspondence with the author, 1990. See Appendix C. 
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confluence of  optimum structural-effort effectiveness factors. Tensegrity structures 
are pure pneumatic structures and can accomplish visibly differentiated tension- 
compression interfunctioning in the same manner that is accomplished by pneumatic 
structures, at the subvisible level of  energy events... " [Ref2-10]. 

Edmonson also reports that: [Ref2-12]: 
"In the summers of  1947 and 48, Fuller taught at Black mountain College and spoke 
constantly of  tensional integrity. Nature relies on continuous tension to embrace 
islanded compression elements, he mused," we must create a model of  this structural 
principle ... Much to his delight, a student and now well-known sculptor, Kenneth 
Snelson, provided the answer ". 

Let us allow Snelson to explain for himself the work he showed to Fuller: 
"The three small works which are of  interest here were concerned both with balance 
of  successive modular elements hinged one-to-another and stacked vertically as seen 
in Figure 2.5; and later, suspended one-to-the-next by means of  thread-slings as 
shown in Figure 2.6. One can see module-to-module sling tension members 
replacing the wire hinges connecting the modules shown in Figure 2.5. One step 
leading to next, I saw that I could make the structure even more mysterious by tying 
off the movement altogether, replacing the clay weights with additional tension lines 
to stabilise the modules one to another, which I did, making "At", kite-like modules 
out of  plywood. Thus with forfeiting mobility, I managed to gain something even 
more exotic, solid elements fixed in space, one-to-another, held together only by 
tension members (Figure 2. 7)". 

Figure 2.5 Kenneth Snelson, "One to another", 1948 
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Figure 2.6 Kenneth Snelson, "One to the next", 1948 

Figure 2.7 Kenneth Snelson, "X-shape", 1948 

A f'trst analysis of this explanation could be the following. The first sculpture looks 
like Calder's work. The key to the process lies in the evolution of junction mode 
between elements: the assembly mode, which is made with rigid wires in this 
sculpture, is replaced in the second one by four cables assembled in a spatial 
rhombus shape giving more degrees of freedom to the whole. An X-shape appears 
between these cables and emphasis is put on this part in the third sculpture (Figure 
2.7), where stabilising cables are added. These cables replace the actions of the clay 
balls. 

The last model needs to be carefully studied in relation to the explanations given by 
Snelson in his patent. The "X" module is the basic idea of the patent awarded to 
Snelson for "improved structure of  elongate members which are separately placed 
either in tension or in compression to form a lattice, the compression members being 
separated from each other and the tension members being interconnected to form a 
continuous tension network". 

In the same patent Snelson writes" 
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"the basic module disclosed by the invention utilises only two elongate compression 
members and an associated tension network, to form a self-supporting structure. 
The compression members cross each other at some intermediate point between 
their ends in an X-shape or a modified form thereof. The outer ends of the 
compression members are pulled toward adjacent ends by tension members 
comprising a continuous tension network. Means are provided, either in the 
construction or shape of the compression members themselves, or in the use of  
additional tension members, for separating the compression members at the points 
where they cross each other." 

The conceptual work described shows a morphological evolution from plane 
structures to spatial ones by this introduction of additional tension members (Figure 
2.8). The morphological units are combined and Snelson provides detailed 
explanations for designing complex structures. Snelson plays with X-shape along 
unidirectional or multi-directional axis. One of his projects is described in the next 
section: it is the "key" unit that has been much used in recent years. 

Figure 2.8 Kenneth Snelson: Continuous Tension, Discontinuous Compression. Basic concept 

2-13.3. Basic spatial tensegrity systems 

Attention must be paid to one specific tensegrity system described in Snelson's 
patent. Assembling three X-shape moduli, and adding necessary cables to disconnect 
compressed members, leads to an assembly of nine cables (Figures 2.9 and 2.10). 
The resulting set of cables is composed of two triangles and three bracing cables. 
When three compressed members are included in this set a "prismatic" unit is 
created. According to the pre-stress principle, this is the simplest way from plane 
pressurised basic units to spatial self-stressed structures (Figure 2.11). This basic 
unit has been called "simplex", and many authors such as D.G. Emmerich have 
comprehensively presented its description, but in the author's opinion its structural 
generation is only clearly displayed in Snelson's patent. 
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Figure 2.9 Kenneth Snelson, Assembly of 3 X-shapes 

Figure 2.10 Kenneth Snelson, Elementary spatial tensegrity system 

Figure 2.11 Self-stressed space structure. Elementary equilibrium 
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2-2. Definitions 

2-2.1. Concept and definition(s) 

If the origins of tensegrity systems remain a matter of controversy, it is also very 
difficult to give an unambiguous definition as previous attempts have proved 4. Some 
elements concerning these proposals can be found in the literature ([Ref 2-10] [Ref 
2-13], [Ref2-14], [Ref2-15]). 

As far as the concept itself is concerned, it is usually very difficult to define it 
completely. Nevertheless a concept can be illustrated, and the best way is to quote 
Richard Buckminster Fuller describing the tensegrity principle as "islands of  
compression inside an ocean of  tension". On this simple basis many objects could 
be related to the tensegrity principle: a balloon and more generally any inflated 
envelope fits with it, since no precision on matter, or form is included in the concept. 
But indications are given on the isolate character of compressed matter immersed in 
a tensioned matter. In a balloon, the compressed air is included inside the pre- 
stressed envelope. In the following paragraphs we give a first definition based on 
patents, and discuss it. It is then possible to extend this definition while at the same 
keeping a close relationship with the concept itself. This extended definition 
comprises the first one, but is also applicable to many other systems such as 
biological cells. 

2-2.2. First definition based on patents 

The difficulties in establishing a clear definition of tensegrity systems are well- 
known. It seemed some years ago to be useful to give a "patent based" definition 
that could serve as a reference for comparison with the other known definitions. On 
the other hand, it could constitute a kind of reference to judge to what extent such or 
such a constructive system can be related to the class of tensegrity systems. To 
constitute this kind of reference, the following definition is established on the basis 
of patents, which have been registered by Fuller, Snelson and Emmerich. All three 
describe the same structure and it is in this meaning that the corresponding 
definition can be qualified as a "patent based" definition (or in abbreviated form 
"patent" definition) bearing in mind its relativity. 

4 It is not the "privilege" of tensegrity systems: I attended, in 1998, a colloquium in 
Cambridge on "deployable systems", and the President of the International Association of 
Shell and Spatial Structures, Steve Medwadowski, talked about the definition of "deployable 
systems". It appeared that it was very difficult to give a comprehensive definition of 
"deployable systems". My problem at that time was of course rather significant, since my own 
talk was on "deployable tensegrity systems"! 
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Tensegrity Systems are spatial reticulate systems in a state o f  self-stress. All their 
elements have a straight middle fibre and are of  equivalent size. Tensioned elements 
have no rigidity in compression and constitute a continuous set. Compressed 
elements constitute a discontinuous set. Each node receives one and only one 
compressed element. 

Constitutive proposals of this definition call for the following comments: 

1 Tensegrig, Systems are spatial reticul(zte Systems: this is an affirmation of the 
spatiality, and of a structural layout that causes in elements pure compression or 
tension states of stress. "Tension Systems " are a subclass of spatial reticulate 
systems: they comprise elements that have no rigidity in compression. These 
elements, and only these elements, in all circumstances, are tensioned: tensegrity 
systems have this characteristic and pertain to this subclass. 

2 T h ~  are in a state o f  self-stress: stiffness is produced by the self-stress, 
independently of all external actions, connecting actions included. The self-weight is 
not taken in account at the design step, and it does not contribute to their initial 
equilibrium. 

3 All their elements have a straight middlefibre and are of  equivalent size: this third 
point is implicitly present in the first known patents. It is certainly one of these that 
caused many of the controversies, especially the mention concerning the 
equivalence of the elements' size. 

4 Tensioned elements have no rigidiW in compression and constitute a continuous 
set: these elements are generally cables. The continuity of tension set contributes to 
the aesthetics of tensegrity systems. On the mechanical level, their presence is often 
the source of misunderstanding, since designers and builders generally work on 
reticulate systems whose elements have simultaneously a rigidity in compression 
and in tension. Known results on stability, in the general meaning of this word, 
linked to classical reticulate systems, have to be reconsidered by taking into account 
this essential- and perhaps most important- characteristic. 

5 Compressed elements constitute a discontinuous set: it could have been claimed 
that compressed elements do not need rigidity in tension, since all these elements are 
always in the same qualitative state of stress: compression. The technological 
execution of this condition is possible, but one rigid clement in compression and in 
tension is generally used, even if they arc never submitted to this last load effect. 
None of the three patents gives an indication on this point. The discontinuity of 
compressed elements generally stimulates a number of questions, since it 
constitutes, structurally speaking, a discontinuity of thought, when compared to the 
totality of usual constructive systems: in our unconscious, which is fed with 
experiences drawn in constructive archetypes, compression necessitates the 
continuity of transmission. Tensegrity systems throw back this way of thinking and 
this is mainly why they create surprise. 
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6 Each node receives one and only one compressed element: Historically speaking, 
systems which are described in the patents satisfy this condition. But it is also a 
precision, which provoked much controversy sometimes related to point 5. This 
precision is necessary since there can exist systems with more than one compressed 
element, and which satisfy the extended def'mition (Section 2-2.3), but some systems 
also exist without any compressed element for some nodes, which receive only 
tensioned elements. In many cases, compressed elements are struts and tensioned 
elements are cables. This is why in the subsequent chapter we will use "struts" in 
place of "compressed elements" and "cables" for "tensioned elements", when there 
will be no possible confusion. 

2-2.3. Extended definition" tensegrity system or not? 

The basic ideas are included in the concept described by the expression "islands of 
compression in an ocean of  tension". It is obvious that there are two kinds of 
components according to their state of load effect: compression or tension. A second 
character is included in the concept: compression is inside tension. A third idea is 
that compressed entities are islands: they constitute a discontinuous set. Tensioned 
entities are gathered in a continuous set. A last point concerns the necessary 
equilibrium of the whole system. 

2-23.1. Definition 

When compared with these characteristics, the definition given by A. Pugh [Ref 2- 
13] seems to be very well adapted to constitute a valuable basis for an extended 
definition: 
"'A tensegrity system is established when a set of discontinuous compression 
components interacts with a set of  continuous tensile components to define a stable 
volume in space." 

But it needs to be slightly modified to take into account the following factors: 

�9 Components in compression are included inside the set of components in 
tension. 

�9 Stability of the system is self-equilibrium stability. 

Furthermore, some expressions like "compression 
components" and "volume" are not very well adapted. 

components", "tensile 

So, I would venture to suggest the following definition: 
"A tensegrity system is a system in a stable self-equilibrated state comprising a 
discontinuous set of compressed components inside a continuum of tensioned 
components." 
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2-23.2. Discussion 

2-232...1 System 

We use the word "system" in relation to the theory of systems, which has been 
developed to describe ordered entities. It is useful since it allows us to distinguish 
between: 

�9 Components (with qualitative characteristics, and sometimes quantitative 
characteristics); two classes are identified according to the nature of stresses. 

�9 Relational structure, which gives a clear description of relationships between 
components. It can be described using graph theory. For tensegrity systems that 
are homeomorphic to a sphere, the graph of tensioned components is planar (see 
Ref2-16). 

�9 Total structure that associates relational structure with qualitative and 
quantitative characteristics. 

�9 Form considered as projection of the system on to a three dimensioned 
reference system. 

2-232.2 Self equilibrium and stability 

This expression expresses the initial mechanical state of the system, before any 
loading, even gravitational. The system has to be in a self-equilibrium, which could 
be equivalent to a self-stress state, with any self-stress level. It could also be said 
that the system has no f'mite mechanism. It is possible to f'md infinitesimal 
mechanisms in tensegrity systems [Ref 2-17], but these are generally stabilised by 
the self-stress states. Stability is defined according to the ability of the system to re- 
establish its equilibrium position after a perturbation. These concepts will be further 
developed in Chapter 3. 

2-232.3 Components 

Pugh used the word "component", and it is necessary to keep it, and to avoid some 
terms such as "elements", which are ambiguous. The shape of the component is not 
prescribed to be a line, a surface or a volume: it can be a strut, a cable, a piece of 
membrane, or an air volume (Figure 2.12). It can be a combination of one or several 
elementary components that are assembled in a higher order component. The matter 
of the component is not prescribed: air, steel, and composite, etc. 
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Figure 2.12 Tensegrity system by Fuller 

2-232.4 Compression and tension 
"'Continuous Tension, Discontinuous Compression" is an expression used by 
Kenneth Snelson in the title of his patent. Compression and tension are mechanically 
speaking a load effect, which implies that the matter of one component is subjected 
either to a compressive or a tensile effect. Consequently a component, which is 
compressed, requires rigidity in compression; a component, which is in tension, 
requires rigidity in tension. It is only sufficient to have unilateral rigidity, 
compression or tension rigidity. It is very well know that cables and membranes 
have no rigidity in compression. In building systems, tensioned components are 
generally thinner than compressed components, which can be subjected to buckling 
phenomena. 

Technologically, it is possible to find components (in association with an 
appropriate material) with compression rigidity and no tension rigidity (two 
associated tubes for instance, one inside the other with the possibility to move 
relatively according to a single way). 

It is why we prefer to use the phrases "compressed components" and "tensioned 
components" in place of "compression components" and "tensile components". 
Even if a component is very complex in terms of shape, or if it is the result of an 
assembly of identifiable elementary components, the condition is that all its matter 
has to be compressed or tensioned according to its class. 

2-232.5 Discontinuous set, continuum 
These words are closely related to words "islands" and "ocean" used by 
Buckminster Fuller. Each compressed component constitutes an "islanc~'; when a 
structural system is defined as a tensegrity system, it is necessary to identify each 
compressed component. If there is more than one, these components have to be 
disconnected. If we used graph theory, their associated graph would be 
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disconnected. Systems with only one compressed component constitute a specific 
case and can be also considered in the scope of tensegrity systems. 

A discussion could be embarked upon tensioned components since their 
corresponding set has to bc continuous and consequently the whole tensioned 
components could be define..t as a higher order component. There are several 
"oceans" in our earth, but it seems that using the expression "continuum of 
tensioned components" is adapted to our objective and does not cause any 
controversy. It is always possible to identify lower order components inside the 
continuum. 

2-232.6 "Inside" 

"Inside" is a key word in the definition since it will allow us to separate two kinds of 
structural design: one which is a part of our constructive culture and based on 
compression as in the sustaining load effect, and an opposite one based on tension as 
fundamental "support". In order to know if"islands" of compression are, or are not, 
inside an "ocean of tension" it is necessary to establish a clear definition of the limit, 
of the frontier between the inside and the outside of the system. 

Problems related to topology may arise with some systems such as toruses, but it is 
always possible to define the inside and the outside of a closed envelope. Every 
system can be described by a set of nodes and modelled by points, as is done in 
numerical methods such as the finite element method. It is more sophisticated for 
continuous components, but certainly can be done. Mathematically speaking, any set 
of nodes admits a frontier which is generally a polyhedral convex surface, 
comprising triangles built with some of the nodes of the system. But this does not 
exclude other surfaces such as the torus, since it also possible in this case to know if 
a point (and the associated node) is inside the envelope or not. 

Consequently, a first proposal could be that a component is considered to be inside 
this envelope, if all its describing points are not on this frontier envelope, and if 
none of these describing points are outside this envelope. This first proposal is 
generally sufficient, but for some cases it might not be. If we want to have a more 
precise def'mition, we need to consider the compression lines: the ends of 
compressed components belong to the continuum of tension, whether one of them is, 
or is not, on the boundary. If all the points lying on the segment defined by these 
two points are inside the envelope, the compressed component can be considered to 
be inside the envelope. 

The problem is not to define only the envelope, but to look for an envelope 
satisfying the criteria as previously mentioned: no compression line on this 
envelope, only tension lines. Therefore this envelope encloses a tensegrity system 
and is a part of this system. 

A direct consequence of this definition is that all the points on this envelope belong 
to the continuum of tensioned components. All the action lines lying on the 
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boundary surface between the outside and the inside of the system are tension lines. 
Of course, this is the crucial point of the definition of tensegrity systems, since the 
self-equilibrium is based on tension and this is not usual when it comes to the 
history of constructions. This fact is certainly at the basis of that referred to as 
"surprise" and "fascination". Moreover duality between traction and compression is 
not complete, since the stability of self-equilibrium is not ensured when compression 
is replaced by traction, and vice versa, as Vassart has demonstrated so effectively. 
[Ref2-17]. 

2-23.3. Examples 

Related to our proposal it is interesting to examine some cases and to analyse them 
through the filter of our definition. 

2-233.1 Elementary cells 

In the case of elementary cells such as those that have been largely examined 
previously (simplex with three-strut, or six-strut system, known also as "expanded 
octahedron"), the two def'mitions, "patent" one and, "extended" one are working. 
The components are the struts; these systems are self-equilibrated (their geometry is 
a self-stress geometry). The set of compressed components is characterised by a 
disconnected graph (see [Ref 2-16]), and it is inside the continuum of tensioned 
components comprising, in this case, cables. We illustrate with Figure 2.14 the 
polyhedral convex envelope for the two examples mentioned (Figure 2.13). 

Figure 2.13 Three-strut and six-strut tensegrity cells 

Figure 2.14 Three-strut and six-strut tensegrity polyhedral envelopes 
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The cells are such that the external set of tensile components is homeomorphic to a 
sphere. Consequently we can call them single tensile layer tensegrity systems. They 
follow a scheme which looks like a balloon (Figure 2.15): but in this case the 
external envelope is made up of straight tensile members which constitute a discrete 
net. External thin lines are under tension, internal bold lines with arrows model 
compression forces. The diagram is plane for the purposes of simplicity, but as in 
Figure 2.16, it is in fact spatial. 

This structural principle is valid for many tensegrity cells, which have been 
described previously. But in general cases the structural principle can be illustrated 
by the diagram given in Figure 2.16, where some tension lines are also included 
inside the external envelope. 

Figure 2.15 Structural principle for a single layer tensegrity system 

Figure 2.16 Structural principle for tensegrity system 

It appears on this basis that tensegrity systems can be understood as discrete 
"pneumatic" tensile structures s, opening thus a wide range of possibilities also 
allowing zero curvature, positive curvature and mixed curvature in the same system. 
The double layer grid of Figure 2.19 is based on flat tensegrity principle as shown in 
Figure 2.17. 

5 R.B. Fuller was aware of the pneumatic character of tensegrity system. 
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Plane 

Single curvature 

Double curvature 

Figure 2.17 Structural situation diagrams 

When transposed in three-dimensional space, these diagrams open many 
morphologic possibilities bringing together properties of pneumatic systems and 
properties oftensegrity systems. 

2-233.2 Double layer grids 

Many controversies arose on double layer grids since in many cases struts were 
separately considered as components and touch each other at a common node. This 
was not the case for a proposal by Hanaor (Figure 2.1 g), which was built on a node- 
on-cable principle. But it was also true that in this configuration the mechanical 
behaviour of the grid under external actions was not satisfactory. 
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Figure 2.18 Hanaor double layer grid (dome) 

Recently, Wang [Ref 2-18] suggested using the expressions "non-contiguous" or 
"contiguous" tensegrity systems. This was interesting but not sufficient since these 
expressions pre-supposed that a chain of compressed struts can not be considered as 
a compressed component. 

In order to illustrate our definition we have taken as an example the double layer 
grid that we designed some years ago (Figure 2.19). According to our def'mition the 
following decomposition can be made. The whole system comprises a continuum of 
cables and five compressed components, each is made with a set of struts, and these 
five sets do not touch each other. There are two kinds of compressed components: 
one with four struts linked at one node and four with three struts linked as a chain. 

Figure 2.19 Complete grid 
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Figure 2.20 Five compressed components 

This kind of grid can be included in the definition of double layer tensegrity grids. 
And this is also the case for many double layer grids in which discontinuous 
compressed components can be identified. 

2-233.3 Cable domes 

Cable domes have been developed in recent years. The names of Geiger and Levy 
are associated with these structures. It is clear that they have been inspired by the 
tensegrity principle. 

But at the end of the day the result seems to be in the scope of pre-stressed systems. 
The whole cable-strut net is associated with a huge compression ring, just as 
membranes are tensioned on fixed masts or beams. They can not be strictly 
classified as tensegrity systems. Two kinds of compressed components can be 
identified: vertical struts and compressed ring (Figure 2.21). This last component is 
on the boundary of the system and not inside it, which excludes these systems from 
the tensegrity classification (if you agree with our "extended" def'mition). And this is 
not only a matter of agreement since intrinsic properties of these two classes are not 
the same. 
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Figure 2.21 Cable dome principle 

Generally the compressed ring is made of reinforced concrete, sometimes in pre- 
stressed concrete and its size is not comparable with other components (Figure 
2.22). Moreover, these rings can be a part of the whole building, and it can be 
difficult to identify them as a separate entity. But so far as structural performance is 
concerned, it is obvious that these cable-domes are very efficient. 

Figure 2.22 Cable domes with four cable hoops 

2-233.4 Recent proposals 

In recent years some new proposals have been submitted and described as tensegrity 
systems. In Switzerland, Passera and Pedretti built some experimental systems [Ref 
2-19] and developed calculations on several tensegrity systems in order to 
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participate in Expo 02. One of these structures is represented in Figures 2.24 and 
2.25. 

These systems are based on an elementary module consisting of five struts and 
height cables (Figure 2.23). Four of the five struts describe a quadrangular polygon. 
This elementary octahedral cell is not a tensegrity system, according to the 
submitted definition. Compressed components lie on the boundary of the system. 
Moreover, there exists in these cases mechanisms of higher order. 

Figure 2.23 Octahedral cell 

Nevertheless, if we look at some examples of assemblies it is still sometimes 
possible to satisfy the "extended" definition. In the case of systems evoked by 
Passera and Pedretti, two kinds of compressed components can be identified: several 
posts (quoted "A"), which do not touch each other and a larger compressed 
component, with some elements like "B", which are lying on the edge. It is certainly 
possible by mechanical inspection to find one (or more) self-stress-states such that 
all of the elements on the boundary are under tension. By removing hollow profiles 
like "B" and replacing them by cables (or at less components with unilateral rigidity 
in tension), the whole system could be qualified as a "tensegrity system". 

Figure 2.24 Passera-Pedretti structure: perspective view 
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Figure 2.25 Passera-Pedretti structure: plan view 

2-233.5 Endothelial cells 

The last example is not in the scope of construction architecture, but in the 
biological field. Endothelial cells comprise the kernel, the cytoplasm and the 
surrounding membrane. The cytoskeleton is composed of microtubules and actin 
filaments among other components. Recently, Donald E. Ingber [Ref 2-20] 
developed his theory on the mechanotransduction through the cytoskeleton, 
suggesting an analogy between the mechanical behaviour of eytoskeleton and 
tensegdty systems' mechanical behaviour. It appears that we can indeed find a 
limited degree of common ground. The composition of the cytoskeleton allows us to 
speak of a tensegrity system in this case. Moreover, the whole endothelial cell can 
be considered as a tensegrity system, which satisfies the definition: the kernel is also 
a compressed component and the membrane the boundary tensioned surface. It is 
not surprising that Ingber's proposal for modelling this cell be a six-strut tensegrity 
system including another one of lesser size [Ref 2-21 ]. But this kind of analogy must 
be carefully verified. 

Figure 2.26 Cell modelling with tensegrity ~Tstems 
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2-3. Conclusion 
It is not an easy task to define Tensegrity Systems. It could be claimed, as Fuller did, 
that everything in the Universe is tensegrity, but this would be confusing: no 
distinction could be made, for instance with systems working on the basis of 
compression. Tensegrity systems have intrinsic properties related to the continuum 
of tensioned components, and they have to be enhanced. The extended def'mition 
was necessary since it was obvious that many systems were excluded on the basis of 
the early patents. We will omit the qualification "extended" in the following 
chapters and we will refer to "patent" definition in those cases which require this 
restricted definition. 
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3 

Fundamental Concepts 

3-1. Introduction 

The question of tensegrity stability is certainly the first that crops up for many 
people, who are "surprised", when they discover these systems for the first time. 
This was my the first question which arose for me when I began, but I was 
convinced that there was not any particular "secret" to be uncovered - rather only 
some fundamental concepts to rediscover. The aim of this chapter is to provide the 
"keys", which unlock the door to the understanding of tensegrity. 

Aesthetic and mechanical characteristics of tensegrity systems result from the 
continuity of the tensioned components set and from the discontinuity of 
compressed components: the concept of relational structure and the associated use of 
the graph theory clearly qualify these continuity and discontinuity concepts. 

The stiffness of tensegrity systems is conditioned by the stabilisation of infinitesimal 
mechanisms with states of self-stress. This stiffening is only possible with geometry 
which is consistent with static equilibrium criteria. This is why it is useful to explain 
the meaning of mechanisms (finite and infinitesimal mechanisms) and of associated 
states of self-stress. The stabilisation of infinitesimal mechanisms plays an important 
role since it also explains why compressed and tensioned components cannot be 
exchanged by simple duality. 

These fundamental concepts are developed in the following paragraphs. They are 
illustrated in the example of"elementary equilibrium "l. 

3-2. Relational structure 

All reticulate systems being created by an assembly of components, it is necessary 
to define this mode of assembly, particularly when these components are themselves 
comprised of several sub components. 

When there is no risk of confusion we do not differentiate between elements and 
components in this chapter. 
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It was suggested in the "patent" definition (Chapter 2) that we should take into 
account the straight segments defined by the ends of compressed or tensioned 
elementary components (like struts and cables). Allocating to each segment "b" a 
place between two nodes 'T'  and "j" fulfils this description. This description, 
requiring no dimensional geometrical datum, is called "relational structure", [Ref 3- 
l]. 

The necessarily even number of nodes characterises the case of tensegrity systems 
with struts. If "n" is this number, and if attention is paid to the spatial case, the 
minimal value of n is 6 (the case n = 2 corresponds to a linear system, the case n = 4 
to a bi dimensional system). Graph theory can be useful for defining the relational 
structure of this elementary system, which is described by the wording of the nodes 
and their links. The choice among multiple relational structures that can be 
constructed with six nodes is conditioned by the nature of tensegrity systems, since 
tensioned elements constitute a continuous set and compressed elements a 
discontinuous one. This leads to a six nodes complete plane graph from which the 
graph of tensioned elements will be extracted 2. This graph comprises four links at 
each node (Figure 3.1). 

Figure 3.1 Six nodes complete plane graph 

But, qualitatively speaking, three links are sufficient to ensure the necessary 
condition of spatial stability for a node which, furthermore, will receive one (and 
only one) compressed element 3. This last element will be placed inside a solid angle 
defined by the three tensioned links, which must not be coplanar to preserve 
spatiality (Figure 3.2). 

2 The complete set of tensioned elements can be applied on a sphere; on the basis of this 
homeomorphy. It can be demonstrated that the associated graph is necessarily plane. The 
given graph is complete, in terms of a plane graph. No more links can be added. The complete 
~ raph with six nodes would not be plane, since some links would intersect each other. 

It is possible to have only two cables for specific cases of some systems ("star systems" or 
"stella octangula"), described in the "Topologies" chapter. 



Fundamental Concepts 35 

Figure 3.2 Necessary condition of spatial stability for a node 

This remark allows us to eliminate a link by node in the six nodes of the complete 
plane graph, and thus to obtain the relational structure of elementary equilibrium by 
superposition of this continuous plane graph (tensioned elements) on the disjoint 
graph of the three compressed elements (Figure 3.3). 

Figure 3.3 Elementary equilibrium: total graph of the relational structure 

In Table 3.1, we describe this relational structure that comprises three disjoint 
compressed elements and nine tensioned elements. 

Table 3.1 Elementary equilibrium: relational structure 

Links Nodes 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

I 
Cables 

1 
2 
1 
1 
2 
3 
4 
5 
4 

Struts 
2 
3 
1 

2 
i , 

3 
3 
4 
5 
6 
5 
6 
6 
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3-3. Geometry and stability 

3-3.1. Introduction 

The geometry of a spatial reticulate system is completely defined by its relational 
structure and by the knowledge of the coordinates x, y, and z for its "n" nodes in 
reference to a chosen axis system. 

The stability of tensegrity systems can be satisfied only for geometry in which a 
situation of stable static self-equilibrium can be established: the study of tensegrity 
systems necessitates a "form-finding process" which allows us to attain such 
geometric equilibrium. 

3-3.2. The balloon analogy 

Analogical reasoning can help us to simply explain the functioning of a tensegrity 
system and the relationship between geometry and stability. A balloon is a familiar 
object for all of us; it consists of an envelope whose shape is determined by its 
manufacture (it results from an assembly of membrane plane pieces or "strips").This 
shape is able to enclose a volume of air, which is equal to that of the envelope, once 
the balloon is inflated and the envelope deployed (Figure 3.4). Furthermore, a 
balloon can be considered as a tensegrity system since it is a stable self-balancing 
system made up of two components: a compressed component, the air and a 
tensioned component, the membrane. 

Figure 3.4 Football and rugby balloons 

To study various geometric situations and associated shapes, several cases should be 
considered4: 

A The balloon has no "form"- nor is its geometry known, when the blown air 
volume remains less than the volume that the envelope can enclose. By 
pushing here or there, one can obtain different shapes (Figure 3.5). The form 
is called indeterminate form. 

4 Self-weight is neglected in this explanation. 
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B 

Figure 3.5Indeterminate shape of a non-inflated membrane 

The balloon takes its shape as soon as the blown air volume becomes equal 
to the volume which can be enclosed in the envelope 5. The corresponding 
geometry is an equilibrium geometry (Figure 3.6); air pressure is identical 
inside and outside the membrane. In this second state the balloon again 
remains inappropriate for its subsequent use, it has no stiffness. 

C 

Figure 3.6 Equilibrium geometry 

It is by inflating again, that is to say by blowing a volume of air greater 
than that of the envelope (and therefore by increasing the internal pressure) 
that a rigid object is obtained. In this third state the air is under pressure and 
the membrane that constitutes the envelope is under a state of tension. The 
pressure of the air confers to the balloon a "stiffness", which is a function 
of its level. The existing tension in the membrane slightly deforms it, but 
the envelope holds its initial shape (unless, of course, a too-high-pressure 
had made it burst!) (Figure 3.7). There is a balance between the air pressure 
and the membrane tension. 

5 Geometrically speaking, this shape is related to the manufacture of the envelope: it is 
different, for instance, for a football or a rugby ball. More generally speaking, each inflatable 
membrane will provide a specific shape, like those inflatable cushions used in aeroplanes. 
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Figure 3.7 Inflated balloon and possible collapse 

The analogy between the different shapes that have been described for a balloon 
(and which are valid for any inflated membrane), and a tensegrity system can be 
established by associating with the membrane a system of "envelope" element net 
that could be tensioned, and by replacing the included air by internal elements 
susceptible to be compressed. 

It is possible, and useful, to create a physical model that allows us to follow the 
development of the system. For such a model, it is necessary for all internal 
elements to have the same length "s" and for the external elements all to have the 
same length "c". One can thus constitute compressed elements with variable length 
(telescopic element) by associating two aluminium tubes with different diameters 
and by creating a screw-tightening device (Figure 3.8). The length of the 
compressed elements has to be between one and two times the length of the 
tensioned elements. 

Figure 3.8 Telescopic element 

The holes at the two ends of the telescopic elements receive nylon fishing lines with 
a stopping device (a simple knot suffices). 
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In this physical model (and by analogy with the balloon) the telescopic elements 
play the role of the air and the fishing lines the role of the envelope. One thus finds 
the three states that have been identified for the balloon. 

A If the length of the internal elements (those playing the role of air) is 
insufficient (leading for example to a ratio "r" of 1.414 between the external 
and internal elements) the set of envelope elements will not have a definite 
shape; it will be possible by an external action to obtain several shapes. In 
terms of mechanics the system is then called "cinematically indeterminate". 
A first geometry is defined as a triangular prism (Figure 3.9). This system is 
unstable, and another shape can be defined (Figure 3.10). Geometrically 
speaking, the six nodes are apices of an octahedron. In this last case, for such 
geometry, the three diagonals of the octahedron intersect each other at the 
same point. The way from one shape to another results from the existence of 
a "finite mechanism", that can, for example, be activated by a relative 
rotation of the two triangles of tensioned elements lying in parallel planes. 
The first and the second geometry preserve the same lengths for elements, 
but they are different. 

Figure 3.9 Cinematically indeterminate system (finite mechanism). First geometry 

Figure 3.10 Cinematically indeterminate system (finite mechanism). Second geometry 

For a given value of the strut length (corresponding precisely to r = 1.468), 
the totality of the cable net takes a singularly definite shape, which will be 
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referred to as "null self-stress equilibrium geometry". This geometry, in the 
general case, can be calculated by a process called "form-finding". In this 
state, no constitutive element is stressed: the geometric distance between 
the nodes corresponds strictly to the length of manufactured elements, as 
was the case previously. The difference is, however, that at this time only 
one feasible geometry exists (from a mechanical point of view the system is 
again cinematically indeterminate, but this time the mechanism is 
infinitesimal). The geometry of the elementary equilibrium is a "null self- 
stress equilibrium geometry ''6 (Figure 3.11). 

C 

Figure 3.11 Null self-stress equilibrium geometry 

The third phase corresponds to an increase of length for the internal 
elements: these elements are then compressed and elements on the envelope 
are simultaneously tensioned. One can observe on the physical model that it 
becomes difficult to increase this length. The corresponding geometry will 
be deformed when compared with "null self-stress equilibrium geometry" 
but will keep its overall characteristics (unless there is a collapse of 
tensioned elements on the envelope or a buckling of the internal element!). 
The system is then self-stressed: the self-stress qualifies the load effects of 
compression in the internal elements and the load effect of tension in 
envelope elements. Its level conditions the stiffness of the tensegrity 
system. In fact the denomination "tensegrity" qualifies only the tensional 
integrity 7. This last geometry will be referred to as "geometry deformed by 
self-stress", in fact it is rather similar to the previous one. 

3-3.3. Geometry and stability 

In fact, in this simple example the analogy rests on the fact that the telescopic 
element plays the role of the air under pressure while the tensioned elements can be 
associated with the balloon's envelope. Two geometrical ranges can be identified. If 
one plots on a graph the relationship between the ratio "r" of element lengths s/c, 
and the relative rotation 0 between the inferior and superior triangles of the 

6 Relative rotation between the two triangles is equal to 30 ~ 
7 This denomination does not reflect the existence of compressed elements. The French word 
"tens6grit6" is the translation of the word "tensegrity" invented by R. B. Fuller. 
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elementary equilibrium, the straight horizontal line corresponding to the value 1.468 
separates a zone where there exists only one possible geometry, from another zone 
where two geometries correspond to a single value of the ratio (Figure 3.12). 

ratio r I Possibk 
IJea 

1,414 

collapse 

Tdanguiar prism Simplex OolmdNidr~ 

/ 
0 

R~lative rolatlon (dq~~ 
46 90 

Figure 3.12 Relationship between the ratio "'r" and the rotation 0 

This result can be verified on the physical model. 

The limit value of the ratio, 1.468 in this case, corresponds to the "null self-stress 
equilibrium geometry": this ratio value results from a form-f'mding process 8. 

Geometries corresponding to lower values are not defined in a single way: finite 
mechanisms exist that allow a path from one geometry to the other. A length ratio 

value equal to , ~ ,  as can be verified (for example with the physical model), gives 
access to two feasible geometries. 

Geometries corresponding to higher values of the length ratio (more than 1.468) are 
defined in a single way: the whole system is self-stressed and the elements 
deformed. These geometries are, in fact, very close to the "null self-stress 
equilibrium geometry". 

It is useful to note on the physical model that in this last configuration (ratio over 
1,468), there again exists small possible movements that one can activate by acting 
on one or more nodes: these movements correspond to infinitesimal mechanisms. 
But once the action is stopped, the system re-establishes its initial geometry, thanks 
to the self-stress that stabilises such infinitesimal mechanisms. 

3-3.4. Form-finding 

The preceding paragraphs have tended to underline the importance of the "null self- 
stress equilibrium geometry", whose knowledge results from a process called "form- 
finding". In some simple cases one can reach this geometry by researching the 
maximum of the length of the compressed elements compatible with that of the 
tensioned elements; this "cinematic" method is detailed in Chapter 5. It is equally 

a See the demonstration in Chapter 5. 
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possible to associate a geometrical condition with an equilibrium condition for some 
tensegrity systems such as the elementary equilibrium. 

If one considers, for example, one node of the system such as node 4, it is necessary 
to ensure its equilibrium. This node (Figure 3.13) is submitted to actions exerted 
according to directions defined by links, that we have noted 4, 7, 9 and 10 in Table 
3.1, which describes the relational structure. 

Links I Nodes 
Cables 

1 l 2" 
2 2 3 
3 l 3 
4 l 4 
5 2 5 
6 3 6 

. . . . .  

7 4 5 
8 5 6 
9 4 6 

Struts 
10 2 4 
11 3 5 
12 1 6 

Figure 3.13 Equilibrium of node 4 

By reason of symmetry in this system, links 7 and 9 can be replaced by an 
equivalent virtual link, noted 13 and supported by the bisecting line D of the angle 
546. In order to ensure the equilibrium of node 4, the supports of the three actions, 
noted 4, 10 and 13, have to be coplanar 9. Plane P, def'med by two of them, 4 and 10, 
intersects the lower triangle plane according to the line D' between nodes 1 and 2 
and the upper triangle one according to the bisecting line D. The two planes 
containing these triangles are parallel and consequently lines D' and D are also 
parallel (this parallelism is preserved in horizontal projection), and this sets the 
relative rotation of the two triangles to 30 ~176 

9 In order to ensure the equilibrium of a material point subject to three actions, their supports 
have to be coplanar. 
~0 This result is of course identical to that given by the "kinematic" method. It is nevertheless 
necessary to note that it does not condition the distance between plans of upper and lower 
triangles; the elementary equilibrium represents the particular case for which this distance 
corresponds to identical lengths of all tensioned elements. This result can be extended to the 
case of tensegrity systems defined by two polygons of n edges situated in two parallel plans 
and linked simultaneously by tensioned external elements and internal compressed elements. 
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3-4. Self-stress states and mechanisms 

3-4.1. Introduction 

Learning from the preceding approach, it appears that two mechanical concepts 
dispense with questions relating to the stability of tensegrity systems; namely self- 
stress and mechanism concepts that are clarified in the following paragraphs. The 
study of their relationship is also developed. 

3-4.2. Cinematic indeterminacy 

When several elements are assembled, the choice of manufacture lengths and that of 
relational structure can lead to a cinematic indeterminacy: the geometry of the 
assembled system is not defined in a single way. The path between the different 
geometries follows a movement of elements; this movement, which requires no 
energy (at first order), takes the name "mechanism". If, in the course of the 
movement there is no length variation for the elements, then the mechanism is called 
"finite". But if, on the other hand, length variations are observed (even very small) 
then the movement corresponds to an "infinitesimal" mechanism. These two notions 
that are useful for the study and the understanding of tensegrity systems are 
illustrated with simple examples. These distances and lengths are measured by 
assuming that nodes are points on which punctual ends of elements are superposed. 
This hypothesis allows us to forget the real dimensions of the nodes. 

3-42.1. Finite mechanism 

Let us consider a set of four elements with compression rigidity; their assembly with 
four hinges constitute the "envelope". 

Figure 3.14 Finite mechanism 

So as to eliminate the effects of self-weight these four elements are put on a 
horizontal plane. The two extremity nodes of a same element are supposed to be 
completely fixed (1 and 2 for example), and this avoids any overall displacement. 

A system such as this is cinematically indeterminate: several geometries 
corresponding to circular trajectories of nodes 3 and 4 can exist (Figure 3.14). 
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3-42.2. Infinitesimal mechanism 

Let us consider two rectilinear elements assembled end to end by one common 
extremity, the other being fLxed; it is possible to transversally displace the common 
node of a distance d, with inf'mitesimal absolute deformations of elements (they are 
in fact proportional to the square of d). This movement is known as "infinitesimal 
mechanism" [Ref 3-2]. 

Figure 3.15 Infinitesimal mechanism 

3-4.3. The static indeterminacy: pre-stress and self-stress 

3-43.1. Static indeterminacy 

Let us consider a set of four elements with a common node. The other end of each 
element is assumed to be fixed 11 (Figure 3.16). Values dij are the geometric distance 

to be reached at the end. One can imagine, in the first instance, that manufacture 
lengths lij satisfy the relationship: 

E 3-1 lij = dij, 

The three equations of static are generally insufficient to determine load effects of 
elements when an action is applied on the node: the system is statically 
indeterminate (hyperstatic)~2. 

Figure 3.16 Statically indeterminate system 

Before any application of external action, it is possible to envisage the case where 
the length of one of the elements would be different from the distance between 

l~ Conventions for nodes representation and stresses are developed in Appendix A. 
n Taking into account element strains allows us to solve the problem. 
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nodes to which one wishes to link it (Figure 3.17). The assembly created in such 
conditions induces an initial constraint state or "pre-stress". The insertion of element 
"14", whose manufactured length 1~4 is less than distance d~4, is equivalent to the 
application of two opposite forces: one on node "1", the other on node "4". The last 
one has no effect on the system. The first one introduces stresses in the three other 
elements thus creating an initial state of stress: a pre-stress. The pre-stress effect will 
be combined with the effect of the actions applied afterwards on the common node 
"1". The implementation of this pre-stress cannot be established without fixing 
nodes 2, 3, 4 and 5. 

Figure 3.17 Initially stressed state 

One can envisage another example, for which such an initially stressed state no 
longer depends on conditions of fixing be they whole or part of the nodes: the 
corresponding system is known as "self-stressed ''13. 

3-43.2. Self-stressed systems 

In the definition of tensegrity systems, we specified that they are in "state of stable 
self-equilibrium". This state describes the equilibrium of nodes. This self-stress is 
tridimensional, since most tensegrity systems are spatial systems. Linear and plane 
systems are just specific cases. Among the three chosen examples developed below 
we illustrate the concept of self-stress, from linear self-stress to tridimensional self- 
stress. 

3-432.1 Linear self-stress 

The simplest case of self-stress is the linear self-stress that is illustrated by the 
example comprising a tensioned element, cable, and a compressed element, strut 
(Figure 3.18). 

Figure 3.18 Linear self-stress 

13 A global displacement can be operated, but it has no effect on the initial stressed state. 
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In this case, the compressed element is a circular cross-section tube; nodes can be 
metallic discs placed at the extremities of the tube, the cable being placed inside. 

Three cases are to be considered according the relative length values "c" for the 
cable and "s" for the tube, which are manufacture lengths of these elements. 

First case c > s, the cable is not in tension, its shape is not defined. 
Second case c = s, the cable is not in tension. Its shape is rectilinear; the 
geometry of the system is defined. This geometry is the "null self-stress 
equilibrium geometry". 
Third case c < s, the cable and the tube are submitted respectively to a simple 
load effect of tension and compression. The equilibrium of the whole system 
necessitates the equality between the absolute values of the two internal 
corresponding forces Ns and No. The geometry of the system is deformed when 
compared with equilibrium geometry. The system is self-stressed. The 
equilibrium for each element is illustrated in Figure 3.19. 

One can observe in this first example that the value of the ratio r = s/c characterises 
the system. 

�9 When r< 1, the shape is not defined (cinematically indeterminate system). 
�9 When r = 1, the shape is defined (null self-stress equilibrium geometry). 
�9 When r> 1, the shape is defined, the system is in state of self-stress. 

._ C o m p r e s s i o n  

. . - I  - - I ~ ,  

d "  T e n s i o n  

Figure 3.19 Equilibrium of the two components 

3-432.2 Bidimensional self-stress 

Bidimensional self-stress can be illustrated with a system comprising four struts and 
two cables. The equilibrium geometry is that of Figure 3.20 (struts have identical 
length "s", and cables identical length "c"). The three cases studied for the preceding 
example can be summed up by again noting that r = s/c. 

�9 For r< 1.414, the shape is not defined (cinematically indeterminate system). 
�9 For r = 1.414, the shape is defined (null self-stress equilibrium geometry). 
�9 For r> 1.414, the shape is defined; the system is in a non-null self-stress-state. 

The equilibrium self-stress-state corresponds to the diagram in Figure 3.20. 
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Figure 3.20 Equilibrium of bidimensional self-stress 

Study of equilibrium of each node leads to relationship ~4" 

E 3-2 Nc = 1,414 Ns 

This is deduced, for example, from the dynamic diagram of actions applied on node 
(Figure 3.21). 

/ 
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Figure 3.21 Equilibrium of a node 

3-432.3 Tridimensional self-stress 

One can extend the notion of self-stress to tridimensional space by taking as an 
example a configuration constituted by an octahedron whose edges are the tensioned 
elements, and diagonals the compressed elements (Figure 3.22). 

14 This equation and the associated figures are defined with absolute values: action on node 
and value of internal forces in components (struts or cables) have the same absolute value. 



48 Tensegrity 

Figure 3.22 Tridimensional self-stress 

The octahedron is rigid by itself; the corresponding geometry is what we have 
referred to as "equilibrium geometry". The ratio "r" can be simply calculated in this 
case; it is equal as in the preceding case to 1.414. If it is of greater value, the system 
will be self-stressed. 

This example is not an example of a tensegxity system, but it has been chosen to 
illustrate tridimensional self-stress, because of the clarity of its static equilibrium 
diagram, even if it necessitates a non-realistic crossing of diagonals. Tensegrity 
systems are a subclass of tridimensional systems in a state of self-stress. 

3-4.4. Infinitesimal mechanism stabilisation 

The last concept, which is necessary to help in our understanding of the behaviour of 
tensegrity systems, is the concept of infinitesimal mechanism stabilisation. If we 
examine the example of the two elements assembled end to end, it is possible to try 
to stabilise the infinitesimal mechanism by introducing a pre-stress. 

If the two elements are chosen in such a manner that the subsequent relation is 
satisfied: 

E 3-3 lij < dij 

a state of tension pre-stress is established (Figure 3.23). 

Figure 3.23 Tension pre-stress 

If the two elements are chosen in such a manner that the subsequent relation is 
satisfied: 

E 3-4 lij > dij 
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a state of compression pre-stress is established (Figure 3.24). 

Figure 3.24 Compression pre-stress 

In the first case, if the junction node is taken away from its initial location, the 
effects of the pre-stress of tension return it to this initial location: the infinitesimal 
mechanism is stabilised by the tension pre-stress. 

In the opposite case, the set will find an equilibrium state for a different location, 
corresponding to a geometry satisfying: 

E 3-5 lij = d 0 

The compression pre-stress does not return the system to its initial configuration. 

The infinitesimal mechanism stabilisation by states of pre-stress (or self-stress) is an 
essential characteristic of tensegrity systems. 

3-5.  Conclusion 

Fundamental concepts have been illustrated in this chapter- form-finding, pre-stress 
and self-stress states, infinitesimal and finite mechanisms, stabilisation of 
infinitesimal mechanisms. They constitute the mechanical background which are 
necessary prerequisites for the understanding of the mechanics of tensegrity 
systems. Tensegrity systems require a form-finding process to reach a null self- 
stress equilibrium state: in this geometrical state, a self-stress state can be 
introduced, finite mechanisms have disappeared, but occasionally some inf'mitesimal 
mechanisms remain, self-stress states may or may not stabilise these infinitesimal 
mechanisms; it is necessary to check this stabilisation. The whole set of concepts 
has been illustrated with a balloon analogy, the balloon being considered as one 
tensegrity system among others. 
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4 

Typologies 

4-1.  I n t r o d u c t i o n  

This chapter is devoted to the description of the typology of tensegrity systems. We 
are dealing here only with tensegrity systems that can be included in spatial 
structures and not with other tensegrity systems such as biological cells. 

Typology criteria are numerous: topology, geometry, mechanical characteristics (in 
terms of self-stress states and infinitesimal mechanisms) etc. It would certainly be 
useful to develop studies enabling us to have some "tables", governed by one or 
more of these criteria. However, this is not the aim of this chapter; we are only 
dealing here with some of the better known and most explored tensegrity systems. 
If, until now, two kinds have been developed- namely cellular units (or elementary 
cells) and their assemblies - we know that current developments concern complex 
tensegrity systems without an identified constitutive cellular unit. That is why this 
chapter is more a historical typology study than a prospective one, since we think 
that design procedures will lead to new possibilities (some of which will be 
described in the Chapter 7). Nevertheless we open this chapter with some comments 
on the criteria of classification with numerous examples, followed by an attempt at 
codification for elementary cells. We will then give a description of elementary 
cells, assemblies of cells and also of some of the more "exotic" tensegrity systems. 
And we will conclude with our recent proposals concerning double-layer grids. 

It is out of the scope of this study to give extensive charts of tensegrity, even if this 
might well appeal to some people, who might want to immediately become 
acquainted with topological and geometrical characteristics. As things stand at 
present it is not necessary to try to present an exhaustive list, since as is the case for 
other spatial systems, each designer is able to define new types. Nevertheless, it 
appears that in respect of tensegrity systems, it is also possible to find some known 
classification such as double layer grids, with or without curvature (single or double 
curvature, positive or negative), domes, masts etc. 

Moreover, as we suggested in Chapter 2, it appears that a very simple classification 
is defined in relation to the concept of "discrete pneumatic structures". 
Consequently, the general class of tensegrity systems contains potentially tensioned 
components inside a convex tensional "discrete" net. Classical elementary cells, 
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which are described below are a subclass with only one tensional net, and, without 
tensioned components, inside this net. 

4-2. Typology criteria and codification 

4-2.1. Topology, geometry and equilibrium 

4-21.1. Topology 

As previously introduced in the "extended" definition in Chapter 2, the topology of 
the two sets of components is clearly defined: a set of tensioned components is 
continuous, a set of compressed components is discontinuous. For the first set, some 
other properties arise - for instance in the case of the so-called "spherical cell" - for 
which constitutive elements are homeomorphic I to a sphere. The elementary 
topological characteristics are the number of nodes "n", the number of struts "S" and 
of cables "C". In the case of standard systems (verifying all the elements of the 
"historic" definition), C is equal to half of N, but this is not the case when some 
nodes receive just cables. It is worth stressing that graph theory is very useful to 
qualify and study the topology of tensegrity systems. The topology of the system is 
completely defined when the list of members and of their ends are given; these two 
lists constitute what can be referred to as the "relational structure" of the system 
[Ref4-1]. 

As an example, for the "elementary equilibrium" described by David Georges 
Emmerich (Chapter 1), the relational structure is given in Table 4.1 and can be 
represented by the graph in Figure 4.1 (tension and compression refer to stresses in 
the corresponding elements of the simplex). It should be noticed that in this case 
another choice could have been made for graph links corresponding to struts: for 
instance node 3 may be linked with node 6 instead of node 5 (and similarly for other 
links). These two possible graphs are associated with two geometrical solutions 
according to the chosen rotation around an oriented vertical axis. These are known 
as "levogyre" (anticlockwise) and "dextrogyre" (clockwise). 

Figure 4.1 Graph of elementary equilibrium 

i They can be applied onto a sphere without any cutting or overlapping of elements. 
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Table 4.1 Nodes and elements of the elementao' equilibrium 

Element 

4 

7 
8 

Type E n d l  
Compression 
Compression 
Compression 
Tension 

, , ,  

Tension 
Tension 
Tension 
Tension 

1 
2 
3 

9 Tension 2 
10 Tension 4 
11 Tension 5 
12 Tension 4 

End 2 
. . . . .  

6 
4 
5 
2 
3 
3 
4 
5 
6 
5 
6 
6 

4-21.2. Geometry 

For a defined topology, geometry is characterised by coordinates xi, y~ and z~ for the 
n nodes of the system. Length "s" of struts and length "c" of cables can be derived 
from the coordinates. 

Generally, the designer makes a choice concerning values of lengths. Whatever the 
design process for a tensegrity system might be, two situations have to be 
considered: 

�9 If all the elements, for each given set, have the same length in the system, s is 
unique and so is c. We chose to call "regular" the corresponding systems. 
Geometry is then dependent upon only one parameter, the ratio s/c2. 

�9 If there are several values Ss and Cc for the corresponding elements in a same 
system the qualification "regular" will be used 3. 

If topology, "s" and "c" are def'med, then the geometry is qualified by the whole set 
of coordinates, which is closely related to the self-stress equilibrium. 

4-21.3. Equilibrium and form-finding 

If topological characteristics mentioned in the definition of tensegrity systems are 
important, specific attention should also be paid to another characteristic, namely the 
"self-stress" which stiffens tensegrity systems. We will define precisely the concept 
of self-stress in Chapter 5. But it is sufficient to know at this stage that a self-stress 
state is such that every element is under tension or compression (according to its 
nature), the whole system being in static equilibrium without any external actions 
(self-weight has to be neglected). Self-stress requires equilibrium of each node. In 
the case of a "standard" situation a node receives three cables and one strut. A 

2 Sometimes these systems are called mono parameterised systems. 
3 These are multi-parameterisexl systems. 
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necessary condition of equilibrium can be expressed in geometrical terms: the strut 
(compressed element) has to be inside the solid angle defined by the three cables 
(tensioned elements) 4 (see Figure 3.2, in the preceding chapter). 

Initially, the geometry of regular polyhedra was used to generate tensegrity systems. 
But misunderstandings have been made regarding equilibrium conditions. If we take 
a look at the truncated tetrahedron, for instance, it has been claimed that its 
geometry, when it is defined by its node coordinates, was consistent with the 
possible equilibrium of a tensegrity system. This system was built by inserting struts 
inside the cable net that is generated by the edges of this semi-regular polyhedron 
[Ref 4-2]. Simple considerations about equilibrium of one node are sufficient to 
establish that the truncated tetrahedron cannot be in equilibrium in its initial 
geometry (see those paragraphs in Chapter 5 dealing with the form-finding process). 

Figure 4.2 Truncated tetrahedron 

4-2.2. Codification 
It is always a difficult task to submit a codification. Several known tensegrity 
systems received a name, and sometimes more than one name (as was the case for 
the elementary equilibrium previously described). No doubt these names will 
remain, and quite tightly too. Nevertheless, we hereby submit a codification, which 
could be used alongside the accepted terminology, and for some cases it will be a 
useful tool to identify a tensegrity system. This codification is based on the 
subsequent ordered parameters: 

�9 number of nodes "n"; 
�9 number of compressed components "S"; 
�9 number of cables "C"; 
�9 regular system "R" or irregular system 'T '  (according to the element lengths); 
�9 spherical systems "SS" (according to the fact they fit a set of tensile 

components which is homeomorphic to a sphere, and corresponds to a single 
tensile discrete envelope). 

4 For simplification of expression, "strut" will be used for compressed elements and "cables" 
for tensioned elements if there is no risk of misunderstanding. 
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As an example, the code for the elementary equilibrium would be "n6-S3-C9-R- 
SS". Two tensegrity systems may have the same number of nodes and different 
numbers of cables (according to their topology). When there is one (and only one) 
strut at each node, the value of n is the double that of S. This codification could be 
reduced for regular, standard systems to just S-C values ($3C9 for the elementary 
equilibrium), or enlarged in order to provide more information (like the "levogyre" 
or "dextrogyre" qualifications). We will develop this codification further in later 
sections of this chapter. 

4-3. Elementary or "spherical" cells 

The definition of "elementary cell" is consistent with the concept of "single tensile 
discrete membrane" as previously mentioned; 'spherical cell' could be understood as 
an "indivisible" unit as is the case for an atom. It was mostly Emmerich ([Ref 4-3] 
[Ref 4-4]) and Pugh [Ref 4-5], (concerning the description of elementary cells) who 
have carried out a large amount of work. Their explanations are both topological 
(especially Pugh, who established families based on topological considerations) and 
geometrical. It is a fact that they made extensive use of polyhedral geometry and did 
not give many precise mechanical derivations that could explain, for instance, the 
misunderstanding concerning the previously described truncated tetrahedron. 

4-3.1. "Spherical cells" 

4-31.1. Characteristics 

A first class of tensegrity systems may be defined according to a topological 
property associated with cables: the cable set is always homeomorphic to a sphere. 
When all cables can be mapped on a sphere without intersections between them, 
apart from the nodes of the system, then the cable set is "homeomorphic" to a sphere 
(Figure 4.3) 5. All the struts are inside this cable net and the corresponding tensegrity 
systems are called "spherical cells". 

Figure 4.3 Cable set mapped on a sphere 

5 In this case, it can be demonstrated that the cable graph is plane. [Ref 4- l ] 
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Figure 4.4 Spherical tensegrity (Sanchez Cuenca) 

Most often described tensegrity systems are spherical cells. We shall follow, for the 
subsequent presentation, the topological classification given by Pugh: rhombic, 
circuit and Z- configurations are the three main classes. 

4-31.2. Rhombic configuration and prismatic cells 

4.-312.1 The "Simplex" (elementary equilibrium) 

Let us consider a straight prism with a triangular base; its edges are cables. One strut 
is inserted diagonally to each square face (Figure 4.5). A simple way to attain the 
corresponding tensegrity system (Figure 4.6) will be to operate a relative rotation 
between the upper triangle and the lower triangle. This tensegrity system is the 
smallest spatial one that can be built according to the so-called "patent" definition. 
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Figure 4.6 Simplex 

The generation mode is the basis of the chosen denomination "prismatic system". As 
preHously described, this system also received other names: simplex, elementary 
equilibrium, twist unit, regular triplex etc. Its codification could be n6-S3-Cg-R-S 
or, more simply put in this case, $3-C9. 

The Simplex has a rotation symmetry axis of order 3; then two enantiomorphic [Ref 
4-3] varieties exist, one the "levogyre" simplex, the other the "dextrogyre" simplex. 
These terms are defined in connection with the relative rotation wise of the two basis 
triangles, when referred to the oriented rotation axis mentioned in Figure 4.7. The 
relative rotation angle is equal to 30 ~ Its value can be calculated by a form-finding 
process 6 and is an important characteristic of the Simplex; A. Pugh called it "twist 
angle" and G. Minke uses the denomination "twist unit" for this tensegrity system 
[Ref4-7]. 

i 

6 A demonstration is given in Chapter 5. 
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Figure 4.7 Twist angle 

4-312.2Prismatic tens egrity systems and their derivatives with "rhombic" 
configuration 

Prismatic tensegrity systems 

The principle described for the Simplex can be extended to other prisms, with 
square, pentagonal, n-gonal.., bases. Under some conditions a class of so-called 
"prismatic" Tensegrity systems can be defined. Equality of cable lengths is by no 
means guaranteed for all of these systems [Ref 4-5]. 

In this particular class, the struts and cables (which are called "bracing cables"), 
which do not constitute the base, can be considered as generators of two revolution 
hyperbolo'ids Hs, He. They intersect each other along two circles, which contain the 
corresponding polygonal base. Each of them possesses two generator families that 
correspond to the two enantiomorphic varieties, which have been already mentioned 
in respect of the Simplex (Figure 4.8). 

o ~ 

i ll 
I 4,  

Figure 4.8 Generating hyperboloMs 
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Rhombic configuration 

In the classification recommended by A. Pugh (who worked in collaboration with 
R.B. Fuller) the total prismatic series belongs to a larger class of so-called "rhombic 
systems" (or "diamond systems"), which is characterised by a rhombic configuration 
defined as follows by Pugh: 
"Each strut of a "rhombus system" constitutes the longest diagonal of a rhombus of 
cables, folded according to this axis" (Figure 4.9). 

Figure 4.9 Rhombic configuration 

The prismatic class satisfies this definition and each prismatic tensegrity system 
comprises a single layer of struts (the word "layer" is in fact linked to modes which 
were used by Pugh to build his models). Other systems can be designed by 
multiplying the number of layers. It is then necessary to superpose several prismatic 
tensegrity systems and to satisfy certain conditions (especially those struts included 
in a new layer that have one extremity localised at the middle point of the base 
cables of the previous layer: this is a strut on cable junction) (Figure 4.10) ([Ref 4-8] 
and [Ref 4-9]). 

Figure 4.10 "Strut on cable"junction 

Table 4.2 summarises the classification proposed by A. Pugh for tensegrity systems 
with "rhombic configuration". Pugh's view is that the deformability of the resulting 
model increases with the number of layers. But this characteristic requires a more 
accurate mechanical study. 
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Table 4.2 Multi layer tensegrity systems with "rhombic configuration" 

Tensegrity systems are classified in this table according to the number of "layers", 
the simplest one being the simplex, which has already been described in some detail 
in this book. It is also worth emphasising another "popular" tensegrity system, 
which comprises two layers. This system can be achieved by the association of two 
simplex ("node on cable" junction) by means of six extra cables. Six struts and 
twenty-four cables constitute this system (codification n12-S6-C24-R-SS, or more 
simply in this case $6-C24). It will be noted that the struts are parallel to one 
another, two by two. If "s" is the strut length, it can be demonstrated that the 
equilibrium geometry is attained when the minimum distance between two parallel 
struts is equal to s/2. The corresponding value of the ratio s/c is then r = 1,67. Its 
usual name, for some, is the "icosahedric tensegrity system", but if there are indeed 
twenty triangular faces on its outside, all these faces are not identical. Nor are they 
all completely closed by a set of cables. Nevertheless, in this case the rhombic 
configuration is clear. We ourselves used a similar denomination combining 
Emmerich's rule with the icosahedrie property, since we referred to it as 
"autotendant icosa~drique" in a research paper related to its equilibrium 7. But some 
years after we chose another term "expanded octahedron" (Figure 4.11): in fact the 
two-layer system studied in these lines can be considered as the result of a splitting 
operation of the octahedron diagonals. H. Kenner [Ref 4-10] described some 
interesting results concerning this system, that are related to its geometry and a so- 
called "elasticity multiplying factor": the mechanical behaviour of this system is 

7 Corresponding demonstration is given in Chapter 5. 
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such that when two parallel struts are discarded one from one another, the two other 
pair of  struts are also discarded. 

Figure 4.11 Expanded octahedron 

Figure 4.12 Splitting the diagonals of an octahedron 

4-31.3. "Circuit" cells 

4-313.1 Definition and characteristics 

This second class is characterised by the existence of strut circuits 8. Circuit cells do 
not strictly satisfy the "patent" def'mition given for tensegrity systems: in this case 
"compressed" elements are polygons of  struts, which have to be considered as 
compressed components. Their construction can, for example, derive from the 
prismatic class by completely closing the rhombus of cables: the ends of two struts 
are joined (according to the shortest diagonal of the rhombus). Consequently, the 
number of cables is then divided by two, since they had soon a common node on the 
red strut (Figure 4.13). 

8 In graph theory, a circuit is a path whose two ends are merged in one apex. A path is a 
number (non equal to zero) of arcs so that the final end of each arc coincides with the initial 
end of the following arc. All the apices of the path are not necessarily separate. 
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Figure 4.13 "'Circuit cells "principle 

Thus taking as a basis a rhombic configuration system with three layers, each 
comprising four struts, the described transformation gives birth to a system whose 
cable set geometry fits with a cuboctahedron; the struts constitute four triangles that 
are the circuits of this system (Figure 4.14). The codification 9 of this system 
expresses its properties: two struts at each node implying an equal number of struts 
and nodes. This system is regular but not standard, since the compressed elements 
are not single straight struts, but constitute compressed components: at every point 
matter is under a compression stress. 

Figure 4.14 Cuboctahedric circuit tensegrity systems 

The intertwining of circuits was inscribed in the name "basketry tensegrity", which 
was originally used by R.B. Fuller. Indeed, corresponding geometries have nothing 
to match the subtlety of basketry work. 

9 Codification nl 2-S 12-C24-R 
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Besides the existence of circuits, an essential characteristic of these systems is the 
number of cables (4) necessary to ensure the stability of a node. On the basis of this 
characteristic, other tensegrity systems with circuits can be derived from known 
polyhedral geometries. The number of circuits can even be reduced to a single figure 
as I had the opportunity of checking on a real model recently. 

According to Pugh's experience, the models of these systems are less flexible than 
rhombic systems possessing the same number of layers; this can easily be 
understood since they are derived from them by a contraction. 

4-313.2 Regular and semi-regular poly hedra related to circuit tensegrity systems 

Among the regular and semi-regular polyhedra [Ref 4-11], five have apices with 
four edges and can serve as a geometrical basis to constitute circuit tensegrity 
systems. 

The characteristics of the corresponding tensegrity systems are given in Tables 4.3 
to 4.5. 

The octahedron has to be considered as a borderline case, for which circuits are 
reduced to a single strut lying on each diagonal. The three diagonals intersect each 
other at the centre of the circumscribed sphere. One could then consider this system 
as belonging to a different class whose struts would be in the shape of star 
components, like the elements of Maraldi chains. This figure is nevertheless 
interesting since when considering the inverse transformation that which has 
allowed the transformation of rhombic systems into circuit systems, the octahedron 
gives birth to the system previously referred to as expanded octahedron (see Figure 
4.11). The chosen name can be understood on this basis. 

Table 4.3 Circuit tensegrity systems based on octahedron and cuboctahedron 

a- octahedr0n 
Gives access to the so-called 
expanded octahedron. 

b- ,  cuboc, tahedron 
A tensegrity system with four 
quadrangular compressed 
components. The twenty-four cables 
lie on the edges of the 
cuboctahedron. 
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Geometries b) and c) correspond to equilibrium geometries of circuit systems. The 
polyhedron, which is linked to the cube and to the octahedron families, has been at 
the centre of R.B. Fuller's preoccupations elsewhere - under the name "Dymaxion" 
[Ref4-12]. 

Table 4.4 Circuit tensegrity systems based on icosidodecahedron 

c- icosidodecahedron 
Six compressed components, with 
pentagonal shapes, are inserted in a 
set of six~" cables, each one being 
an edge of the regular 
icosidodecahedron. 

Table 4.5 Circuit tensegrity systems based semi-regular polyhedra 

d- small rhombicuboetahedron Snub Cube 

Six compressed components with square 
shapes are inserted in a tensile 
continuum resulting in equilibrium 
shape, which fits with the snub cube. 

e- small rhombicosidodecahedron Snub Icosahedron 
, i 

The small rhombicosidodecahedron 
produces a tensegrity system with twelve 
pentagonal compressed circuits, whose 
edg____es constitute a snub icosahedron. 
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With polyhedra d) and e) equilibrium can not be reached in the initial geometry 
since the circuits are such that the incidences of struts ending at the squares' apices 
are not identical and induce the distortion of these faces. 

Two solutions are then possible: 

In order to maintain the initial geometry, complementary cables can be added; 
they stabilise the squares. 
The equilibrium position of these systems can be attained in a geometry which 
is different from the initial one. In this second hypothesis the small 
rhombicuboctahedron leads to the geometry of the snub cube, which would lack 
some edges (corresponding drawing in Table 4.5 comprises all the edges (5) of 
the snub cube, four of them are only necessary for equilibrium). The small 
rhombicosidodecahedron finds its equilibrium geometry according to snub 
dodecahedron geometry. It is necessary to note that two enantiomorphic figures 
exist for the snub cube and the snub dodecahedron depending upon the choice 
made for introducing circuits in the initial shape. 

4-313.3 "Geodesic" tense m'ity systems with circuits 

Under the decisive impetus of R.B. Fuller, the development of geodesic domes has 
witnessed a significant improvement during the second half of the twentieth century. 
The mode for their geometric generation is described in [Ref 4-13]; it is sufficient 
here to bear in mind that this generation relies on the division of triangular faces 
(sometimes square faces) of the polyhedra which are chosen to generate the dome. 
The breakdown in triangles of a basic one can be realised according to two modes. It 
is a "Class 1 breakdown" which is normally used [Ref 4-10]. Fuller qualified it as an 
"alternate breakdown". 

Besides the class of chosen breakdown, it is the number of generated segments on an 
edge of the initial polyhedron which characterises the geodesic breakdown. This 
number is called "breakdown frequency" (Figure 4.15). 

1 

Figure 4.15 Breakdown frequency 

The examination of geodesic geometry shows that for Class 1 with even breakdown 
frequencies, the resulting systems can be compared with tensegrity systems with 
circuits. Indeed (Figure 4.16), the system in heavy lines possesses the characteristics 
of circuit systems; one finds four connections for each node. The configuration 



66 TensegriO, 

principle of these tensegrity systems is illustrated in Figure 4.17. The intertwining of 
struts that belong to circuits is quite clear there. 

,O(YO0(O 

Figure 4.16 Distribution o f  struts and cables on a geodesic pattern 
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Figure 4.17 Intertwining o f  struts 

Figure 4.18 Projection on to the circumscribed sphere 
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It is necessary, as in the case of classic geodesic domes, to project the geometry of 
the genetic polyhedron on to its circumscribed sphere. In fact, only nodes have to be 
projected (Figure 4.18). 

4-31.4. Type Z tensegrity systems 

4-.3...14.1 Definition and example 

The definition given by A. Pugh for this new class is also of a qualitative order: 
"A type Z 6 tensegrity system (or 'Zig Zag' tensegrity system) is such that between 
the two extremities of each strut there exists a totality of 3 non aligned cables". 
These three cables then do indeed form a "Z". These systems can be constructed 
when taking as a basis "rhombic" systems according to the principle of Figure 4.19. 
This diagram shows the existence of two possibilities. When the transformation is 
operated on the totality of a tensegrity cell, the coherence has to be preserved when 
choosing the suppression of the two cables. 

Figure 4.19 Zig Zag connection principle 

Thus the transformation of the expanded octahedron leads to a geometry which is 
close to the truncated tetrahedron geometry (Figure 4.20). 

Figure 4.20 Truncated tetrahedron 

In this type of tensegrity system one notes there are three connections by nodes, and 
this is a point worth beating in mind in respect of the following discussion. 
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4-314.2 Regular and semi-regular polyh edra in connection with typ_e "Z" tensegrity 
systems 

One of the characteristics of "Z tensegrity systems" is that they comprise 3 
connections by node. Three platonic polyhedra and seven archimedian polyhedra 
satisfy this condition. 

Although Pugh did not note it specifically, this does not give any certainty of 
attaining a balanced geometry. It is a point which we will discuss further in the 
chapter dealing with models. The cube and the octahedron examples are the 
converse demonstration: one cannot obtain with the application of the "Z" 
transformation balanced figures, which strictly maintain the initial geometry. 

4-314.3 Geodesic "Z" tensegrity system s 

Following the same process as in case of geodesic "circuit tensegrity systems", the 
use of geodesic breakdowns allows us to extract meshes that are necessary for the 
constitution of "Z" tensegrity systems. For this, it is necessary for the breakdown 
frequency to be a multiple of 3. Figure 4.21 indicates how the existence of 3 
connections for each node of systems in heavy lines is likely to generate the required 
systems. 

Figure 4.21 Geodesic "Z like "' patterns 

Hexagons of the mesh can be classified in two categories a) and b) (Figure 4.22) 
according to the incidence of struts ending at their apices. Incidences of type b) are 
such that the angular hexagon regularity cannot be preserved - which explains the 
distortions that occur while building models. 
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Figure 4.22 Two different hexagonal meshes 

4-3.2. Stars cells 
Some derivations may be made taking spherical cells as a basis. As examples we can 
quote the so-called "stars cells" designed by V. Raducanu [Ref 4-14].They 
constitute an extension of four strut prismatic tensegrity cells. Their diagonals, 
respecting equilibrium considerations replace upper and/or lower cable squares. 
Three possibilities are defined (Figure 4.23). 

Figure 4.23 Star cell configurations 

For case 3, it can be noted that some nodes receive only two tensile elements and 
one strut, and these three elements are coplanar. The spatiality of cells does not 
require the existence of three cables at each node as some have claimed in the 
"patenf' definition. Furthermore, tensegrity systems can be established with some 
nodes without struts (see Figure 4.24). 
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Figure 4.24 Star cell with specific nodes (Raducanu, V.) 

4-4. Assembl ies  of cells 

4-4.1. Introduction 
It was entirely natural to try to assemble elementary cells to constitute more 
complex tensegrity systems. The following descriptions are, once again, based only 
on geometrical considerations, even if, sometimes, equilibrium is maintained. It is 
not worth providing an exhaustive list of proposals that have been made in this field. 
We only quote here some significant examples, which can be classified in three 
kinds: uni-dimensional, bi-dimensional and three-dimensional systems. 

Generally speaking elementary cells are "regular": All cables have the same length 
"c", all struts have the same length "s". This is not always true for assembly 
examples: sometimes, assemblies can only be achieved with "irregular" cells 
(several lengths of cables, several lengths of struts). 

4-4.2. Uni-dimensional systems 
These systems are characterised by a predominant axis, which dictates the whole 
geometry. 

This class is illustrated by physical models, and/or sculptures which have been 
created mainly by Snelson, Fuller and Emmerich. 

4-42.1. Tensegrity masts 

According to the chronology of events, Snelson and Fuller proposed a temegrity 
mast at precisely the same t i m e -  a matter of dispute, however, between the two 
protagonists themselves. In his book "The Dymaxion World of Buckminster Fuller", 
[Ref 4-12] the author actually presents a picture of a Tensegrity Mast made by 
Kenneth Snelson, 1949 (Figure 4.25). On the same page another mast is presented. 
This mast (the legend is Tensegxity Mast, North Carolina State College, 1950, 
Figure 4.26) seems to have been designed by Fuller- as was a third one (University 
of Oregon Tensegrity Mast, 1953, Figure 4.28). The second one (or a similar) was 
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exhibited for the first time at the Museum of Modem Art, in New York, and recently 
in Paris for the exhibition the "Art of Engineering" (Figure 4.27). 

Figure 4.25 Fuller and Snelson mast 

Figure 4.26 Tensegrity mast, North Carolina State College, 1950 

Figure 4.27 Tensegrity mast: detail 
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Figure 4.28 University of Oregon tensegrity mast, 1953 

It is interesting to establish a relationship between these masts and the early 
sculptures of Kenneth Snelson. The compressed components are made with two 
opposite "V" shapes in two perpendicular planes, which can be understood as an 
evolution of the initial double "X" submitted by Snelson, with an appropriate set of 
cables. Moreover, these tensegrity systems have compressed components, which are 
not simple straight struts; this remark is made in relation with the submitted 
extended definition previously given. The last comment concerns the detail in Figure 
4.27: the two "V" are separated, each one contains two struts assembled with a 
spherical node, and the two nodes are joined with a small straight tensioned 
component. The spirit of tensegrity is included in these early examples. 

4-42.2. Needle Tower 

The Needle Tower (Figure 4.29) was designed by K. Snelson among several other 
tensegrity sculptures. It came to my own attention when exhibited in the gardens of 
Hisshom Museum. It is more elaborate than the initial tensegrity masts and is 
certainly one illustration of the aesthetic qualities of tensegrity systems, in keeping 
with other Snelson sculptures. 

Figure 4.29 Needle Tower geometry 
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If there was no chronological precedent, one could have told that the mast designed 
by K. Snelson improves others by complementary cable addition. Its system is in 
fact a "rhombic" tensegrity system with several layers of three elements each. It can 
also be considered as a superposition of expanded octahedra. 

4-42.3. Emmerich's proposals 

Two other masts are the result of work undertaken under the direction of D.G. 
Emmerich. 

The "Chinese mast" of P. Boulet is built by the direct assembly of nodes of 
successive "simplex" [Ref 4-15]. The so-called "M~t Autotendant . . . .  Mdt 
Autotendant" by A. Chassagnoux necessitates the junction of lower nodes on the 
middles of cables of the previous one in the mast (Figure 4.30). This mast was the 
object of a physical test in Strasbourg [Ref 4-16]. Its constitution itself gives a very 
flexible system. 

Figure 430 "'Mdt Autotendanf' 

Still in the field of tmi-dimensional assemblies, a "toms" (Figure 4.31) designed by 
two other students of D.G. Emmerich preserves the principle of simplex junction 
end-to-middle of cable, but the authors closed the system and thus created a system 
whose connectivity is of a superior order. This system constituted a first step of 
topological possibilities of assemblies. Not all the cables have an identical length. 
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Figure 4.31 Tensegrity "'torus'" 

We also experimented, in 1999 ~~ with some other uni-dimensional shapes, such as 
the arch of Figure 4.32 using two straight cables to balance the thrusts. 

Figure 4.32 Arch with six ~rpanded octahedra 

4-4.3. Bi-dimensional assemblies 
Examples of bi-dimensional assemblies are described in this section. It is still in the 
scope of tensegrity systems resulting from the assembly of elementary self- 
equilibrated cells. Some innovative designs have been developed in recent years and 
their principle is described in Chapter 7. The design of nodes and components are 
not described in this chapter, which deals only with typologies. Several junction 
modes can be used: node on node, node on cable, cable on cable (partial), cable on 
cable (total). Hanaor [Ref 4-17] described the last three solutions. In type "1" 

10 Workshop on tensegrity, Ecole Sp~ciale d'Architecture, Paris, May 1999. 
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(Figure 4.33) the junction is operated with a single bracing cable: each of its two 
ends lies in different horizontal planes, and Hanaor used this mode in a plane 
configuration leading to a double layer grid (Figure 4.34). 

Figure 4.33 Junction modes 

Figure 4.34 Three cells junction 

4-43.1. Plane double layer tensegrity grids 

4-431.1 Strut on cable solution.s 

The simplest idea is to assemble elementary cells so as to constitute a double layer 
grid, as can be done in a tiling operation. Elementary cells are self-equilibrated and 
so is their assembly. In some cases it is necessary to add additional cables in order to 
make the connections between cells. Elementary cells with three and four struts are 
commonly used. The relative rotation of upper and bottom polygon of cables only 
conditions the self-equilibrium of each cell. 

Hanaor and Kono submitted their own proposals. Others can be found in 
Emmerich's works. But Emmerich did not give any mechanical support for his 
grids. Hanaor built prototypes, which are described in the available literature. [Ref 
4-17]. Kono published a study on the dynamic behaviour of its grid [Ref 4-17] (see 
Figure 4.35). The elementary cell (Figure 4.36) is a derivation of the so-called 
"simplex": The bottom triangle is modified in order to implement contiguous cells. 
Kono himself brought to my attention a drawing in 1997 (Figure 4.37). 
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Figure 4.35 Plane double layer grid by Kono 

Figure 4.36 Elementa~ cell 

Figure 4.37 Sketch of cable layers by Kono 
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4-431.2 Node on node solutions 

Building upon some studies on elementary cells developed by our research team, we 
decided to work on four strut cells. Three double grids were built with nine 
elementary cells according to the pattern in Figure 4.38. The following points are 
worth beating in mind: 

We tried to respect in this project a rule developed by Robert Le Ricolais by 
using continuous cables that go through nodes. This is true for layer cables. 
Bracing cables also constitute continuous paths but it is not at all easy in 
practical terms to create the whole in one piece because of angles that have to 
be respected. 
The initial choice to assemble cells by a node-on-node junction could be a 
reason to exclude these grids from the tensegrity class. B.B. Wang wanted to 
include them when he wrote about contiguous and non-contiguous tensegrity 
systems. We think that these grids fit with the extended definition submitted in 
Chapter 2, in the same way as the tensegrity masts of Snelson and Fuller. It is 
possible to identify discontinuous sets of compressed components in this type of 
double layer grid (see Chapter 2). 

I 

Figure 4.38 Double layer tensegrity grid principle: plane view 
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Figure 4.39 Double layer tensegrity grid principle: axonometric view 

We created three prototypes of this type between 1987 and 1991. The first sketches 
were produced during the first conference LSA86 '~, but were not published [Ref 4- 
19]. The first publication of the principle was published in 1987 [Ref 4-20]. These 
creations required specific studies for nodes. The complete history of these nodes 
can be found in the work carried out by V. Raducanu [Ref 4-14]. The first attempt 
was made with aluminium struts and plastic nodes, which were commonly used to 
display foldable panels by a local firm, named "DUO". We chose to call it a DUO 
plane double layer tensegrity grid (Figure 4.40). We used the same nodes and 
constitutive components for grids with curvatures. Curvature results from the 
variation of distances between nodes. 

Figure 4.40 DUO plane double layer tensegri~ grid (I 990) 

I I I drew these projects during the conference organised by V. Sedlak in Australia and had the 
opportunity to introduce the corresponding handmade sketches during my lecture. 
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A second grid is worthy of mention (Figure 4.41). It was assembled in the same 
years, but this solution was not developed furtherl The node had too many degrees 
of freedom and there was an element of instability which was difficult to overcome. 
The self-stress level could be introduced by acting directly on the screws at the ends 
of the struts. Cables go through the nodes that have a cross shape (Figure 4.42). 

Figure 4.41 Double layer plane tensegrity grid 

Figure 4.42 Node detail 

The third plane double layer tensegrity grid was built at the beginning of 1992, still 
on the same pattern (Figure 4.43); this grid resulted from our previous studies and 
we improved the self-stress implementation with the help of my colleague Jean 
Tuset. Normally a specific device is introduced in struts or cables (a mixed 
procedure can also be used). In this case we introduced the self-stress with a specific 
design of the node (Figure 4.44), which contains three parts (Figure 4.45): when 
assembling these parts bracing cables are tightened and the whole system is under 
self-stress. 
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Figure 4.43 Double layer plane tensegrity grid (1992) 

Figure 4.44 Node in place 
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Figure 4.45 Node parts 
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4-43.2. Single curvature systems 

One of the goals that has also to be reached is to create single and double curvatures 
using the tensegrity principle and which does not require any supplementary device 
such as a mast and/or stabilising cables like for membranes. 

By maintaining the principle of elementary self-stressed cells it is possible to modify 
the equilibrium shape so as to generate single curvature systems. The entire 
description has been given in [Ref 4-20], and the main features are described here. It 
is simply necessary to play on the position of nodes referred to as 6 and 8 in Figure 
4.46. The design is made with a constant length of the strut; the trajectory of node 6 
is a circle in the vertical plane quoted "V". 

Figure 4.46 Circular trajectory of node 6 

On this circle the limit positions are defined by the possible strut-strut contacts 
(Figure 4.47). According to the choice that is operated for the shape modification, 
two types can be defined (Figures 4.48 and 4.49). We chose type I to design the 
single curvature double layer tensegrity grid in Figure 4.50. 

Figure 4.47 Strut-strut contacts limiting the trajectory 
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Figure 4.48 Modified shape type I 

Figure 4.49 Modified shape type II 

Figure 4.50 Single curvature double layer tensegrity grid 
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4-43.3. Double curvature systems 

The final kind of bi-dimensional assembly of cells is a double curvature system. In 
order to build a prototype of this kind, we chose to generate it as a translation grid. 
The geometric description can be modelled with Formex algebra [Ref 4-22]: the 
result is easily achieved by specifying the number of cells on each side, the complete 
chart requires only a few lines to achieve the result (Table 4.6 and Figure 4.51). 

Table 4.6 Grid generation chart 

:C,FL,N,EP: 
1 TC=([1,1,1;3,1,1],[1,1,1;2,1,3],[2,1,3;3,2,3]} 
2 TS=[1,1,1;3,2,3] 
3 FC=RINID(N,N,2,2)[ROSID(2,2)[TC 
4 FS=RINID(N,N,2,2)[ROSID(2,2)[TS 

5 DLG=FC#FS 
6 USE BT(1,1,1 ) 
7 USE MINE(C,FL,N,EP) 
8 USE VS(10) 
9 USE VN(70,70) 
10 DRAW DLG 

Figure 4.51 Resulting shape with Formex generation 

The choice was to map cables on two double positive curvature surfaces (a quarter 
of the whole is represented in Figure 4.56). A project drawing with ten cells on each 
side was created manually by A. Rampon [Ref 4.23]. These drawings successively 
represent the two layers of cables (Figure 4.52), the struts (Figure 4.53), struts, 
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bottom layer and bracing cables (Figure 4.54), the grid between the two layers 
(Figure 4.55) and the final result (Figure 4.56). 

Figure 4.52 The ~'o cable layers 

Figure 4.53 Struts 

Figure 4.54 Struts, with bottom layer and bracing cables 
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Figure 4.55 Grid between the two layers 

Figure 4.56 Final shape 

On the basis of these geometrical studies, we created a prototype of a double 
curvature double layer tensegrity grid (Figure 4.57). We used the same components 
as those of plane "DUO" double layer grid (Figure 4.40), and this demonstrates that 
it is possible to vary the shape by playing on the distances between nodes on cables: 
extra lengths of cables can be seen in the picture. 
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Figure 4.57 Prototype of double curvature double layer tensegrity grid 

We will conclude this presentation with the double curvature grid developed by 
Ariel Hanaor [Ref 4-24] on the basis of node on cable junction. 

Figure 4.58 Double layer tensegrity grid by Hanaor 

4-5. Conclusion 
In this chapter we have tried to give some examples of typologies based on isolated 
cells and the assembly of cells. Some are only geometrical studies without 
equilibrium considerations- which can occasionally lead to incorrect solutions 
depending on possible realisations, others were effectively created and thus 
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confirming their ability to fit within the concept of structural tensegrity. These 
typologies are only described from a geometric point of view. 

Between them, these studies constitute the history of tensegrity systems, even if 
some have to be discarded. They opened a wide field which will undoubtedly be 
investigated by others. The first steps of this new progression will be discussed in 
the f'mal chapter, for they anticipate a larger development. 
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Models 

5-1 Introduction 

Some theoretical models were initially developed for form-finding. Other models 
were necessary to solve some problems related to tensegrity mechanics. I thought it 
might be fruitful to provide some information on this topic, in order to illustrate the 
evolution of these models and their relevance today, since many others are to be 
found in the available literature. I have also included a list of references at the end of 
this chapter. More references are included in the "Bibliography" chapter at the end 
of this book. 

Needless to say few things can be achieved without the help of others. So it goes 
without saying that I did not work alone on these models, and I am thus indebted to 
many colleagues (listed in the references accordingly) and it is my pleasure to 
warmly thank them all at the very outset of this chapter. 

5-2 Problems to solve 

It is worthwhile highlighting the main features that govern tensegrity systems, and 
consequently the associated mechanical problems which have to be addressed. 

One is essential: it concerns the initial state of the system and its behaviour when it 
is subjected to external actions. 

The initial state of the system is very specific since it is a self-equilibrated state; 
moreover the rigidity of the tensioned components is unilateral (no rigidity in 
compression) and the relational structure is very specific: compressed components 
are inside a continuum of tensioned components. The study of this initial state, the 
sizing and sensitivity problems and f'mally mechanical behaviour (static and 
dynamic) is the objective of what follows. 

As with every system with initial stresses, any state can be defined by two sets of 
parameters: form and force parameters. 

The first set results from the adopted relational structure and from the geometric 
characteristics of the manufactured components. Form is directly perceptible and 
measurable- it can be seen. 
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The second set of parameters depends on the ability to introduce an initial stress 
state in the system, which guarantees its stiffness. The level of this stress state 
cannot be seen directly. In place of stress, it is preferable to evoke the necessary 
deformations, which are applied to the components to build the system. If there were 
a strict coincidence between geometric distances and manufactured lengths, the 
assembly would look like a jigsaw: the only problem would be to find the fight place 
for each piece in the construction. 

Some problems to solve are listed below, although list is by no means exhaustive: 

1. Form-finding problem; 
2. Self-stress feasibility (closely related to point 1); 
3. Compatibility between self-stress and component stiffness; 
4. Identification of mechanisms; 
5. Stabilisation of mechanisms; 
6. Sizing of components; 
7. Mechanical behaviour under external actions; 
8. Sensitivity to imperfections, etc. 

The first part of this chapter is devoted to the form-finding problem, and is followed 
by several others, which are concentrate mostly on mechanical aspects in relation to 
initial self-stress. 

5-3 Form-finding 

5-3.1 Introduction 
Form-finding is a basic problem for tensegrity systems, since both shape and 
geometry must fulfil certain stability requirements. Designers have to keep in mind 
that the double goal to reach simultaneously comprises geometry and self-stress. A 
form-finding method is characterised by a priority devoted to geometry or to 
mechanics, but no solution can dispense with either of these two aspects. This is 
very clear in one of the theoretical methods presented with which the designer may 
simultaneously use the stress and geometric parameter [Ref 5-1 ]. 

It can be claimed that two main methods are available. They can be respectively 
described as a "form controlled" or a "force controlled" method. The former is 
illustrated by the work carried out by sculptors in general and by Kenneth Snelson in 
particular. The objective is to develop tensegrity systems without any criteria about 
the regularity of components and, moreover, regardless of the generalisation 
potentiality with mechanical characters. Stability is ensured by a heuristic method 
based on experimentation and a trial-and-error process. This occasionally gave very 
impressive results. 

The second method was developed in order to ensure the mechanical requirements 
using a theoretically modelled form-finding process. As one can anticipate, these 
models have to be simultaneously aware of geometry and pre-stressability in order 
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to be successful. This kind of method can give precious results, but at the same time 
can fail. It must also be emphasised that if, in this last method, the resulting shapes 
are very regular; they do not have the richness of the heuristic way. Secondly, it 
appeared that "mechanically" based solutions require very long development times 
for complex systems. Consequently, a mixed procedure was embarked upon by our 
research team: a general principle is defined so as to generate a tensegrity system. 
The results of its application are then tested according to pre-stressability criterion. 
We chose this way to design some new tensegrity grids, which will be presented in 
Chapter 7. 

In the following sections, I give a number of illustrations of both methods available 
to reach this twin goal; these presentations are preferably those which have also a 
historical interest. When looking at the literature, there is no doubt about the future 
development of improved methods. 

5-3.2 Form controlled methods 

5-32.1 Snelson's approach 

5-321.1 Basic idea 

As previously pointed out (see Chapter 2), Snelson worked only with physical 
models and sculptures. The basic idea is all contained in its "One to the next" 
sculpture (Figure 5.1) by transforming the link design between two components. 
Each has to be considered as an "X" spatial shape, since the lower longer "legs" are 
used to impose downward forces with clay balls. 

The rhombus of cables is then used to link two successive "X". The upper part and 
the lower part of these "X" are identical in terms of actions: under the effect of load 
nodes 1 and 2 are discarded and conversely nodes 3 and 4 come closer. 

Figure 5.1 One to the next 
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The assembly of "X" naturally leads to the double "X". This evolution is illustrated 
in Figure 5.2" 

�9 The initial geometry of the "X" is spatial and can be included in a tetrahedron. 
�9 A relative rotation between the upper and lower parts of the "X" gives a plane 

configuration known as a Saint Andrew Cross (the cross is a compressed 
component), square edges are tensioned components. 

�9 Using the last configuration and doubling it in an upside down position results 
in the very well known "double X" sculpture created by Snelson (Figure 5.3). 

Figure 5.2 From tetrahedron to Saint Andrew Cross 

It is worth noting that the junction between the two "X"s is created by a rhombus of 
tensioned components. When self-weight is considered this rhombus cannot be 
plane. Consequently, as the size of one of its diagonals increases, so the other 
decreases: these size variations can be associated respectively with compression and 
traction when the related actions on nodes like 1 and 2 are considered. This remark 
is fundamental for the understanding of successive items in the Snelson's patent. 

Figure 5.3 Double "X" sculpture by K. Snelson 

5-321.2 From double "X" to tensegrity 

The next steps in the conceptual design achieved by Snelson are described below: 

�9 The initial "X" is split in two pieces, namely "l l" and "12" in Figure 5.4. 
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Figure 5.4 Basic cross I 

Two pieces are assembled: they lie in two perpendicular planes. As previously 
described (Figure 5.2), one of the four edges is omitted (dashed lines "23" in 
Figure 5.5), and the link between the two "X" is made with a rhombus of cables 
("26" and "24"). 

Figure 5.5 Assembling two "X" 

Figure 5.6 Introduction o f  two cables 

See Snelson's patent, Chapter 2. 
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The addition of tensioned components (red lines) between two "X" allows the 
separation of the two pieces: their relative distance is illustrated in Figure 5.6. A 
similar operation on the second "X" gives a system with struts that do not touch 
each other-  thus fitting with the classical definition of tensegrity. 

5-321.3 From double "X" to simplex 

In paragraph 5-32.1 particular emphasis was paid to the analogy between 
compression and the increasing size of a distance between nodes 1 and 2. It seems 
that Snelson used this property himself for in his patent a drawing shows an 
assembly of three "X". The initial rhombus with four edges becomes a continuous 
set of nine cables that can be also stabilised by the insertion of struts according to 
the arrows in Figure 5.7 (right drawing). If these struts are indeed inserted, the 
system with nine cables and three struts is stable and the three "X" can be removed. 
Until now it has not been clear to me whether or not if Snelson used this way. 

Did Snelson know about Loganson's sculpture and tried to stabilise it? Nevertheless, 
it struck me as interesting to describe this drawing which is included in Snelson's 
patent. 

Figure 5.7 Assembly of three "X"s 

5-321.4 Masts 

Snelson built many masts using his initial principle of spatial "X". This basic 
tetrahedral piece contains a compressed component with four branches and six 
cables. He also developed other structures by the assembly of several plane "X"s 
which are separated into two struts. Recent works by Micheletti [Ref 5-2], Skelton 
[Ref 5-3] and Smaili [Ref 5-4] can be consulted to get a better understanding of the 
mast design. 
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Figure 5.8 Mast (Snelson) and elementary tetrahedral cell 

5-321.5 Conclusion 

Snelson's work is fundamental. His design process ensures the pre-stressability of 
the resulting structures, whose shapes are adapted to the author's aim. But as in 
every work of this kind, it is not possible to extrapolate generalisations from the 
process with a series of simple and reliable rules. Apart from Snelson's own 
experience, it is not possible for anybody to have precise information about the 
initial state of stress of the whole system during its construction. Moreover, only a 
great deal of experience may help to monitor this self-stress and its level. 

5-3 2.2 Emmerich's proposals 

David Georges Emmerich mainly used a geometric approach, even if he had some 
contacts with people who carried out mechanical calculations (Siestrunk and 
Chassagnoux being main ones). He also worked with large scale models which were 
exhibited in many places. 

Nevertheless, each of his proposals needs to be verified in terms of equilibrium. 
Recent work was undertaken by O. Foucher [Ref 5-5]. The objective was to identify 
the existence of self-stress states in Emmerich's proposals. Since Emmerich mainly 
used polyhedra we decided to call those systems "tensypolyhedra" which fit the two 
mains conditions: 
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�9 The nodes are the apices ofpolyhedra. 
�9 The system has at least one stable self-stress. 

5-322.1 Incorrect examples 

Many of the drawings made by D.G. Emmerich show polyhedra with struts inside, 
but not all are "tensypolyhedra". Physical models, numerical models, (mainly those 
included in Tens6grit6 20002), have been used to check the existence of self-stress 
states. Sometimes simple remarks on equilibrium conditions can lead to rapid 
conclusions. 

a) Truncated tetrahedron 
D. G. Emmerich was himself perfectly well aware that the equilibrium configuration 
is not mapped exactly onto the geometry of the truncated tetrahedron. The 
hexagonal face is distorted. A simple proof of this impossible equilibrium is 
illustrated by the projected view given in Figure 5.10: the left-hand side 
configuration corresponds to the tetrahedron geometry. The equilibrium of node "A" 
cannot be ensured since the strut does not satisfy the synunetry condition illustrated 
on the fight hand side view. O. Foucher established that it was possible to create a 
"tensypolyhedron" by the insertion of supplementary cables, inside the "spherical" 
continuum of cables. 

Figure 5.9 Truncated tetrahedron 

Figure 5.10 Equilibrium condition 

2 Tens6grit6 2000 is a software developed in our own laboratory, dedicated to tensegrity. 
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b) Icosahedron 
Another classical system is based on the geometry of icosahedron with some 
missing edges between apices whose distance is less than the edge size. This was 
also pointed by David Georges Emmerich. I established a simple demonstration of 
equilibrium condition (see paragraph 5-332.2): the ratio between strut length and 
least distance between two struts is equal to 2. As a matter of proof, it is known that 
the corresponding ratio in the icosahedron is equal to golden ratio 1,618. 

Figure 5.11 Six strut tensegrity system 

This is why I arbitrarily called it "expanded octahedron" - in order to dissociate this 
equilibrated configuration from Icosahedron, and also because this configuration 
could result from an expansion of octahedron: in this geometrical transformation the 
number of edges (12) is doubled. The three diagonals are split into three pairs of 
parallel struts. 

c) Dodecahedron 
This case is similar to the previous one since it contains five pairs of parallel struts 
(Figure 5.12). A simple physical model shows that this system is subjected to a finite 
mechanism which can be activated as shown in Figure 5.13. The plane result is also 
illustrated in the same figure. 

Figure 5.12 Dodecahedron 
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Figure 5.13 Mapping the dodecahedron on to a plane 

5-322.2 Tensypolyhedra 

Several polyhedra can be transformed into tensypolyhedra by insertion of struts. We 
are only citing here two examples. Interested readers may refer to Foucher's work 
[Ref5-5]. 

a) Snub cube 
Among the tensypolyhedra, it is interesting to note the snub cube illustrated in 
Figure 5.14: it contains 60 cables, 12 struts and 7 self-stress states. 

�9 Figure 5.14 Snub cube (left type) 
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b) "Stella octangula" 
If we consider the combination of two tetrahedra, we may see it as a starry triangular 
antiprism. The construction of the tensypolyhedron begins by removing the upper 
and lower little tetrahedra (Figure 5.15). 

Figure 5.15 Stella octangula and associate polyhedral shape 

It is then necessary to eliminate some edges so as to keep only those given by 
Emmerich and reproduced on the fight side view (Figure 5.16). Taking advantage of 
symmetry, we only need to study the equilibrium of a single strut. It can be seen that 
such a strut (12) is included in a plane rhombus, with one missing edge, which is 
replaced by the cables incident to nodes 2 and 4. This missing edge is an edge of the 
original antiprism 

Two comments are called for: 

�9 Only two cables are incident to node 1; they define a plane containing the strut. 
�9 This result is easily generalised to other antiprisms with regular polygonal 

bases. 

Figure 5.16 Equilibrium of "Stella octangula" 
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5-322.3 Conclusion 

The work carried out by Emmerich was very fruitful; in France, many people began 
to take an interest in tensegrity by reading his publications and/or attending his 
lectures. I had access to his publications, but I always regretted the absence of 
stability proofs. This work can now be carried out with theoretical models that are 
being developed here and there. 

5-3.3 Force controlled models 

5-33.1 Coupling forms and forces 

It is an indisputable fact that Snelson's work were fundamental. And that many 
results of Emmerich's results are very useful. But it was also necessary to develop 
theoretical models that could be used by people who want to overcome the 
drawbacks of experimental methods based on trial and error processes: if this 
method is very well adapted for art, it is not necessarily the case for structural 
design. The o:iler side of the coin is, of course, that it is difficult to take into account 
a very large number of parameters when mechanical methods are used. 

The goal is to design tensegrity systems ensuring the coupling of forms and pre- 
stressing forces in the final result, as a double simultaneous target. Analytical 
methods can be developed for cases with a low number of parameters [Ref 5-6]; 
numerical methods allow for a larger number. It is obvious that each model has its 
own limits and the designer might be well advised to use several so as to improve 
his own understanding. 

5-33.2 Form-finding: single parameter 

Apart from sculptural works, until now most tensegrity systems have been regular, 
and their shape is defined by only one parameter, the ratio r = s / c -  s being the 
length of the struts and c the length of the cables. In this case form-finding is a 
single parameter process. 

5-332.1 Static equilibrium approach 

For very simple systems like the three-strut tensegrity module, a static approach can 
be used. The equilibrium conditions for one node determine the resulting shape. This 
demonstration has been given in Chapter 3 devoted to "Fundamental Concepts". 
Here we operate a similar demonstration for a system with six struts and twenty-four 
cables, that we have previously referred to as "expanded octahedron" [Ref 5-7] 
Figure 5.17. 
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~ f l  H= 
IX 

Figure 5.17 Expanded octahedron. Node equilibrium and form-finding 

For reasons of symmetry, it is sufficient to consider only 1/8 ~ of the whole system, 
and to study the equilibrium of one node; let "A" be this node. Five actions are 
exerted on it, one by the strut and four by the four cables. Let "T" be the action of 
one of these cables. Again for reasons of symmetry, we may study only two, which 
are on one side of the plane containing A; their components can be split into 
components that are orthogonal to the vertical component containing the strut: these 
components are self-balanced when the four cables are considered. The in plane 
components can be split into vertical components equilibrated by the compression in 
the strut and two horizontal components, say H~ and H2. Equilibrium condition is 
given by: 

E5.1 H I = H  2 

with: 

E 5.2 H~ = T . c o s  a ~ �9 coscx 2 

and 

E 5.3 H 2 - -  T -  c o s  ~ 3 �9 c o s  ( z  4 

It can be seen in Figure 5.17 that trigonometric lines are given by following values: 

AC CK 
E 5.4 cos c ~ =  AB cos ~ 2 = AC 

and then: 

E 5.5 
CK 

H 1 = - - - - T  
AB 
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Similarly 

E5.6 
AL  

COS 0. 3 = - - r , ,  
/ '~U 

KO 
COSOL4 "- A L  

E5.7 KO . T 
H2= AD 

Equilibrium equation E 5.1 becomes: 

E 5.8 
CK KO 

A B  - AD 

The system is regular and then: 

E 5.9 AB = AD = c 

with c being the cable length. Consequently: 

E5.10 
s d 

CK = KO ~ - = - 
4 2 

s being the strut length, and d the distance between two struts. The equilibrium 
position is then characterised by the very simple relationship: 

E5.11 s = 2 d  

It can be demonstrated easily that the ratio between the strut length and the cable 
length is: 

S 
E 5.12 - = 1,63 

C 

This self-stress state is also characterised by the relationship between the 
compression C in the struts and the traction T in the cables: 

E 5.13 C = 2 ,45T  

5-332.2 Cinematic approach 

This approach is illustrated for the three-strut cell. 

If we express the ratio r = s/c with respect to 0, which is the relative rotation 
between the two parallel equilateral triangles (case of regular three strut module), we 

find that: 

E5.14 r = - =  1+ .sin 0 +  
c N g 
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The null self-stress equilibrium geometry is defined by the maximum value of the 
ratio r; hence we derive the expression E 5.14" 

E5.15 
dO = 3"" 3" 

1 

and find two values of 0: 

E5.16 ~ 0 = + - -  
6 

Related systems are called "anti-clockwise" ("16vogyre"), and "clockwise" 
("dextrogyre") (Figure 5.18). It is possible to check, in these solutions, the 
parallelism of lines previously called D and D', in vertical projection. 

D 'D' D;.. 
D i" 

., 

e 
�9 6 

Figure  5 .18  " A n t i - c l o c k w i s e  "' a n d  " ' c lockwise  "' s y s t e m s  

It is possible to generalise [Ref 5-8] the equation E 5.14 in the case of p-polygonal 
systems. I have demonstrated that it leads to the following expression: 

E 5.17 0 = + re. (p - 2) 
2 . p  

But as Pugh pointed out in his book [Ref 5-13], this relation links the two bases 
without any information about the depth of the module. 

5-332.3 Dynamic relaxation 

A third approach can be used for single-parameter systems. This approach is based 
on dynamic relaxation with, or without, kinetic damping [Ref 5-9]. In this numerical 
method, static equilibrium is the result of a virtual dynamic study of a system. This 
approach used for a truncated tetrahedron shows that the hexagonal faces, such as 
ABCDEF, are not planar but slightly distorted (Figure 5.19). 
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Figure 5.19 Truncated tetrahedron 

5-33.3 Form-finding: multi-parameter 

Multi-parameter form-finding processes have been developed recently for irregular 
modules and assemblies. This new method has been developed mainly by Vassart 
[Ref 5-1]; it is based on the force density approach. Irregular shapes can be defined 
either by choice of force density coefficients or by an analytical method. Graphic 
developments have also been studied in this work and it is now possible to design 
irregular shapes and to try to map them on double curvature surfaces (with positive 
and/or negative gaussian curvature). This is a fundamental step for the form-finding 
of tensegrity systems. The main features of this method are outlined in this section. 

5-333.1 Force densit3' method 

Force density principle. 
The force density method [Ref 5-1] is based on the force density coefficients {q}, 
which are used to linearise the equilibrium equations. For a member j, the force 
density coefficient qj is defined by the ratio between the normal axial force Tj and 

0.  reference length Ij 

E5.18 qj =-5" Ij 

Reference length ( for a member j represents its length after assembly of the whole 

system and before any loading. Let "i" be a free node, connected with nodes "h" by 
members j, equilibrium equation for "i" along X direction s: 

E5.19 ~-' (xi - xh) o -f ix 
j Ij 

And consequently with introduction of force density coefficients: 

E 5.20 E (xt - xh)" qj = fix 
J 
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xi is the coordinate of node i in X-direction, and fix the component of the external 

load {fi} applied at "i" along the X-direction. {fi}=0 for form-finding. 

Matrix form of equilibrium with force density method. 
In the case of a reticulate system with b members and n nodes, the preceding 
equilibrium equation can be written in matrix form as: 

E 5.2  [c]:. [Q]. [ c ]  {x}- f,x 

where [C] is the b x n connection matrix of the studied reticulate system, [c]ti is the 

i th column vector of the transpose matrix [C]') and [Q] is the b- square diagonal 
matrix, comprising the b force density coefficients. [C] is regular and is constructed 
line by line for each member m whose extremities are k and g (with k<g). All terms 
of this matrix are equal to 0, excepted: 

E 5.22 Cmk = - 1 

and 

E 5.23 crag = 1 

For the n nodes of a reticulate system, we may write: 

E5.24 [c]t �9 [Q]" [C]" {x} = fx 
with vectors {x} and {fx}, being respectively the x-coordinate of all n nodes and the 
external actions along the x-direction. Values that are associated with nodes are split 
into two parts to introduce boundary conditions. This leads to a partition of the 
connection matrix. The first part is built with the terms related to free nodes 
(subscript 'T', and subscript "Ix" for x-direction), the second part with those fixed in 
the considered direction (the subscript "f" is used for these values, and "Ix" for x- 
direction). If, in equations [E 5.24], we consider only the ntx equilibrium equations 
associated with nix free nodes, we have: 

E 5.25 [C,x ]t. [Q]. [C,x ]. {x, } = {fix } -  [C,x ]t. [Q]. [Cfx ]. {x, } 
We define the "connectivity matrix" [Dx] containing .the force density coefficients of 
nodes, which are free along the X- direction, as follows: 

E 5.26 

And, if we note: 

[Ox]= [C,x]'. [Q]. [C,x] 

E5.27 Ira] = [C,x]'- [Q]- 
we obtain the equilibrium equations in matrix form for the force density method, 
along the X-direction: 

E 5.28 [Dx]. {xl} = {fix}-[D~]-{x~} 
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Similar expressions hold in the Y and Z-directions: 

E5.29 [D.]= [D,I= 
and 

E5.30 [D~,] = [D~] = [Dn] 

Force density method and form-finding. 
In the case of form-finding for pre-stressed or self-stressed 3 reticulate systems, no 
external actions are considered in the search for equilibrium, except for actions that 
are related to fixed node for pre-stressed systems. For such cases, the force density 
coefficients {q} are called pre-stress or self-stress coefficients and denoted by {q0}. 
Consequently, the equilibrium equation [E 5.28] becomes: 

E5.31 [D:I. {x,} = 4D:I.  {x,} 

L n l  
With [D:] being a n,x.X n,x connectivity matrix containing pre-stress (or self-stress) 

coefficients of nodes free in the X-direction: 

E 5.32 [o:]= [c.]' b~ tc.] 
IDa] is the n~x x nfx connectivity matrix, which is defined by: 

E 5.33 [o:]- [c.t b0] [c,] 
1 

In these two last expressions [(2"] is the diagonal matrix that is formed with the b 
pre-stress (or self-stress) force density coefficients. 

The matrix b : ]  is easily determined from the relational structure of the system and 
the chosen pre-stress (or self-stress) coefficients (see [E 5.32]). When the relational 
structure of a reticulate system is known, its connection matrix [C] is defined. 

Iff "ll 

Moreover, the chosen pre-stress (or self-stress)coefficients determine matrix [O ~ 
I ' ' 1  

and then matrices [13~ and [D~] are known. 

Finding the unknown coordinate (i.e. {xl},...) associated with the chosen pre-stress 
(or self-stress) coefficients, is achieved by solving a linear system of equations such 

as the X-direction equation (i.e. [D:]. {x,} =-[D:]-{x,}).  

3 Self-stressed systems are a specific case of prestressed systems: initial stresses result only 
from the assembly. For prestressed systems, at least one other system is associated (like 
compression ring or masts...) 
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In these equations, the fixed node coordinate vector {xf} is given in the case of a 
pre,stressed system, and they are identically null vectors in the case of a self- 
stressed system. 

5-333.2 Application to self-stressed reticulated systems 

Equilibrium of self-stressed reticulated systems. 
When self-weight is neglected, a self-stressed system does not require any fixed 
node. The self-stressed geometry is defined by the relative position of the nodes, and 
the system can be considered as free, forming a rigid body free in space. Whatever 
the coordinate system OXYZ, the three n x n matrices that define the self-stress 
coefficient connectivity matrix are identical: 

[o:]- [o:]- [o:] 
And in this case the relationship that links these matrices to the connection matrix 
[C] is: 

E 5.35 [D:]:  [19~ [D:]= [O]'. [Q~ to] 
Three homogeneous equation systems have to be solved; they are identical to the 
following equation written for the X-direction: 

E5.36 [D:]. {x,} = {0} 

Rank of self-stress coefficient connectivity matrix. 
Firstly, it is necessary to emphasise the fact that these matrices are always singular, 
since for any column or row the sum of all terms is always equal to zero (Vassart, 
[Ref5-1]). 

When there are n free nodes, then: 

Consequently, the equilibrium equations admit an infinite number of solutions, since 
all characteristic determinants vanish when the system to be solved is homogeneous. 

In the case of non-specific self-stress coefficients, the rank of these matrices is 
generally equal to n-1. In this case the solutions can be parameterised in terms of 
only one redundant coordinate, hence all the other nodes coincide with this 
redundant node. In order to have self-stressed geometries that are not restricted to 
one point (or one straight line), it is necessary to reduce the connection matrix rank 
to n-2 (respectively n-3). 

When this rank is equal to n-3, the solutions are parameterised in terms of three 
redundant coordinates. The resulting self-stressed forms are then plane in the best 
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instances. For plane reticulate systems it is sufficient, but for spatial systems, it is 
necessary to further reduce the rank by one. 

When the connectivity matrix rank is reduced to n-4, the four redundant nodes that 
parametrise the solutions are then sufficient to generate spatial reticulated self- 
stressed systems. 

Form-finding process for reticulated self-stressed systems. 
Carrying out the form-finding of a self-stressed reticulate spatial system, defined by 
its relational structure, with the force density method, consists of three distinct steps: 

�9 Step 1: Find self-stress coefficient values such that the rank of self-stress 
coefficient connectivity matrix is less or equal to n-4 for a spatial system (or n-3 
for a plane system). 

�9 Step 2: Solve the linear homogeneous system of equilibrium equations written 
with the chosen coefficients. 

�9 Step 3: Identify the form required among the solutions obtained with the chosen 
coefficients. 

The main difficulty is in the first step, for which several techniques can be used to 
find solutions; some of which are listed below: 

�9 Intuitive method: adopted for systems with only few members; this method is 
not recommended for other cases. 

�9 lterative method: self-stress coefficients are evaluated step by step until the rank 
of connectivity matrices reaches the required order. Because of recent 
improvements in computing efficiency, less time is required, and this method 
provides interesting results. 

�9 Analytic method: the matrices are analysed in their symbolic form in order to 
find the self-stress coefficients that satisfy the required rank condition. This 
method can be regarded as optimal. But a semi-symbolic approach (i.e. some 
self-stress coefficients are chosen) can also be used when the number of 
members is large. 

Of course, these techniques can also serve for pre-stressed reticulate systems when 
the self-stress coefficient connectivity matrices have to be singular and when all the 
characteristic determinants are reduced to zero. 

5-3 3 3.3 Application to tensegrities 

Form-finding of  triplex. 

We name triplex every tensegrity system comprising six nodes, three struts and nine 
cables, so that every node is connected to one strut and three cables. All associated 
systems are defined by the relational structure of the so-called simplex, which is a 
regular tensegrity system. 
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In order to find irregular triplex we know that it is necessary to reduce the rank of 
the self-stress coefficient connectivity matrix to n-4. The matrices being of 
dimension 6, their rank will be equal to 2. The required self-stress coefficients have 

to be different from zero and satisfy the conditions qO > 0 for cables and qO < 0  

for struts. All self-stress coefficient combinations which lead to a rank equal or less 
than two are acceptable. 

If, for instance, we choose identical coefficients for members pertaining to the same 
set of members, that is: 

�9 lower triangle cables: 

o 0 o 0 = q  =q  = q  E 5.38 q, 2 3 i 

�9 bracing cables: 

0 0 o = q  =q  = q  E 5.39 q ,  5 6 

�9 upper triangle cables: 

0 0 0 0 =q  = q  E 5.40 q7 = q 8  ,, , 

�9 struts: 

o o o o 
E 5.41 q ,o = q , ,  =q  12 = -  q 

We find after an analytical study (based on Gaussian elimination) that the following 
relationship has to be satisfied in order to reduce the rank to two: 

o o 0 E5.42 3 " q i ' q , -  = 

Consequently if: 

o 0 1 E 5.43 q ,  =q2 = 

Then q0 can be derived: 

0 o o l = > q  E5.44 q , = q 2 =  = 

For every direction, there remain only two independent equilibrium equations. There 
are then four redundant nodes, which can be located anywhere. Let O, O, �9 and @ 
be these nodes. The location of the two others, | and | is then defined on the basis 
of the two independent equations. For instance, if O, �9 and �9 are vertices of an 
equilateral triangle, and node and �9 is chosen so that the upper and lower triangles 
are centred one with respect to the other, the regular triplex is called simplex. 
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With still the same values, triplex with irregular bases can be determined. Figure 
5.20 shows the case of a rectangular isosceles triangle for the bottom basis with a 
resulting isosceles triangle for the top basis. 

1 

Figure 5.20 Triplex with isosceles triangles 

A whole family of geometries can be defined with the same set of self-stress 
coefficients using the redundant nodes (linked thus with form parameter). A new set 
of self-stress {q0} coefficients will give access to a new family of forms. 

For instance we now take: 

0 0 
E5.45 q = q s = l  

we obtain the relation: 

o o 2 / 3 . q  = 1 / 3  E 5.46 q~= , 

Then, locating O, @ and �9 being as before at the vertices of an equilateral triangle, 
and choosing O such as to centre vertically the two triangles one above the other, we 
reach a triplex (Figure 5.21). The top vertices in a plane projection are located on the 
edges of the bottom triangle (we refer to it as an "inscribed top triangle"). This 
"inscribed top triangle triplex" is interesting since it allows the generation of plane 
double layer grids when associated with other similar anti symmetric modules. 

1 

2 4 3 

Figure 5.21 Triplex with "inscribed top triangle" 
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5.333.4 Concluding comments 

It has been shown that the force density method is well suited to the form-finding of 
cable nets, which are purely tensioned reticulate systems. By successive 
modifications of the pre-stress coefficients, several pre-stressed forms, satisfying 
prescribed boundary conditions may be computed. 

For reticulate pre- or self-stressed systems comprising tensile and compressive 
members, this method offers new perspectives since it allows relatively simple 
multi-parameterised form-finding processes. Some examples have been shown for 
the cases of"triplex" and of"quadruplex" structures. 

Apart from the relational structure, which is assumed to be known at the beginning 
of the process, two sets of form-finding parameters can be identified. Pre- or self- 
stress coefficients constitute the first set, ("force set"). They have to satisfy certain 
conditions and their choice is by no means easy for the uninitiated; this choice 
influences the resulting form. At the beginning, this method was used for cable nets 
and all members were under tension, consequently all coefficients had the same 
sign. However, for other systems, the designer can prescribe either compression or 
tension for each member, this stress being associated with the sign of the 
coefficients. The second set of parameters ("form set") is related to the coordinates 
of the redundant nodes. No restriction is imposed in this case and the modification 
of form deriving from this choice is very large. 

It can be underlined that the range of pre- or self-stress shapes is directly related to 
the number of restrictive conditions imposed by the designer. 

The form-finding of tensegrity systems is a key stage in their study. If numerical 
methods like force density are useful for complex systems comprising a great 
number of elements, it should be kept in mind that sometimes some simple static 
equilibrium considerations could help avoid misunderstandings. 

5-33.4 Form-finding and pre-stressabi lity 

Form-finding processes are not independent of pre-stressability. Different 
approaches have to be underlined. Some methods are built on an assumption of pre- 
stressability and it is not surprising that the resulting systems can be self-stressed. 

The self-stress problem is addressed in the following section and developed 
accordingly. The main idea to keep in mind is that the resulting self-stress needs to 
be a feasible self-stress (that prevent cables from compression), and this feasibility is 
always checked. 

Besides theoretical form-finding numerical methods, a number of other paths are 
opened: 

analytical methods (like in section 5-332.3), which can only be developed for 
very simple cases. Recent works, mainly by Skelton and Sultan are based on 
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this approach. A comprehensive list of their publications is given in references 
[Ref5-14] to [Ref5-18]. 
trial and error process or what could be called "Snelson process", which is 
based on progressive experiments; the pre-stressability is checked throughout 
the process. Lengths are adapted to the possibility of self-stress. 
conceptual methods based on a structural composition fitted to tensegrity in 
unspecified places of the system and combined with suitable boundary 
composition. This method was successfully used in our laboratory during the 
"Tensarch" project. 

Whatever the chosen method, if the feasibility of the whole self-stress is ensured, 
designers have to solve a very specific problem related to the implementation of 
self-stress. This problem had also to be solved for membranes: it is necessary to 
have the equivalent of the "cutting pattern" in order to assemble components in such 
a way that at the end the system is simultaneously at the fight geometry and at the 
chosen state of initial stress. This is not an obvious question since many factors have 
to be considered: sensitivity to manufacturing imperfections, choice of active 
components, gradual implementation of self-stress, control of the self-stress 
distribution, and, finally, simultaneous control of the geometry. 

5-33.5 Stability ofpre-stress 

N. Vassart et al [Ref 5-17] submitted an energetic stability criterion of the self-stress 
state. An illustration of stability study is given in the following sections for a very 
simple case of two aligned components. The description of the associated method is 
outside of the scope of the present work. But a very significant result can be drawn 
on this basis. If we consider a reverse system of the so-called "simplex" containing 
nine compressed components and three tensioned components, it can be established 
that the corresponding state of self-stress is not stable. 

5-3.4 Conclusion 
This section was written in order to give an illustration of the first theoretical and 
practical methods used for form-finding approaches. We underlined the force 
density method, because of its generality and its ability to very easily provide results 
for irregular systems. These are very difficult to study with analytical models which 
are themselves successful when a very small number of parameters is concerned. It 
appears that these two theoretical models, one numerical and the other analytical are 
actually improved, but our presentation has to be considered only as an historical 
review. 

5-4 Self-stress and mechanisms 

5-4.1 Introduction 
Apart from form-finding another class of problem is characteristic of tensegrity 
systems i.e. rigidity: this class is mainly concerned with self-stress. Most tensegrity 
systems have infinitesimal mechanisms, and may, or may not, be stabilised by the 
self-stress state(s). The stability of the self-stress state previously described for the 
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four-strut tensegrity system is ensured: if one or more nodes are displaced from their 
initial location by an appropriate action which activates an infinitesimal mechanism, 
they will return to their original location if this action is suppressed. If this self- 
stress state stabilises the infinitesimal mechanism, it is not the case when struts and 
cables are exchanged (which would correspond to the case of a dual module with 
four cables and twelve struts). Problems that are related to self-stress states, 
infinitesimal mechanisms and stability are treated in the following sections. 

5-4.2 Tensegrity systems and reticulate systems 
Tensegrity systems are a subclass of reticulate systems, and consequently, it is 
useful to describe the theoretical basis, which is necessary to understand problems 
that are related to self-stress and mechanisms. 

Generally for a spatial reticulate system with b members with bilateral rigidity, and 
N degrees of freedom, the number "ss" of self-stress states is given by: 

E 5.47 ss  = b - r  A !i 

and the number "m" of internal mechanisms by: 

E 5.48 m = N - r  A 

and consequently: 

E 5.49 ss  - b = m - N 

Where rA is the rank of the equilibrium matrix [A], which verifies the following 
equilibrium equation: 

E 550 [A] {T} = {f} 

with {T}, vector of internal forces and {f} vector of external actions on nodes. 
According to these values, spatial reticulate systems are categorised into four 
classes. 

Table 5.1 Classification of  spatial reticulate structures 

rA 
r g = b  
rA=N 

rA=b 
rA<N 
rA<b 
rA=N 
rA<b 
rA<N 

m, ss 

ss = 0 
m = 0  

SS = 0 
m = N - r g  
S s = b - r A  

m = 0  
S s = b - r A  
m = N - r g  

Class Observations 
Statically and 
cinematically 

determinate systems 
Cinematically 

indeterminate systems 
Statically indeterminate 

systems 
Statically and 
cinematically 

indeterminate systems 
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Tensegrity systems are mainly class 4, and checking that they are stabilised by the 
state of self-stress requires the determination of the order of the infinitesimal 
mechanisms. These self-stress states have also to be compatible with the unilateral 
rigidity of cables. 

For example, the case of the three-strut tensegrity system (twelve members, six 
nodes and twelve degrees of freedom) leads to: 

E 5.51 s s = m = l  

The corresponding infinitesimal mechanism involves the translation and rotation of 
the upper triangle by respect to the bottom triangle (Figure 5.22). 

Figure 5.22 Three strut tensegrity: infinitesimal mechanism 

5-4.3 Self-stress states 
The stiffness of tensegrity systems results from states of self-stress. Mechanically 
speaking self-stress can be defined by the equilibrium equation: 

E5.52 [A]- {T}= {0} 
The fight hand member of this equation is equal to a zero vector, since this matrix 
equation describes equilibrium of nodes without any external action. 

Some simple examples of self-stressed systems are as follows: 

�9 for the linear case, a cable put inside a tubular strut and fixed at their two 
common ends in such a way that the cable is tensioned and the strut 
compressed. 

�9 for the planar case, the so-called "Saint Andrew" comprising two diagonal 
cables imerted in a quadrangular set of struts. 

�9 for spatial cases, an octahedron whose edges are created with struts and the 
diagonals with cables (see Figure 3.22 in Chapter 3). 
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The specificity of these examples relies on the rigidity of tensioned elements, which 
cannot resist compression; it can be said that these members have "unilateral 
rigidity". An assembly containing such members is called a "tension system". 

The spatial case mentioned illustrates the class of tension spatial reticulate self- 
stressed systems. Tensegrity systems constitute a subclass of these "tension 
systems", since they are spatial, reticulate, and self-stressed. Another main 
characteristic is the discontinuity of the set of struts and the continuity of the set of 
cables. From a theoretical point of view, the compressed elements of a tensegrity 
system only require unilateral rigidity, but this is technologically difficult to achieve 
and, of course, more expensive than using standard members, i.e. able to carry both 
tension and compression. 

5-4.4 Mechanisms 

5-44.1 Infinitesimal mechanism 

Let us illustrate the mechanisms with simple examples that can be extended to 
tensegrity systems 4. 

If we consider two nodes of a reticulate structure, namely "i" and "j", we call dij the 

geometrical distance between these nodes, and lij the manufacturing length of the 

element, which is inserted between these two nodes. 

If a load can be applied to the system in such a way that the nodes move without 
modifying dij, for all couples of nodes, the corresponding displacement is called a 

finite mechanism (or "inextensional" mechanism). The system is cinematically 
indeterminate (i.e. its geometry is not defined). If the length variations are 
infinitesimal and of a lower order than the order of the displacement, the mechanism 
is called an infinitesimal mechanism and the system is also cinematically 
indeterminate. 

Let us take two straight collinear assembled elements (Figure 5.23) verifying: 

E 5.53 12 = 123 

and 

E5.54 I,, +123 =d,, 

This leads to an infinitesimal mechanism (infinitesimal displacement which can be 
activated by an external action F); for a small displacement "d", the length variations 
are: 

E 5.55 AI = o~. d 2 _ d 

4 A first approach has already been presented in Chapter 3, "Fundamental concepts". 
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Figure 5.23 Infinitesimal mechanism 

5-44.2 Stabilisation of infinitesimal m echanisms 

Pre-stress or self-stress can stabilise certain infinitesimal mechanisms. In the 
previous example, two states ofpre-stress can be introduced: tension or compression 
pre-stress. 

Let us firstly introduce a tensile pre-stress (Figure 5.24) by choosing: 

E 5.56 12 = 123 

and 

E5.57 12 +1~ < d,, 

If we move node 2 from its initial location with an external action F, we activate the 
infinitesimal mechanism. When the action F is suppressed, node 2 comes back to its 
initial location, because during the displacement, the potential energy in the system 
has increased, and then decreases to the minimum level allowed by the boundary 
conditions. 

Figure 5.24 Tension pre-stress 

We then introduce a compressive pre-stress (Figure 5.25) by choosing: 

E 5.58 1,2 = 123 

and 

E5.59 1,2 +12, >d,, 

in order to build a system where members are compressed and aligned. 

2' 

Figure 5.25 Compression pre-stress 
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When an external action F is applied, the infinitesimal mechanism is activated until 
a state where 2' becomes the new position of node 2, satisfying: 

E 5.60 I~ = d,2 

and 

E 5.61 12, = d,, 

Consequently, the members are unstressed, potential energy equals zero. When the 
action F is removed, the system stays in the displaced position; it does not return to 
its initial position, for which its internal energy would be higher. 

The previous example illustrates the fact that, depending on the nature of the state of 
pre-stress applied, the infinitesimal mechanism is stabilised (with tension) or not 
(with compression). This is illustrated for plane pre-stress, but it is also true for self- 
stress states, and can be generalised to spatial structures, by the study of their 
equilibrium matrix and of the energy variations which are associated with the 
infinitesimal mechanism [Ref 5-1 ]. 

5-44.3 Assembly of cells 

It is interesting to give an example of the evolution of "ss" and "m", when an 
assembly of cells is achieved. 

5-443.1 Two cells 

Let us begin with two triplex that are assembled in such a way that three nodes are 
common, consequently two cables are also common. We refer to it as "unilateral" 
assembly (Figures 5.26 and 5.27). 

Figure 5.26 Assembly of two triplex. Plane view 
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Figure 5.27 Assembly of m'o triplex. Elevation view 

Taking account of relations that have previously given (we may write: 

b 1 2 + 1 0  } = = 22 
E 5.62 ~ b - N  = s s - m  = 1 

n = 9 ~ N  = 3 n - 6  = 21 

and consequently: 

E 5.63 ss = m + 1 

An inspection of the equilibrium matrix leads to two independent self-stress vectors 
and therefore one infinitesimal mechanism, which corresponds to the assembly of 
the two elementary infinitesimal mechanisms. These mechanisms are of order 1 and 
can be stabilised with a compatible 5 self-stress state. 

When referring to remarks that have been written for a single cell, it is interesting to 
note that for an assembly with at least two cells, it is possible to exchange struts and 
cables without loosing stability. This means that the stability of one basic triplex 
(with three struts and nine cables) allows the permanence of stability for dual triplex. 
The word "dual" is used for two cells with an exchange of elements. 

5-443..2 More than two triplex 

Every unilateral assembly leads to only one mechanism and an increasing value of 
"ss", since with a supplementary cell the value of the difference between the number 
of elements "b" and the number of degrees of freedom "N" is increasing by one unit 
(Table 5.2). 

5 They respect the unilateral rigidity of cables. 
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nb 

Table  5.2 Assembly of several regular triplex 

Assembly b n N r A 

12 6 12 11 

ss 

22 9 21 20 2 

32 12 30 29 

42 

52 

15 39 38 4 

18 48 47 5 

m 

+1 Unilateral assembly 

+1 Bilateral assembly 

60 19 51 50 10 

70 22 60 

+10 roB'Ira ~ 

59 11 

+ ss = +m + 1 

+8 +1 +3 + ss = +m +5 
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If we try to build an assembly of six cells, by including a sixth cell, we increase the 
number of elements by 8, and the number of degrees of freedom by 3; this is called a 
bilateral assembly. It can be demonstrated [Ref 5-1] that "ss" rises to 10 and "m" 
remains at value 1, keeping the relation: 

E5.64 
+ b  = + 8 }  

=> + b - (+N) = +ss - (+m) = 5 
+ n  = +1=> + N  = +3 

Vassart has established that it is possible to eliminate inf'mitesimal mechanisms. It is 
necessary to destroy the regularity of the resulting hexagon, in the case of six-cell 
assembly: therefore translation and rotation that are included in the remaining 
mechanism become impossible. 

The evolution of self-stress states and mechanisms is given in Table 5.3: when the 
assembly is closed (six cells), "m" cancels. 
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Table 5.3 Assembly of several irregular triplex 

nb Assembly b n N r A ss m 
I 

i i 

I / ~  12 6 12 11 1 1 

I 

............................ .................................................................................................................. .......... ; ...................... i ........... 22 9 21 20 

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 , , ~ \ ~ ' ~ N N  32 12 30 29 3 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 42 15 39 38 4 1 

Ii 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i j 

5 i 52 18 48 47 ! 5 1 

i 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Z~ :i i 
6 60 19 51 51 9 ' 0 

+ 1 

! 

7 70 22 60 60 ' 10 0 

+1 

Unilateral assembly' 

Bilateral assembly 

+io' ["+3 
+8 +'1 

+9 
+3 

i i 

+ ' s s = + m  +1 

+ ss = +m § 
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The example is illustrated in Figure 5.28. Six irregular triplex are assembled in such 
a way that the resulting configuration is not a regular hexagon assembly. 

Figure 5.28 Plane and perspective view of an assembly of irregular triplex 

5-4.5 Conclusion 
Based upon our own experience, it appears that the control of self-stress is a main 
feature of tensegrity systems and specific attention is required in order to identify 
self-stress states, to choose an adequate combination and to succeed in their 
effective implementation. Inf'mitesimal mechanisms, if any, can be stabilised by 
these states of self-stress, and also by specific boundary conditions in real structures. 

5-5 Self-stress qualification 

5-5.1 Self-stress determination 
In previous sections we described the force density method, which can be used in 
the form-finding process. Keeping the same notations and basic definitions, the 
force density is: 

_r__, 
E 5.65 q, 

I ~ J 

We have defined a self-stress state as a vector of force density noted {qO}, that 

verifies the equilibrium equation: 

E5.66 [A]" {q~ = {0} 

with [A], being the equilibrium matrix. This equation with a zero right hand-side 
vector defines the self-stress condition (internal stresses without any external 

actions). {el ~ } is a b-line vector. The number of self-stress states 66899 is the dimension 

of the vectorial kernel subspace of the equilibrium matrix and noted "ker A". The 
value of"ss" was soon already given in previous sections (see E 5.47). 

Then we can write that: 

E5.67 {q~ ~ kertA) 
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The numerical determination of the "ss" vectors is a classic mathematical problem, 
which can be solved for instance by using augmented matrices or generalised 
inverse methods (see [Ref 5-11 ]). 

ss independent vectors define a self-stress basis [S]" 

E5.68 {q~ ~ k = 1,..., ss  

In order to simplify matters, we will omit the superscript ,,0,,, since no confusion 
occurs. 

Consequently a basis [S] is such as: 

E 5.69 

~  

o . ,  

1 Is]= q, 
,~ 

,~  

_< 

2 ss  

q, ... q, 

. . . . . . .  , ,  

It is useful for subsequent mathematical calculations to order the basis so as the first 
"t" lines correspond to the tensioned components and the "b-t" other lines to the 
compressed components. Any linear combination of the basis vectors is a self-stress 
state: 

E 5.70 , < ... - .  

with k =1,...,ss 

5-5.2 Feasible self-stress state 
According to their definition there can be an infinite number of self-stress states. But 
the associated vectors must satisfy a necessary condition, which is related to the 
unilateral rigidity of tensioned components. This is a feasibility condition and in 
turns leads to the "feasible" self-stress state. This is not ensured by mathematical 
treatment, which does not take into account the sign of the vector components. An 

appropriate choice of coefficients or", ("si" being used for the self-stress state {q,}) 

is then required. Taking into account the numbering order previously described and 
the sign convention of positiveness for tension, a set ofb  conditions can be written. 
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"t" conditions for tensioned components: 

1 I 2 2 (~k  k sS ss 

c t , . q , + c t , . q , + . . . +  . ' q + . - - + c t  . q , > 0  

E5.71 ................................................................. 
I 1 { 2  2 k k ss  s s  

a , .q ,+  -q ,+ . . .+c t , -q ,+ . . .+c~ , .q ,___O 

), And "b-t" conditions for compressed components: 

I I 2 2 k k o r  SS ts~,1 c~,.q,.,+c~ .q, . ,+. . .+c~,.q, . ,+. . .+ , .q < 0  

E 5.72 ................................................................. 
1 1 2 2 k k ss ss~ 0 or, .q~+ or.  q~+... + o~ .q~+... + (z, .q~ _ 

k satisfying these conditions. This is a The problem to solve is to find a set of ass 
known problem of linear programming, when the whole set is transformed so that 
all the conditions are positiveness conditions. The method of solution is the 
"simplexe" method [Ref 5-12]. 

As an example let us consider an assembly of three four-strut cells (Figure 5.29): 

Figure 5.29 Feasible independent self-stress states 

The study of the corresponding equilibrium matrix leads to four self-stress basis 
vectors. It is then necessary to find four independent self-stress states. Three of them 
are partial states that are derived from the structure itself, since they fit exactly with 
the constitutive cells. The fourth one is not so obvious: one possibility is shown on 
step 4 of  Figure 5.29. Two cells are concerned in this case. 

5-5.3 Existence of feasible self-stres s 
Then feasibility of self-stress states is def'med by the set of conditions related to 
tensioned components (E 5.71). The problem of existence can be illustrated in the 
case of  the low values of ss. 



Models 125 

When ss = 1, the verification is reduced to the direct sign inspection for the force 
density coefficients of tensioned components since E 5.71 becomes: 

a '  , .q'_~O 

E 5.73 ............... 
1 1 

(x , .q ,>  0 

A second inspection can be done for ss = 2. In this case we have to check a set of  
inequalities of the following form: 

1 1 2 2 
or, .q ,+ % -q, >__ 0 

E5.74 ........................... 
1 1 2 2 

ot .q ,+c t . .q ,  > 0 

Each row of this set of conditions is associated with one of the "t" tensioned 
components. The nullity can be plotted as a straight line in a plane, which defined by 

1 2 
the variables tx~ ix .  It is then possible to check the existence of feasible self-stress. 

Three possibilities occur: 

1 G[2 �9 Several values of ct~ . can be chosen inside a sector defined by two straight 

lines Di and Dj (in white in Figure 5.30). 

Figure 5.30 Feasible domain 

Several values can be chosen, but they have to satisfy the equation of a single 
straight line corresponding to D, which results from the merging of Di and Dj. 

Figure 5.31 Feasible line 
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There is no feasible self-stress when no acceptable domain or line remains, after 
applying the set of inequalities E 5.74 (see Figure 5.32). 

Figure 5.32 No feasible self-stress 

These remarks can be generalised [Ref 5-12]. In the case of ss = 3, a feasibility 
domain can be defined. 

Figure 5.33 Feasibility domain for  ss = 3 

5-5.4 Form and forces 
Tensegrity systems belong to those specific systems for which the coupling between 
geometry and stresses is a main parameter. When dealing with self-stress problems 
it is sometimes interesting to geometrically qualify a self-stress state. When self- 
stress states are partial, they also can be geometrically localised like those described 
in Figure 5.29. This can be called a "local self-stress state" (which is consequently 
partial). In the case of the above example we described four independent local self- 
stress states, three of them corresponding to elementary four strut cells, which have 
been aggregated to constitute this system. 

5-5.5 Conclusion 
Self-stress is a key feature of tensegrity systems. It must be studied with special care 
not only to make an optimum choice of the initial state, but also in accordance with 
practical aspects for implementation and monitoring. 
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5-6 Designing tensegrity  syst eros 

5-6.1 Introduction 
The design of tensegrity systems basically goes through three stages. Starting from a 
given configuration, the self-stress states likely to be used as soon as the system is 
assembled must firstly be determined. Then, the choice of self-stress state having 
been made, the components must be designed. And, if necessary, the study of 
structure sensitivity to inaccuracies in the fabrication of the elements should allow 
us to be certain of its stability. Since self-stress problems have been largely 
developed in the previous sections, we now turn to the description of some features 
relating to design. 

5-6.2 Mechanical behaviour of tensegrity systems 

5-62.1 Geometrically non linear behavi our 

We developed a first study by taking into account a numerical model with geometric 
non-linearity. This model is based on an incremental writing of the principle of 
virtual work according to a total Lagrangian formulation. Even if a hypothesis of 
linear elasticity is used in what follows, it is possible to develop the same model 
with material non-linearity. This leads to a system of non linear equations, where the 

tangent stiffness matrix [o~(b] is linked with internal stress vector {o~}" 

E5.75 

with 

{:o)- 

E5.76 

In this expression [oKo,] is the classic linear rigidity matrix, which is used for the 

case of small displacements; [oK,.] is the initial displacement matrix which takes 
ii) 11 

into account the non linearity, and is related to the quadratic terms of complete strain 
f 

expressions. [oK. ] is the geometric matrix, or initial stresses matrix, resulting from 

the non-linear strains. " "{RIis the vector of external actions and {iu} the incremental 

displacement vector between two instants t and ~. 

The expression E 5.75 is representative of a non-linear system of equations and the 
solving method is necessary incremental. This iterative method requires for each 
step a correction of variables in order to ensure convergence. 

The basic scheme of study is illustrated in Figure 5.34. It corresponds to an 
incremental model. 
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T X 

Configuration 
at " t " ~  

Configuration 
at z =t +dt 

v X  
Initial configuration 2 

Figure 5.34 Non-linear process 

This process is used, in the first instance, to simulate the introduction of self-stress, 
by imposing the external action vector to be identically equal to zero, and searching 
for a target state of self-stress. It is then possible to load the system with external 
actions and to take the final stage of the search for self-stress as initial conditions for 
the second application of the iterative process. 

5-62.2 Mechanical behaviour of the four strut module ("quadruplex") 

As an example let us provide some information about the mechanical behaviour of a 
quadruplex, which is a simple four-strut module. Six conditions are imposed on 
nodes 1, 2 and 3. Node 1 is completely fixed, node 2 can only move along OY', and 
node 3 can move in plane Y'OZ' (see Figure 5.35). External loads are applied on 
nodes 6, 7 and 8. According to the direction of these actions several cases are 
defined: compression, traction, upward flexion, downward flexion and torsion. The 
results of calculations are plotted in Figures 5.36 to 5.38. 

Figure 5.35 Quadruplex 
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Figure 5.36 Compression and traction 
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Figure 5.37 Flexion 
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Figure 5.38 Torsion 

Some basic characteristics of mechanical behaviour are illustrated in these graphs: 
non linearity for each case, anisotropy between traction and compression, the same 
in flexion according to the sense (upward and downward). It is also obvious that in 
many cases external loading rigidities the system (resulting from a non linear 
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analysis). This is a very simple example; tensegfity grids with more than one 
hundred cells have been tested with our specific software ("Tensegrit~ 2000"). 

5-6.3 The design 
Considering the numerous parameters that come into play in the behaviour of 
tensegrity systems, their design is difficult. Moreover, as their behaviour is not 
geometrically linear, a second order study is necessary [Ref 5-19]" the half 
cuboctahedron [Ref 5-20] or the expanded octahedron [Ref 5-21]. These studies 
have highlighted the different parameters linked to the design: level of self-stress, 
distribution of the self-stress (geometrical aspect), and rigidity ratios between 
compressed and tensioned components. 

These parameters will have an action both on the overall stiffness of the structure, 
and at the same time on the stress obtained under load. Consequently, the design of 
tensegrity systems is an iterative process. 

5-63.1 Design criteria 

As the design parameters are numerous, it is important to give simple and accurate 
criteria allowing for the fastest design of a structure. 

In the case of grids for roofing, for example, the problem is simplified: since the 
maximum displacements are deliberately limited according to the span (generally at 
1/200th), the behaviour is not far away from a first order calculation (service state). 
The level of self-stress has thus little effect on the stiffness of the grid: action needs 
to be taken on the cross-sections of elements to meet the deflection criterion. The 
second-order calculation, however, still remains necessary for ultimate states. 
Moreover, it must be emphasised that in the case of equal self-stress, the tension in 
the elements varies only slightly (as opposed to deflection) in changing the rigidity 
ratio between the struts and the cables: this result is similar to that obtained in 
isostatic structures. This will be of help in the choice of the self-stress level of the 
structure, which is always defined within one multiplication factor. 

5-63.2 Design calculations 

The design process we propose is thus generally in two stages: 

A service state design ensures that the deflection criterion is met, while 
remaining within the acceptable limits for the stress in the elements. Moreover, 
as tensegrity systems are tension structures, we ensure that none of the cables 
present in the structure be slack. 
An ultimate design state verification ensures the overall stability of the structure 
under extreme loading. Self-stress is a permanent action with both acting and 
resistance characteristics at the same time. Thus, when the ultimate design state 
is carried out, both aspects must be taken into account. The former will reduce 
self-stress to check that the structure keeps an overall stability ("resistant" self- 
stress), the latter increases self-stress to check the local stability of elements 
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("acting" self-stress). Determination of partial safety coefficients is detailed in 
[Ref5-21]. 

A rigidity ratio between struts and cables and a self-stress level must first of all be 
specified before starting on a first calculation. For sufficient rigidity, our experience 
in this field has shown that a rigidity ratio (EAst~tdEAcables) close to 10 is 
satisfactory. Above this, the behaviour is too flexible and leads to over sizing the 
cable elements. Below 10, the struts are overloaded and thus oversized. 

5-6.4 Sensitivity problems 
The problem of sensitivity can be illustrated using a very simple example, an 
isolated cable. We will see that the consequences of a very slight variation in the 
length of the element will be important in terms of resulting stress. 

Imagine that a cable is to be linked to two fixed points with a given stress target. 
Using Hooke's law, it is possible to recalculate the manufacturing length to obtain 
the expected tension in situ. Note that so far we are not interested in the relaxation 
aspect. Let us take a practical example (Figure 5.39). If we assume that Young's 
modulus "E" is equal to 125 000 MPa, with a cross section area "A" of 0,5 cm 2, we 
may write: 

E 5.77 T = E.A. AI E.A. I~ - I "  
I "  I "  

With I fr~ being the manufacturing cable length. For pre-stress target of 20 kN, the 
required value of 1 f~ is equal to 0,9968 m. 

I~ m 
~ --,,, , . . . . .  =,..- i 

v I 

A I Illl A 

w w 

Figure 5.39 Pre-stressed cable between two fired points 

This requires a lengthening of about 3 mm. If the accuracy of manufacture of the 
cable length is about •  the consequences on the tension in situ will be 
important. 

I ~ =1 m 
I . . . .  "I 

i ~. 

|l 

, ~ ?  

+lmm 

Figure 5.40 Actual manufacturing length of the cable 
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In the case of this example, a manufacturing tolerance of the cable of • mm 
induces a variation in the tension of +6kN. This is considerable and unacceptable 
from a constructive point of view, and we have to quantify the influence of these 
manufacturing errors on the whole of the structure. But since the behaviour of 
tensegrity systems is not linear and the random variables are numerous, analytical 
deterministic treatment is impossible. To carry out this study, a certain number of 
Monte-Carlo simulations must be made, and then the result treated statistically. 

The disturbances in length, which are introduced in each of the elements come from 
the realisation (probabilistic concept described in [Ref 5-22]) of a random variable, 
the statistical parameters of which will depend on the manufacturing accuracy 
expected for the elements. Considering the manufacturing processes, we will take 
into account a certain manufacturing accuracy for the cables, the struts being 
supposed to have the required length. 

It is then possible, for each simulation, to recalculate the equilibrium using this new 
data. Using the results obtained, a statistical treatment will define the characteristic 
minimum and maximum values between which the tensions can almost certainly be 
found [Ref 5-22]. These characteristic values can be defined with some certainty 
considering the discrete nature of the sample. 

Then, all we need to do is to check that the characteristic values are located in the 
interval defined by two cases of ultimate loading state to justify the partial safety 
factors. These partial safety factors have been chosen to be equal to 0.8 and 1.2 
depending on whether self-stress can be considered as favourable for equilibrium or 
not [Ref 5-12] (no precise rules exist in this domain and we chose these values for a 
first estimation, knowing that no cable slackening occurs during the corresponding 
loadings). If it is not so, the manufacturing tolerance of self-stress can be called into 
play. 

5-6.5 Appfication to a tensegrity grid 
To fix a realistic study framework, we studied a square grid 9 meters long 
constituted of 36 half-cuboctahedron modules which has already been described. 
This is a classical example of aggregation of self-equilibrated modules. The height 
was determined so as to have the bars inclined at 45 ~ with respect to layers. The 
height of the grid is then lm15 giving an aspect ratio of about 1/8 th. The grid thus 
assembled has 133 nodes and 516 components (144 bars and 372 cables). 

5-65.1 Finding the self-stress states 

The mechanical study of this statically and cinematically indeterminate structure 
shows 144 self-stress states, i.e. 144 different internal possibilities for submitting the 
grid to internal forces as soon as it is assembled. Of course, these states must be 
sorted so that the chosen self-stress be easy to apply on assembly. They also have to 
be feasible (compatibility with unilateral rigidity). 
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In the case of the half cuboctahedron, the problem is much simplified since once the 
modules have been juxtaposed, they maintain a local self-stress state, so a state of 
overall self-stress can be obtained simply by summoning the states particular to each 
module (Figure 5.41). 

The choice of the self-stress is then made according to both its distribution and its 
level. We will choose a homogenous self-stress for easier assembly. As for its level, 
we will put ourselves at 50% from the limit recommended by European Code 3 
(steel constructions) for the compression of struts. 

Figure 5.41 State o f  self-stress localised on a single module (top left-hand square) 

5-65.2 Service Limit State design (SL S) 

Altogether, the external load to be taken into account for the S LS is 135 daN/m 2, 
which includes a self weight of 25 daN/m 2 and a live load of 110 daN/m 2. The loads 
are supposed to be downwards and applied only to the nodes of the upper layer of 
the grid. 

Before calculation, the mechanical characteristics of the elements must be fixed: a 
Young's modulus of 200 000 MPa for the struts and 125 000 MPa for the cables are 
ordinary values for steel elements. 
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With these conditions, we get a cross-section design of 4.14 cm 2 for the struts and of 
0.654 cm 2 for the cables. Lower strut cross sections gave us displacements, which 
are incompatible with the deflection criterion (L/200). These characteristics 
correspond to the manufactured products: struts of 48.3 mm external diameter and 
2.9 mm thickness and a multi-strand cable of 7x19 wires of 10 mm nominal 
diameter. 

The following figures present the results in terms of deflection. Figure 5.42 gives the 
maximum deflection for the centre row of nodes (the most deflected) whereas Figure 
5.43 presents the general rate of displacement of the nodes of the lower layer. 

Figure 5.42 Value of the vertical displacements for the centre row of  nodes 

Figure 5.43 Rate of  the displacements in lower layer 

From the point of view internal stresses, the effort limits are as follows: 

Cables: the value of the effort must be between 0 and 32 700 N (the maximum 
value corresponds to a maximum stress of 500 MPa so as to remain within the 
elasticity field that is guaranteed by the manufacturers). 
Struts: the maximum value admitted by EC3 is linked to the value of the inertia 
of the strut, its length and its cross section. In our case, the cross section is of 
4.14 cm 2 and tubular, the length of the struts is 2m03, inertia 10.7 cm 4. The 
maximum authorised value of internal force for 235 grade steel is 39 400 N. 

Figure 5.44 shows the value of the tensions in the elements before and after loading. 
The chosen self-stress is a uniform self-stress, for which all the struts are loaded to 
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50% of their limit according to EC3, i.e. 20 000 N. The struts are numbered from 1 
to 144 and the cables from 145 to 516. 
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Figure  5.44 Value of the stress in the elements before and after loading 

The criteria of stress limit are met, even if some cables are very close to a zero 
value. Quite logically, we note that the centre cables of the upper layer are the least 
tensioned. An increase in the level of self-stress could be considered, but increasing 
the level of stress in the elements can make them exceed their limits of stability 
criteria. So it is preferable to approach the limit by slackening a cable rather than 
exceeding the elasticity limit which would modify the behaviour of the structure in 
the long term. 

5-65.3 Ultimate Limit State verification 

Now that SLS (Service Limit State) design has been completed, ULS (Ultimate 
Limit State) verification remains to be carried out. For this, we will apply the two 
combinations of actions (partial safety factors have been chosen to be equal to 0.8 
a n d  1.2 depending on whether self-stress can be considered as favourable foI 
equilibrium or not [Ref5-12], (Figures 5.45 and 5.46). 
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Figure 5.45 ULS verification for self-stress equal to 1.2 times the expected self-stress 

Figure 5.46 ULS verification for self-stress equal to 0.8 times the anticipated self-stress 

As might be expected, the case of loads increasing the self-stress brought us to reach 
the stress limits of the elements, whereas the case of loads decreasing the self-stress 
slackened some cables. 



Models 137 

If the first case does not bring the local and overall stability of the structure into 
question, it must be emphasised that in the second case the slackening of some 
cables did not ruin the structure. It maintains overall stability. 

It is interesting to see the distribution of the internal forces at the end of loading. We 
thus note that their distribution is not homogenous at the end of loading (Figure 
5.46). We can then see that the centre struts are (on average) less stressed than the 
surrounding ones and that the slack cables are to be found in the centre of the grid. 
This is the reason for suggesting adjusting the self-stress in order to make the best 
use of the elements. 

The graphs show that moderate variations in the self-stress can significantly modify 
the behaviour of the structure under load. This variability in the manufacturing 
lengths appears to us to be the dominant factor in self-stress uncertainty. We shall 
thus present a study of the sensitivity of the grid to manufacturing inaccuracies in 
order to verify the relevance of the partial safety factors used for the ULS self-stress. 

5-65.4 Study of the sensitivity of the grid 

We carried out a statistical analysis of the tensions in the structure, for a simulation 
of fifty grids, with manufacturing accuracy of the cables disturbed by the realisation 
of a centred Gaussian distribution and a standard deviation of 0.51 mm. In this case, 
the disturbances constitute a sample of which 95% of the population is in the range 
o f+ l  mm. 

The first study is concerned with self-stress. It enables the definition, for each of the 
elements, of an interval in which the stress will probably be found after the assembly 
of the structure. 

After statistical treatment, an average value of self-stress (very) slightly different to 
that expected is obtained. Figure 5.47 presents the minimum and maximum 
characteristic values at 5% with 95% confidence. 
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Figure 5.47 Characteristic values at 5% stress with 95% confidence. Uniform state of  self- 
stress. Statistical analysis on 50 grids 

In order to verify the relevance of the partial safety factors recommended for ULS 
self-stress, we have to analyse the variations in the ratio between the minimum and 
maximum characteristic values and the expected value of the stress. For the struts, 
the extreme values of this ratio equal 0.73 and 1.29 and for the cables 0.58 and 1.45, 
values which are far from the recommended safety factors (0.8 and 1.2). However, if 
we do not look at the extreme values but at the average ones, these factors are then 
estimated at 0.79 and 1.2 for the struts and 0.73 and 1.27 for the cables, values that 
can be considered close to the recommended ones. 

These results confirm that the partial safety factors equal 0.8 when the self-stress is 
resistant, and 1.2 if it is acting load, constitute the first realistic approach if we 
consider that the manufacturing accuracy nowadays is of the order of one 
millimetre. We have also to keep in mind the other hypothesis (namely the initial 
self-stress level). However, better adequacy could be obtained either by extending 
the partial safety factors slightly or by imposing still better manufacturing accuracy. 

5-65.5 Conclusion 

After studying the different parameters that play a role in the behaviour of tensegrity 
systems, we took an interest in their design according to the Eurocodes and more 
particularly in the partial safety factors which affect the self-stress for verifications 
of ultimate limit state stability. A study of the stress element sensitivity to 
manufacturing and assembly accuracy enabled us to back up the proposed values of 
partial safety factors. 
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5-7 Active control 

5-7.1 Introduction 
Lightweight structures and more particularly those of the truss-cables type is of 
interest in numerous fields of application, such as civil engineering, mechanics - but 
also in aerospace science too. 

Under external excitations, these structures are likely to present important 
vibrations. This observation leads to non-linear geometrical behaviour, and 
consequently, entails a modification of the structure stiffness in accordance with the 
displacements of its nodes. 

Some scientists have studied many active control strategies. Active control was first 
proposed by Yao [Ref 5-23], and was later developed by numerous authors such as 
Abdel-Rohman ([Ref 5-24] [Ref 5-25] and [Ref 5-26]). Active control is an efficient 
means, which is currently creating an increasing amount of interest. 

Many algorithms have been studied in the linear domain. We may quote the 
instantaneous optimal control algorithm presented by J. N. Yang ([Ref 5-27] [Ref 
5.28] [Ref 5-29] and [Ref 5-30]), L. Chung [Ref 5-31] and F. R. Rofooei [Ref 5-32]. 
In these studies, the algorithm is based on a space-state representation and is well 
adapted to random excitation signals. By introducing Newmark's method, C. C. 
Chang [Ref 5-32] managed to express this algorithm in a non-space state 
representation. This particular writing enabled him to deal with the problems by 
using a finite element calculation, which has the advantage of ensuring better 
accuracy of results. 

Moreover, other studies have dealt with the formulation of algorithms adapted to 
non-linear structures. Reinhorm and al. [Ref 5-34] have developed an active control 
algorithm for flexible structures. At the same time, T. T. Soong [Ref 5-35] and J. Z. 
Cha [Ref 5-36] have proposed numerical solutions based on the "descent" method 
(like the conjugate gradient method). 

The present approach developed by S. Djouadi [Ref 5-37], from our own laboratory, 
proposes a method formulated from the instantaneous optimal control algorithm, 
which is applied to structures presenting effects of large displacement. A finite 
element approach is put forward with a hypothesis of material linearity in order to 
asses stiffness variation during displacements. This approach has been recently 
published [Ref 5-38]. 

The simulation of the behaviour of a three-dimensional beam representing the mast 
of an antenna validates the method. It is built with several assembled basic units, 
which are themselves considered as self-stable structures composed of compressed 
struts and tensioned cables. 
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5-7.2 Instantaneous optimal contro ! 
If we assume that the mass M and the damping C are constant, then the modelling of 
the dynamic behaviour of a controlled structure under non-linear geometrical 
conditions can be formulated by the following differential equation: 

E5.78 [ 81:" +C. '  ' ~ 

Vectors ( ~xofj ~ and (-~-]Ox are respectively the acceleration and velocity vectors. 

x represents the time during which the various magnitudes are observed. A total 
Lagrange formulation is used in this study; thus, we need to determine the variables 
with respect to an initial configuration taken as a reference. 

The vector ~ Fe~ is the excitation load at the time x = t + At. 

The dimension of the matrix ~B is n x r, ~B corresponds to the position of the 
actuators in the structure and depends on the coordinates of the nodes at the date x. 
Since they are unknown, ~B is approximated by the position of the nodes at the time 
t. The vector ~F represents the straining forces and depends on the displacements 
that are themselves unknown. In order to overcome this difficulty, Bathe [Ref 5-39] 
recommends linearisation of this force, which lead us to formulate ~F: as follows: 

E 5.79 'F='KAx+'F 

Where, o'K corresponds to the tangent stiffness matrix and Ax to the displacement 

increase due to the excitation load 'F , .  

From the previous system, Djouadi [Ref 5-38] submits a closed-looped driving force 
' F c such as: 

E 5.80  x+a. l -;/] 
with 

m t E 5.81 'K = a,M + a,C+ K 

Figure 5.48 represents a cantilever beam composed of four assembled tensegrity 
units (simplex). The trusses have a length of 1.67 m, 0.02 m of diameter and a 
modulus of elasticity equal to 200 000 MPa. 
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Figure 5.48 Tensegrity beam 

The characteristics of  the cables are given in Table 5.4: 

cables Number 

T a b l e  5.4 Characteristics of  cables 

Diameters 
in (m) 

 :2-3 o.oo4 
10-11-12 0.004 
19-20-21 0.004 
28-29-30 0.004 

i 

7-8-9 0.006 
25.26-27 0.006 

16-17-18 0.006 
i i i 

34-35.36 0.004 

Lengths 
in (m) 

1.43 
1.43 
1.43 
1.43 

0.57 
0.57 

1.67 
i 

1.67 

i i i  i i i i i  

Elasticity Initial Pre- 
Modulus 

in xl0 Il Pa 

1 
I 
1 
1 

1 
1 

1 
i i 

1 
. . . . . .  

tensions 
in x 109 Pa 

1.7209 
1.7209 
1.7209 
1.7209 

i 

1.3723 
1.3723 

0.7969 

0.4000 

The damping of the structure is considered to be negligible. The mass related to all 
the nodes is equal to 150 Kg. We assume that this assembly simulates the mast of an 
antenna, which possess an imposed criterion of geometrical form. 

In the first simulation, the control is activated with three actuators located on the 
first unit. In the second simulation, in addition to the three previous actuators three 
additional ones are used on the third unit. They are all set parallel to the transverse 
bracing cables. Their function is to ensure the reduction of the nodes' displacements 
in space. 

The materials of  the beam components are assumed to have a linear elastic 
behaviour. The beam is loaded at all nodes by a random type tridimensional external 
perturbation. It is a normalised signal whose cut off frequency is 50 Hz. 
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Figure 5.49 Acceleration in m.s:, for  external excitation according to x, y and z axis 

Figure 5.50 Variation with respect to X-direction, with 6, 3 or 0 actuators 

Figure 5.51 Variation with respect to Y-direction with 6, 3 or 0 actuators 
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Figure 5.52 Variation with respect to Z-direction with 6, 3 or 0 actuators 

These figures show the variation with respect to the three directions X, Y and Z. The 
curves in black result from the use of the actuators. As regard to the control 
efficiency, a reduction is obtained on the X-axis with an average estimation of 
65.05% in the case of the three actuators compared to the uncontrolled 
displacements and 85.59% in the case of the six actuators. In similar conditions, we 
have reductions respectively of 85.88% (96.81%) on the Y direction and 51.24 
(91.19%) on Z-axis. 

5-72.1 Conclusion 

The purpose of this presentation was to give but a glimpse of a study on the non- 
linear control of structures. 

We have used a closed looped tridimensional control for this model. We insist 
moreover that the directions of the actuators do not affect the control, which always 
remains optimal. The actuators have a favourable effect on the pre-tensions of the 
cables and consequently contribute to the safety of the structure. 

5-8 Conclus ion  
Knowledge of tensegrity is dependent on basic concepts of  mechanics such as self- 
stress states and mechanisms. A tensegrity system being a system in an equilibrated 
state, it is important to understand that its design requires a simultaneous monitoring 
of forms and forces, which are coupled for this type of systems. That is why this 
chapter was devoted to models and was mainly written with the aim of showing that 
there are in fact many ways of reaching this dual target. Form-finding processes can 
be of any nature, but at the end of  the day, it is always necessary to check the 
mechanical properties of the result. 

Mechanical behaviour can then be studied with current theoretical models, which are 
available for systems with initial stresses. We merely wanted to give an illustration 
of the specific features of tensegrity systems, without any objective for a specific 
mechanical behaviour model, which remains outside of the scope of this work. 
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6 

Foldable Tensegrities 

6-1 Introduction 

Folding tensegrity systems has been one of our research topics for over a decade. 
This work began with some initial models [Ref 6-1] and now provides very 
interesting results so far as numerical models are developed; with introduction of 
folding processes the field of application of tensegrity systems has opened up 
considerably. Even the conquest of space can benefit from their characteristics. This 
is the reason why both practical work and theoretical developments are presented in 
this chapter. 

6-2 Folding principle 

6-2.1 Folding tensegrities: a new principle 
Folding is required to reduce the volume of objects in space. This operation allows 
for the transportation and storage of folded objects. Needless to say, the use of 
folding systems has greatly evolved since the nomadic lives led by primitive man, 
Nowadays, it covers a wide range of applications, from the simple fisherman's chair 
to architectural projects and satellite components. 

This chapter deals with the folding of tensegrity systems. These systems have 
intrinsic properties that open up new ways to folding. On the basis of previously 
described properties of tensegrity systems, it appears that they can be folded and 
unfolded (and rigidified) by changing the element lengths. Length changes can be 
applied to both struts and cables. Many different possibilities can be explored, 
depending on the designer's choice. This is quite different from the classical 
principle of "scissors", or pantograph structures, which have mainly been developed 
for spatial structures. In this last case, finite mechanisms are dependent on the 
existence of many hinges in the structure, and to rigidify the structure one 
sometimes needs to insert extra elements in the deployed state. 

6-21.1 Self-stress and mechanisms 

Two concepts are closely related in tensegrity: self-stress and mechanisms. The selfo 
stress notion, which is specific to tensegrity systems, is such that they acquire their 
rigidity by the stabilisation of infinitesimal mechanisms that exist in the equilibrium 



148 Tensegrity 

geometry. This corresponds, for instance, to the maximum value of a ratio r = s/c, 
previously described, in the case of three-strut regular tensegrity systems. 
Nevertheless, for lower values of this ratio "r", one or more finite mechanisms 
appear and the corresponding systems can be folded by activating these finite 
mechanisms. Finite mechanisms are special kinds of infinitesimal mechanisms, of 
infinite order and hence associated strains are equal to zero [Ref 6-2]. 

6-21.2 Stages of folding 

Folding a system consists of reducing its volume. Foldable systems have, therefore, 
the ability to move from an unfolded configuration occupying a large volume, to a 
folded configuration having a smaller volume and vice-versa. The process has to be 
made through a series of intermediate geometrical configurations, without any 
change to the connections between the different elements. This is what differentiates 
a foldable system from a system that can be dismantled. 

The design of foldable tensegrity system goes through a series of stages that 
summarise the methodology we adopted. These stages are: 

�9 Mechanism creation. 
�9 Verification of the system compatibility during the process of 

folding/unfolding. 
�9 Stabilisation and stiffening of the system. 

6,212.1 Mechanisms creation 

Folding a system requires the introduction of an instability [Ref 6-3], or, more 
precisely, the introduction of finite mechanisms that will make it possible to 
transform the system's shape. The creation of mechanisms is usually obtained by 
suppressing some connections; the choice depends on the "folding mode", i.e. the 
manner in which the system will be folded. 

One can also introduce mechanisms by changing the length of some connections 
(cables or struts). For classic systems, the procedure is to lengthen cables; the 
connections to be lengthened are linked in circuits. To design this process, Kwan 
and Pellegrino ([Ref 6-4] and [Ref 6-5]) introduced the notion of active and passive 
cables. Active cables are cables that run across the system and, when relaxed, allow 
the simultaneous lengthening of the cables needed to create mechanisms. Pulling 
these cables causes the structure to unfold. Passive cables impose a limit on the 
unfolding of the system. 

The mechanisms are activated by applying actions in the required direction of 
folding, to lead the system from the unfolded to the folded geometry. 

6-212.2 Geometrical compatibility 

Creating mechanisms gives, necessarily, one or more degrees of freedom to some 
nodes. The position of these nodes in space depends on the direction of the actions 
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which are applied to the structure. Since there is an inf'mity of directions, there is a 
potential infinity of node locations as a function of time. This location depends on: 

�9 The number of degrees of freedom of the nodes. 
�9 The type (strut or cable) of connections with other nodes. 
�9 The degree of freedom of the nodes to which the specified node is linked. 

When creating mechanisms, we can consider that there is an infinity of 
"trajectories", that lead the system from an unfolded geometry to an infinity of more 
or less folded geometries. Among all these trajectories there are some that do not 
lead to a folded form of the system, or that are not compatible with its geometry. 
This can cause undesirable deformations. To avoid this, it is necessary to restrict the 
nodes' displacements to one trajectory (meaning, a unique combination of 
trajectories for all the system); this is achieved by reducing the number of their 
degrees of freedom by fixing their displacements to specific planes. 

6-212.3 Stabilisation of the system 

The stabilisation of a tensegrity system is obtained, in a given geometry, by the 
elimination of all finite mechanisms. This is achieved when equilibrium geometry is 
reached. Then, increasing the level of the self-stress increases the stiffness of the 
system. This is a key advantage since it is not necessary to introduce new elements 
in the system, as it was not necessary to suppress elements to create finite 
mechanisms. 

6-21.3 Folding modes 

6-213.1 Basic idea 

Mechanism creation and system stabilisation are the two issues that need to be 
addressed. Geometrical compatibility depends upon the chosen folding strategy, 
closely related to the system studied (mast, grid...). 

The so-called equilibrium geometry for a tensegdty system is related to both the 
relational structure (list of elements and assembly mode) and the length of the 
elements. For simple cases there is one length for the cables "c" and one for the 
struts "s". The corresponding tensegrity systems are completely defined by their 
relational structure and the value of the ratio s/c. Form-finding procedures can 
provide a specific value r o for this ratio. With a higher value the system is in a self- 

stress state, which can stabilise any remaining infinitesimal mechanisms. For a 
lower value some finite mechanisms occur. The value of s/c can be derived either by 
changing "s" or "c". Similar remarks can be made for irregular systems in terms of 
multiple r~ ratios between different couples of values s~, ci. 
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6-213.2 Folding modes 

Length modifications can affect either the struts or the cables; the designer can 
explore different possibilities. A first classification could consider three main 
modes: 

�9 "Strut mode", when only strut lengths are modified. 
�9 "Cable mode", when only cable lengths are modified. 
�9 "Mixed mode", when both element lengths are modified. 

For each mode, regular or irregular modifications can be made, depending on 
whether these modifications are identical or not for all the corresponding elements. 

The choice between these three modes is closely related to the project, its size, its 
required characteristics, and also to the folding process requirements. Some 
preliminary remarks are made in the following sections. 

6-213..3 Folding oroblems 

Folding tensegrity systems uses a new principle - and new problems are associated 
with it. The folding process is closely related to node trajectories, and generally 
uniqueness of these trajectories is required. Once the folded and unfolded 
geometries are known, displacement restrictions have to be imposed on some nodes 
not only to guarantee the uniqueness of trajectory described by the nodes, but also 
for a matter of compatibility with the folding of adjacent modules in the case of 
assemblies of several modules. 

Two kinds of difficulties are to be underlined. 

The first is encountered when two struts come into contact during their own 
displacement; specific numerical studies have to be carried out, since in this case the 
contact point is not known a priori (slipping has to be taken into account), and it is 
also associated with a relative rotation between the two struts. This kind of problem 
is of a mechanical nature, since its solution requires a numerical analysis (which can 
be very complex in the case of multiple contact points). 

The second difficulty is of a design nature. A mechanical behaviour study of 
tensegrity systems shows that, according to the number of self-stress states, it is not 
always necessary to act, for instance, on all the cables when using "cable mode". 
The choice of one cable or a set of cables leads to the notion of "active cable", 
which has been used by Kwan and Pellegrino for other systems. An example is 
presented later in this chapter. 

6-2.2 Strut mode folding 
"Strut mode" folding has been used by other researchers such as Hanaor [Ref 6-6] 
and Furuya [Ref 6-7] for three strut modules and their assemblies in the form of grid 
and masts. The introduction of finite mechanisms results from shortening the struts. 
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Mechanisms: creation and activation. Using telescopic bars (which can be shortened 
by means of a bolt) creates finite mechanisms. A nut and a bolt fixed on the strut of 
greater diameter allow the locking of the strut to a given length (Figure 6.28). 
Mechanisms appear when the bolt is unlocked. Once folded, the module is reduced 
to a bundle which is approximately the length of the collapsed strut. The six-strut 
module is used here as an example (Figures 6.1 and 6.2). 

Figure 6.1 Six-strut tensegrity system: deployed state 

Figure 6.2 Six-strut tensegrity system: folded state 

The main disadvantage of this mode is the unfolding of the system. Indeed, the 
folded system appears as a shapeless bundle of telescopic-struts and cables; the first 
attempt to lengthen the struts is often opposed by the resistance of an inextricable 
tangle of cables. 

It is therefore necessary, despite appearances, to arrange the struts in the position 
required for them to start unfolding. It is obvious that in order to succeed it is 
necessary to be well aware of the composition of the system to unfold. 
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6-2.3 Cable mode folding 

6-23.1 Introduction 

The main property of this folding mode is that an appropriate choice of the cables 
that are lengthened to introduce finite mechanisms may lead to an elegant and easy 
folding process. The choice of this cable determines the folded geometry. Our 
studies on physical models led us to proceed as Pellegrino did with an "active 
cable", which is progressively lengthened, thus allowing a better control of the 
folding process. 

We took as an example the same module that was used for "strut mode" folding. The 
early studies on a physical model were useful to define a folding strategy, based on 
the fact that two opposite triangular faces of the module could move one relative to 
the other by a simple translation without any relative rotation. During the motion the 
triangles remain in two parallel planes. This property allows the folding of the 
module until the two triangles become coplanar, this common plane being either the 
middle one (and then the corresponding folding is called "bilateral folding") or the 
plane containing one of the two opposite triangular faces ("unilateral folding" 
illustrated in Figure 6.3). Moreover, both possibilities are compatible with the 
chosen folding strategy for an assembly of six strut modules forming a mast. 

Figure 6.3 Cable-mode folding of a six-strut tensegrity system 

6-23.2 Mechanisms: creation and activ ation 

6-232.1 Mechanism creation 

The choice of a set of cables constituting an "active cable", which could be 
lengthened (thus introducing finite mechanisms) is governed by several 
considerations: respect of symmetries, continuity of the cables which have to 
constitute a circuit going through one and only one of the extremities of each strut 
and respect of the folding policy as previously defined. Graph theory is very useful 
at this point. Examining a six-strut system as an assembly of two antisymmetric 
three,strut systems and six extra cables leads to study the assembly of two similar 
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cable graphs (Figure 6.4). These are graphs of cables for regular three-strut systems. 
We previously used graph theory [Ref 6-8] and established some results concerning 
"spherical tensegrity modules". For instance, for these modules the cable graphs 
have to be planar (no link intersection). 

Figure 6.4 Cable graphs of three-strut tensegrity systems 

Since a six-strut module can be built by the addition of two regular three-strut 
modules, we superimposed the two graphs and assembled them. Without modifying 
the number of nodes and links, a whole graph is created, thus putting in evidence a 
circuit (Figure 6.5). Nodes 4, 5 and 6 are put respectively between nodes 8 and 9, 9 
and 7, 7 and 8. Nodes 4, 9, 5, 7, 6, 8, 4 then describe the circuit. 

Figure 6.5 Superimposition of two graphs and circuit emergence 

Such a procedure can be automated, since the problem is to find a circuit in a planar 
graph, such that each node is at the extremity of a strut (complementary 
disconnected graph); all struts have one end on this circuit and, of course, the other 
end is not on the circuit. It is then possible to complete the graph keeping it planar 
by the addition of six more cables (Figure 6.6). The cable circuit 4, 9, 5, 7, 6, 8, 4 
constitutes the active cable required. 
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Figure 6.6 Complete cable-graph of a six-strut tensegrity module 

6-232.2 Mechanism activation 

A model has been built with pulleys (Figure 6.18) allowing the active cable to be 
lengthened to activate the mechanisms (Figure 6.7). 

Figure 6.7 Unfolded and folded six strut tensegrity system 

Relaxing the active cable at one node only introduces the mechanisms. In the 
physical model, self-weight of the constitutive elements can induce small 
perturbations in the folding process, which can be numerically modelled as 
"unilateral" or "bilateral". For each case it is a motion with controlled 
displacements. Physically, it is more difficult to can~ out bilateral folding. 

6-23.3 Folding process, deployment an d stabilisation 

6-233.1 Folding process 

Two main remarks could be made on the basis of the physical model test: the first 
concerns the relative motion of two opposite triangular faces, and the second the 
non-occurrence of strut contact during the folding process. It is then possible to 
numerically model node trajectories for both cases - unilateral and bilateral folding. 
No details are given here on the numerical model that has been developed. 



Foldable Tensegrities 155 

6-233.2 Deployment and stabilisation 

Deployment occurs by pulling the active cable (at a single node) until the 
elimination of all finite mechanisms. By pulling more on the active cable, we 
introduce self-stress, which stabilises the infinitesimal mechanisms of the structure. 
Nevertheless, the substitution of six peripheral cables linked to fixed nodes by a 
single active cable passing through pulleys increases the number of mechanisms, 
and this must be carefully studied. 

6-23.4 Conclusion to "cable mode" folding 

Folding a tensegrity system according to "cable mode" presents some real 
advantages even if volume reduction cannot be compared with "strut mode" for 
which the system can be reduced to a simple bundle: 

�9 A single control point is needed for mechanism activation, folding, deployment, 
and stiffening. 

�9 Cable entanglements are avoided by the use of the active cable. 
�9 Practical design implementation is easier for this folding mode. 

6-2.4 Conclusion 
Our main objective was to test the feasibility of different folding principles that 
make use of the main properties of tensegrity systems. Two folding modes have 
been identified. "Cable mode" seems to be promising for large systems and could be 
mixed with a limited use of strut-mode to optimise the folding process. A more 
detailed design study and numerical modelling is required. 

6-3 F o l d a b l e  m o d u l e s  

6-3.1 Introduction 
Before dealing with complex systems it was useful to carefully study the four-strut 
and the six-strut cells - some classic modules. 

6-3.2 Four-strut module 

6-32.1 Geometry 

This tensegrity module derives geometrically from the half-cuboctahedron. 

Figure 6.8 Cuboctahedron and half cuboctahedron 
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Figure 6.9 Four-strut tensegrity system 

It has four-fold symmetry and comprises four struts and twelve cables (Figure 6.9). 
It is not a "regular" system, since its upper cable square layer is inscribed, in plane 
projection, in the lower cable square layer. This geometry allows aggregating similar 
modules in order to generate the double layer that will be described in this chapter. 

6-32.2 Folding of the four-strut tensegrity system 

It is necessary to choose a folding strategy. The one that we chose is compatible 
with the geometry of the system (module) and with the presumed geometry of an 
assembly of these modules, to constitute a bigger system. The folding strategy that 
satisfies these conditions is a projection on the plane containing the nodes l, 2 and 8 
(Figure 6.10). The plane of projection will be referred to as the "folding plane". 

Figure 6.10 3D view and folding prediction 

The next step is the lengthening of the cable links, so that the module can be folded. 
The strategy to find which links have to be lengthened is as follows: 
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�9 Activation of mechanisms that are orthogonal to the folding plane (Figure 6.11, 
with the final position in grey lines). 

�9 Lengthening of the minimum number of links required to fold. 

The result of this operation is the lengthening of connecting cable 1-8 and its 
symmetrical 3-6. Figure 6.13 shows the system aider activation of mechanisms. 

3 6 

Figure 6.11 Mechanism activation 

folding 

50" \ n \ ~,qP7 

6 y "  

I I I 
Figure 6.12 Boundary conditions 

The system in its folded position as indicated in Figure 6.13 (grey shadow) is not the 
only solution, but one among many. Each of these "folded geometries" stems l~om 
the intersection of a combination of trajectories, with the plane of folding. To avoid 
blockage of the structure, the displacement of some nodes is fixed in particular 
planes. These planes (A, B and C, Figure 6.10) materialise physical limits of the 
module and form a "corridor" in which the module can be folded without 
interference with neighbouring modules (see Figure 6.12). 

For this module, several models have been developed and are described next: 

�9 A physical model. 
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�9 A geometrical model. 
�9 A numerical model. 

These three models do not take into account exactly the same conditions. But even if 
the results are different- they lead to similar conclusions. 

Figure 6.13 Nodes trajectories and final configuration 

6-3.3 Six-strut module 

6-33.1 Geometry 

The six-strut module comprises six struts and twenty-four cables (Figure 6.14). This 
regular tensegrity system is characterised by the ratio ro = 1.67. 

Figure 6.14 Six-strut tensegrity module 

6-33.2 Strut mode folding 

Other researchers (Hanaor, [Ref 6-6], and Furuya [Ref 6-7]) have already 
investigated the creation of mechanisms by strut shortening. The main advantage of 
this mode is that it allows a strong reduction of the volume of the system, since it 
reduces the length of the struts that are the only formally rigid elements in the 
system. 
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The physical modelling of folding is made through small-scale models of modules 
with telescopic struts. Two telescopic tubes constitute each strut. Once folded, the 
module is reduced to a bundle having approximately the minimal strut length. 

To begin with we sought to avoid using this mode, which is technologically 
complex, but we decided to test it on a six-strut module. This had never been carried 
out before because of the great associated volume reduction. 

6-33.3 Mechanism activation 

Considering that the self-weight of the system is neglected, it is sufficient to push on 
the two parts of the telescopic strut to activate the mechanism so as to shorten it. The 
reverse operation is required for the unfolding process. The system's scale is very 
important here. In fact, for small-scale systems the struts can easily be shortened 
individually by hand. This becomes impossible for large scale and heavy modules 
and this clearly cannot be the case for major architectural projects. Fluid pressure 
could be used in such cases, as A. Hanaor demonstrated, but this solution is 
technologically complex, and also expensive. 

6-33.4 Physical model 

A physical model has been built to test these manipulations (Bouderbala, [Ref 6-9]). 
Because the folded geometry is not unique, several solutions can be realised and 
each applies different constraints on the strut shortening operations. Two of these 
solutions are described: bundle type and plane type. 
�9 Bundle type: 

All struts are identically reduced to half of their initial length The module can 
then be folded in a bundle of shortened telescopic bars and all the cables are 
slack; volume reduction is maximum. 

�9 Plane type: 
It is not possible to completely map the module onto a plane with "strut" mode. 
Regular folding can be achieved. The module keeps a little depth and most 
cables are taut. However, in this case we have lost the main advantage of this 
mode: for the reduction of volume is not maximal. When handling the model, it 
is clear that it would be possible to completely flatten the module by acting on 
the cables (it would then be what we called "mixed mode"). 

An irregular folding was tested, taking into account the fact that the six-strut module 
can be considered as an assembly of two three-strut modules with a few extra cables 
(Figure 6.15). 
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Figure 6.15 Two possible flattened configurations 

6-33.5 Cable mode folding 

The folding of the six-strut module is made by a projection of the module onto the 
plane containing one of the triangular faces. In our case the module is folded down 
to the plane containing the nodes 1, 2 and 3. In order to do this, it is necessary to 
lengthen cable links 4-5, 5-6, 6-7, 7-8, 8-9 and 9-4. These links constitute a circuit 
that is used advantageously for the creation of mechanisms. Thus, these connecting 
cables form an active cable passing through nodes 4, 5, 6, 7, 8 and 9 (Figure 6~ ~63. 
The creation of mechanisms and their activation leads to a folded geometry of t,*~e 
module that, in the case of the 6.struts module, is a unique solution. The lower and 
upper faces defined respectively by nodes 1, 2, 3 and 10, 11, 12, do not change form 
nor do they undergo rotation. In fact, in a folded geometry, the upper face (10, 11, 
12) overlaps the lower face. Trajectories of the nodes 4, 5, 6, 7, 8 and 9 are close to 
arches of circle whose centres are nodes 11, 2, 12, 10 and 1 respectively. 

Figure 6.16 Folding with an active cable 
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Figure 6.17 Nodes trajectories 

Figure 6.18 Detail of the pulley 

Figure 6.19 Flattened shape 
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Figure 6.20 Unilateral and bilateral folding 

The module is unfolded by pulling the active cable until the lengths of the cables are 
all identical, i.e. until the self-stress geometry. 

6-4 Foldable assemblies 

6-4.1 Tensegrity mast 
There are two ways to combine six-strut modules and to form mast structures. The 
first is based on sharing a triangular face between two modules; the second is based 
on sharing a hexagonal face. The first mode of assembly requires the design of a 
special node joining the struts of the assembled modules. The second mode does not 
call for the design of a specific node. 

Projecting the mast onto a plane will bring about the folding. Active cables control 
the creation of mechanisms and the unfolding of the mast. If it is required that the 
surfaces joining the upper and the lower faces of the module do not undergo any 
deformation or rotation, each module is independent. It therefore follows that the 
folding/unfolding of the mast will be on a module-by-module basis, and the state of 
self-stress will also be for each individual module. This result requires an active 
cable per module (third view in Figure 6.21). If this procedure is not necessary, the 
active cables of modules will be linked to form a single active cable that will allow 
the folding/unfolding of the whole mast. The fourth view of Figure 6.21 shows such 
a case. 
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Figure 6.21 Two mast assemblies and two folding strategies 

A physical model (Figure 6.22, [Ref 6-9]) was created with the folding strategy that 
has been established with three active cables. 

The hypothesis on the pure translation of basis triangles was validated by the 
physical experience illustrated in the following figures ~. 

Figure 6.22 Physical model of  a tensegrity mast 

6-4.2 Double-layer grid 
The assembly of nine single tensegrity cells gives a double layer grid. We built a 
prototype in order to test its folding solutions. The choice of a folding process is 
shown in Figure 6.24, The links to be lengthened in the grid in order to create the 
required mechanisms are the same as those already identified for the module. These 

I Comell Sultan recently confirmed to the author that he had found the same results with a 
theoretical model. 
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links in the grid form chains that are used to facilitate the creation of mechanisms 
and the unfolding of the grid. 

Figure 6.23 Tensegrity double layer grid folding policy 

Figure 6.24 Two folding policies 

There are at least two ways to define chains. The first is simple to build and has been 
investigated by making a physical model. The second possesses the advantage that 
the active cables terminate in the folding plane (Figure 6.24). 

To activate the mechanisms and to fold the grid starting from the folding plane, we 
then added a second series of cables. The latter allows folding the grid by simply 
pulling the nodes towards the folding plane. 

The uniqueness of the trajectories and the respect of the geometrical compatibility of 
the system during the process of folding/unfolding depend on the care with which 
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the nodes have been designed. A detailed study of the folding/unfolding of the 
module is required, as the mutual spatial relationship between struts and nodes 
remains the same at both the module and grid scale. A study based on a numerical 
model aimed at implementing the design of nodes is being carried out in the 
Laboratory of Mechanics and Civil Engineering at the University Montpellier II. 

The stabilisation and self-stress of the grid are obtained by means of the same active 
cable. 

The two extreme positions are illustrated in Figures 6.25 and 6.26. 

Figure 6.25 Double layer physical model: deployed state 

Figure 6.26 Double layer physical model." folded state 

6-4.3 Conclusion 
In conclusion, this work shows that folding tensegrity modules with four and six 
struts is indeed possible. Physical models for the two modes of creating mechanisms 
have validated this. 
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In so far as assemblies are concerned, folding them by shortening the struts was 
excluded because it highlights the complexity of tensegrity systems without 
providing any solutions. 

On the other hand, folding an assembly by lengthening its cables is very promising. 
The grid of four-strut modules that has been investigated by means of a physical 
model fully met our expectations. This concept is currently the object of a numerical 
model that will allow us to know more precisely the trajectories of the moving 
nodes, and which will enable us to design the nodes of module assemblies. A 
physical model of the mast with six-strut modules is now being prepared (Figure 
6.22). 

We hope in the near future to be able to explore other active cable paths for both the 
four-strut module grid and the ,~Jx-strut module mast. We will also attempt to apply a 
textile or rigid cover over the grid: this will allow the utilisation of systems such as 
variable geometry architectural roofs. 

6-5 Folding design 

6-5.1 Introduction 
Tensegrity systems are complex, at least fi'om a geometrical point of view. The 
design of folding tensegrities requires several simultaneous approaches. A large 
range of problems has to be solved; these problems involve design, numerical 
modelling, mechanical, and technological studies. We have chosen to work 
according to a particular methodology which associates three different approaches: 

�9 Physical models are essential for design and for examining the process, taking 
full account of real physical constraints. It allows one to choose a particular 
folding policy. 

�9 Geometrical modelling can sometimes be useful to describe node trajectories 
and member displacements. This modelling is based mainly on the use of sphere 
intersections. 

�9 Numerical modelling is an essential tool to predict the process, but its 
refinement needs a lot of work to take into account contact, friction problems 
etc. Graphical simulations are, of course, very useful to visualise the folding 
process. The theoretical basis for this numerical modelling is presented in this 
section. Only certain results are presented for comparison with physical and 
geometrical studies. 
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6-5.2 Four-strut tensegrity folding 

6-52.1 Physical modelling 

6-521.1 Geometrical description 

In this section, we have developed in detail the case of the four-strut tensegrity 
module. It is a first step towards a study of the double layer grid. The tensegrity 
module with four struts derives geometrically from the half-cuboctahedron. It has an 
axis of symmetry of order four and it comprises four struts and twelve cables (Figure 
6.27). 

Figure 6.27 Four-strut tensegrity system: perspective, plan and elevation views 

6-521.2 Folding mode 

The folding of the four-strut module by shortening the struts has been achieved by 
means of telescopic cylindrical struts. The physical model shows that this way of 
creating mechanisms gives the greatest reduction of the system volume. But 
unfolding is very difficult. And in order to be carried out correctly it calls for the 
system to be well known by users. The work of Hanaor [Ref 6-6] in this field shows 
the difficulty of applying such a folding mode to an assembly of modules. 

Figure 6.28 Telescopic strut 
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Let us now focus our attention on the second mode of creating mechanisms (i.e. by 
lengthening the cables). Folding by lengthening the cables of the four-strut module 
has been achieved by means of a small-scale model consisting of aluminium tubes 
linked by nylon cables. 

6-521.3 Folding policy 

The folding policy (the manner in which the module is folded) in this case is a 
flattening of the module in the plane containing the nodes 1, 2 and 8. This plane has 
been called the "folding plane" (see Figures 6. I 0 and 6.11). 

The final aim of the study being to fold an assembly of modules, the displacement of 
some nodes has been fixed in specific planes representing the physical edges of the 
module. These arrangements make the module fold in a corridor, thus preventing all 
risk of deformation of the constitutive elements of the module due to interference 
between modules during the folding process of the double layer grid that is to be 
formed. 

Consequently, the displacement of the lower layer nodes has been fixed in the 
horizontal plane. Concerning nodes 5, 7 and 8 (node 8 being in the folding plane), 
since there is no practical way of fLxing them to lie in vertical planes, we allowed 
them to slide freely on fiat surfaces, which are materialised by these planes. Nodes 3 
and 4 being located at the intersection between two planes (horizontal and vertical 
planes), slide over a groove materialising the intersection line. Nodes 1 and 2 are at 
the intersection of three planes and hence are fixed. Node 6 is totally free. 

6-521.4 Operating mode 

Mechanisms were introduced by replacing the bracing cables (i.e. cables 1-8, 2-5, 3- 
6 and 4-7) by rubber bands. This enables folding of a module in the folding plane 
under the action of small forces. 

Experimems show that it is not necessary to replace all the bracing cables (four 
cables) but only two of them, cables 1-8 and 3-6. To activate the mechanisms and 
initialise folding, we used the self-weight of the struts. 

Figure 6.29 Physical model: unfolded and folded configurations (elevation) 
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Figure 6.30 Physical model: unfolded and folded configurations (upper view) 

6-52.2 Geometrical modelling 

6-522.1 Geometrical approach 

Designing the node of a foldable tensegrity grid requires that its trajectories (and 
hence the relative motion of struts and nodes) be well known. 

We decided, in order to more precisely def'me the process, to fix the displacement of 
all the nodes to specific planes, as was the case in respect of the physical model. But 
when it came to the geometrical model we fixed the displacements of nodes 6 
(totally free in the physical model) and 8 in a median plane B (see Figure 6.11). 

The trajectories of the nodes are determined atterwards by the geometrical 
intersection between the "geometric loci" (the set of all the possible positions of the 
node in space) of the nodes and the displacement planes of these nodes. 

Consequently, the plane containing nodes 1, 2 and 8, being the folding plane (F 
plane), and the plane containing nodes 1, 2, 3, and 4 being the horizontal one (H 
plane), the resulting displacements are as follows: 

�9 The trajectory of node 1 is at the intersection of three planes F, H and C. Node 1 
is fixed. 

�9 The trajectory of node 2 is the intersection of the planes F, H and A. Node 2 is 
fixed. 

�9 The trajectory of node 3 results from the intersection of the planes A and H. 
Node 3 slides along the intersection line. 

�9 Node 4 slides along the intersection line of the planes H and C. 
�9 Node 8 slides along the line resulting from the intersection of the planes F and 

B. 
�9 The case of nodes 5 and 6 is different; these nodes are linked to fixed nodes by 

means of struts. The geometric locations of these nodes are thus spheres. The 
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intersection of the geometric constraints on the nodes defines two circles. Hence 
the trajectories of nodes 5 and 6 are circular arcs. 

Y 8 i1 '11 1 

Figure 6.31 Numbering of nodes (italic, underlined) and members 

Let us take the example of node 5. It is linked to node 1 by means of element 13 
(strut). Node 1 being fixed and element 13 being a strut the locus of node 5 (having 
two degrees of freedom) is a sphere, with its centre at node 1 and the length of 
element 13 as radius. 

The co-ordinates of the centre being 1 (0, m, 0); the mathematical expression of the 
sphere S13.1is (x,y and z being the node coordinates): 

�9 X 2 Z 2 E6. I  Sla I +(y-m) 2+ = ~  with L b=~a 
with Lb, length of the strut, and m edge length of the module basis. The intersection 
between sphere Sl3.1 and the displacement plane .4,: y = 0 gives a circle, which is 
the trajectory of node 5: 

E 6.2 A n Sla 1 = Cla I 

�9 2 2 L~ 2 E6.3 C~a I x + z  = - r n  

The case of node 7 is different. It is connected to node 3 by means of element 15 
(strut) but in this case node 3 slides along a line. The trajectory of the node 7 cannot 
easily be defined. 

The easiest way to give a convenient trajectory to node 7 is to consider the future 
assembly of the module with other modules. In the grid (planar assembly of 
modules) node 7 is linked to node 5 of the neighbouring module. Consequently, they 
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have the same trajectory. It has been verified that the displacement of node 7 
according to the trajectory of node 5 trajectory involves deformations of the 
constitutive elements. The resulting trajectories are shown in the following 
illustrations: 

Figure 6.32 Node trajectories 

The other possible mode is to consider that the displacement of node 7 is due to the 
traction applied by cable 7-8. In this case the trajectory of node 7 is, at every 
moment, the result of the intersection between the circle C~5.3 and the circle C~l.8. 

�9 The circle C 15.3 being the intersection of the sphere S15.3 (node 3 is the centre 
and strut 15 of length Lb materialise the radius) and the displacement plane C. 

�9 The circle Cml.8 being the intersection of the sphere S~.8 (node 8 is the centre 
and cable 11, joining the nodes 7 and 8, is the radius) and the C plane. 

6-522.2 Graphical simulation 

We carried out a graphical simulation of the folding according to the above 
geometrical model 2. This software is able to draw elements between points with 
given co-ordinates. The trajectories of the nodes were implemented in the software 
with steps of displacement for nodes 3 and 4. 

The sot~ware produces for each step a rendered image of the module during the 
process of folding. The images produced were then converted into moving images, 
which can be viewed using Quicktime | Here are some screens taken from such 
images. 

2 This was carried out with a software known as "tt3D" and developed at the Montpellier 
School of Architecture (EALR) by Alain Marty. 
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Figure 6.33 Motion simulation 

6-52 ~merical modelling 

The :~od used to determine different positions during folding is based on the 
Moo:. ~ ~enrose inverse matrix method (Hangai, [Ref 6-10], Motro et al., [Ref6-11]) 
and i:. alained in this section. The two cables drawn in dotted lines (Figure 6.34) 
have L a lengthened to allow the activation of mechanisms (with external actions) 
and the~ folding. 

Nodes 3 and 4 are able to slide along the y direction, and folding is achieved on the 
vertical plane containing the three nodes 1, 2 and 8 according to the physical model. 

Figure 6.34 shows the tensegrity module in its folded state. Two main points can be 
noted: first, the folding has been completely achieved on the vertical plane, and 
secondly that no interaction between elements occurred during folding. 

Figure 6.34 Numerical modelling 

Projections of the trajectories of all the nodes on different planes have been plotted 
in Figure 6.35. They are very close to those observed with the physical model. At 
the present time the strut thickness is not taken into account and hence does not 
influence the final position of nodes. 

Node 6 does not move on the vertical plane x = 0 contrary to the geometrical result 
(because of a simplified assumption). Similar observations can be made for node 8. 
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Nodes 5 and 7 slide over vertical planes and node 5 approximately along a circular 
arc. Node 7 reaches the folding plane (y -- 0.5) before node 5 (because of the 
displacement of node 8) and then moves vertically. 

Figure 6.35 Node trajectories 

6-52.4 Discussion 

It has already been stated that the aim of our study was to achieve efficient foldable 
tensegrity systems. It was therefore necessary to get more information concerning 
the relative displacements of nodes and struts through several models. This 
information will provide the data required in order to design the nodes. 

Nevertheless, there are some discrepancies between the physical, geometrical and 
numerical models. This is mainly due to different operating conditions. In fact, in 
the physical model we cannot neglect the self-weight of the struts, the geometrical 
imperfections of the nodes and friction in the groove. In the geometrical model the 
strains in the elements are disregarded and the excessive constraints on the nodes' 
displacement give trajectories of a "suspect" perfection. Finally, in the numerical 
and in the geometrical model, the self-weight and the dimensions of the constitutive 
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elements are neglected. The edge-conditions in the last model are close to the 
physical model. 

Consequently, some divergence appears in the results of the above models. The first 
concerns the trajectory of node 7; as in the trajectory of node 5 in the geometrical 
model, in the numerical model it is a spatial curve. This fact can be observed in the 
physical model. 

The position of nodes 6 and 8 in the folded geometry is not identical to the 
numerical model, which is not the case for the geometrical and physical model. It 
can be explained by the mobility of nodes 6 and 8, in the folded geometry, and of 
course by the accuracy of the direction of the external actions applied and length of 
elements. 

But excluding the different operating conditions discussed above, there is 
nevertheless a good correlation between the aforementioned models. 

6-5.3 Conclusion 
It seems clear that the design of a foldable tensegrity system needs several models to 
be achieved correctly. The methodology that we adopted uses three of them. Each of 
the models has its own limits but together they provide the necessary information. 
The models are complementary. 

The physical model shows which cables have to be lengthened, the numerical model 
allows us to know which cables are strained during the folding process and provides 
"real" trajectories which can be compared to the "ideal" ones provided by the 
geometrical model. This methodology has been successfully tested on an assembly 
of four-strut modules (planar grid) and is currently being tested on other kinds of 
tensegrity modules and of their assemblies. 

6-6 Simulat ion of the folding process  

6-6.1 Introduction 
In order to describe a folding process with an appropriate numerical model and its 
associated numerical resolution, it is necessary to distinguish two main steps, which 
correspond respectively to the determination of mechanisms and to the description 
of trajectories implied by the activation of these mechanisms. 

6-6.2 Mechanism determination 

6-62.1 Basic equations 

6-621.1 Cinematic relationships 

Static and cinematic equations are established making the classical hypothesis for 
reticulate structures with struts and cables. Between two different states 1 and 2, the 
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length of member "jk" is dependent on the initial coordinates {Xj},{Xk} and 
displacement vectors {dj}, {dk}. 

0 

X2 

~Xl 

V 
X3 

{Xk} 

state 1 {XJ}+o.~L....._..~ k 
J state 2 

J 
Figure 6.36 Displacement increments 

According to the notation used in Figure 6.36, it can be written: 

E 6.4 Lll = IlXk-Xj II 

E 6.5 Ll2 = II Xk" Xj -I- dk- dj II 

The elastic elongation e I can be expressed as: 

E 6.6 el = Lll- Ll2 

or: 
E 6.7 e I = [-2({Xk}-{xj})-({dk}-{dj}),2({Xk}-{xj})+({dk}- 
{dj})]T. { dk, dj } T/(L, ,+Ll2) 

E 6.7 involves not only rigid displacements, but also elastic deformations. Assuming 
that there are "b" members and "N" degrees of freedom, the cinematic relationship 
can be expressed in a matrix form as follows: 

E6.8 {e}= ([B]+ lAB]). {d} 
{e} is the elastic deformation vector; [B] is the compatibility matrix and [AB] a 
increment of [B]; {d} is the displacement vector (boundary conditions being 
included by deleting the corresponding displacement components). When II{d}ll is 
very small, the second term can be neglected, then: 

E6.9 {e}= [B]. {d} 
For an unstable structure (with finite mechanisms), there is no deformation until the 
geometrically stable equilibrium state is reached and E 6.9 becomes: 

E6.10 [B]. {d}= {0} 
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6.-62 |.2 Static equilibrium relationship 

Static equilibrium equations can be derived ~om the principle of virtual work. For a 
set of external actions {f} and a virtual displacement {&i}, the corresponding 
elongations {~e} and internal forces {T} must satisfy: 

E6.11 {f}t. {b:l}= {T}t . { ~ }  

Combining E 6.9 and E 6.11 yields: 

E6.12 ({f}' - {Tit �9 [B]). {5} = {0} 

This equation holds for an arbitrary {&l}, so that: 

E 6.13 [B]'. {T}= {f} or [A]-{T}= {f}, 
The constitutive law can be expressed in a matrix form as follows: 

E6.14 {e}= [F]. {T} 
Where [F] is a b-order matrix with: 

E6.15 Fii= (LIE.A) i= 1,b 

6-621.3 Stabilit3, criterion 

When analysing the structure in a geometrically stable equilibrium-state, we use the 
compatibility E 6.10 instead of static equilibrium E 6.13. At equilibrium the total 
potential energy H of the structure is a local minimum. The necessary and sufficient 
conditions for equilibrium are: 

E 6.16 81-1 = 0 

and 

E6.17 82H 

Where/5 denotes a variation in the displacement space. The equilibrium is instable 

or stable according to the value of ~i21-I. The condition expressed by E 6.16 will be 
used in the following sections in order to choose a parameter leading to the stable 
equilibrium-state. 

6-62.2 Displacement and self-stress m ode matrices 

6:622.1 First approach: the four subspaces 

E 6.9 and 6.13 describe the cinematic and static relations between two vector spaces 

associated with a reticulated system space, namely the node space R n and the 

member space R b. External forces and displacements are related to the first one, 
internal forces and elongations to the second one. If we call "rg" the rank of the 
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equilibrium matrix [A], a Gaussian elimination procedure on the augmented matrix 
[ A I I ], [I] being a diagonal unity matrix, leads to the transformation developed 
below (Pellegrino, [Ref 6-12]). 

which can be put in the form: 

E6.19 /m 

allowing to transforming the static E 6.13: 

E6.20 -{T}= im 

The external force space {f} can be split into two subspaces: one is r-dimensional 
and is a fired external force subspace (forces that can be equilibrated); the second 
one, of m-dimension, (with rn = N-r) corresponds to the forces which activate the 
mechanisms. 

Similar derivations (with [J] being a diagonal unit matrix) can be achieved on the 
compatibility equation and lead to: 

E 6.21 

The deformation space is composed of two subspaces, a "fitted" and a "non-fiRed" 
subspace. Only the former is compatible with the displacements. If we consider E 
6.20 from an energetic point of view, each row of [Ir], and [Ira] can be regarded as a 

set of displacements and each row of [Jr], and [Js] as internal forces. In E 6.21, when 

the components of {d} belong to the mechanism subspace, the corresponding values 
of {e} are equal to zero and the corresponding rows of [Br], which are related to the 

external tbrces are orthogonal to the displacements. The m mechanism vectors are 
included in [Im] from E 6.20 and the corresponding displacements can be computed 

by: 

E6.22 h i  

with {o~} being composed of arbitrary constants combining elementary mechanisms. 
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[D] = is known as the displacement mode matrix. 

A similar analysis leads to the computation of any self-stress vector by: 

[]' E6.23 {T,}= & . ~ }  

with {13} being composed of arbitrary constants combining elementary self-stress 
states. 

[$] = is known as the self-stress mode matrix. 

It should be noted that for a structure, which verifies the compatibility condition, the 
self-stress subspace is orthogonal to the elastic deformation one. If the structure is in 
equilibrium, the mechanism displacement space is orthogonal to the external force 
space. 

6-622.2 Second approach: generalised i nverse method 

Considering the compatibility equation, the matrix [B] is a b x N matrix; generally 
this is not a square matrix and even if it is square its rank is not always equal to N (= 
b); we cannot use traditional procedures to solve it. We must introduce the Moore 

Penrose inverse and, more precisely, the {1}-inverse [B]'. [B] being a b x n 

dimension matrix, there exists a matrix N x b [B]'called generalised inverse of [B], 
satisfying: 

E 6.24 (tel-. tel)' = tel. tel- 

E 6.25 (tel. tel-) ' -  tel-- tel 
E6.26 [B]. [B]- �9 [B] = [B] 

E 6.27 [B]- [B]. [B]- [B] 

and: 

E6.28 [B]- = [Bit �9 ([B]" [B]t) -' 

With this, the general solution of the compatibility equation can be put in the form 
(Graybill, [Ref 6-13]): 

E 6.29 {d}= [B]--{e}+ ([I]- [B]-. [B]). {t~} 

with {~}, arbitrary vector, [B]', generalised inverse of[B] and [I], identity matrix. 
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A general displacement {d} can be written: 

E6.30 {d}= {do}+ {dr} 

with {de}, elementary displacement-vector, which generates elastic deformations in 
the members of the structure, and {dr} elementary displacement vector 
corresponding to rigid body displacements. 

In fact it appears that: 

E6.31 [D] = [I]- [B]- �9 [B] 

which is equivalent to the displacement mode matrix derived from study of the 
subspaces. 

. . .  

6-6.3 Folding numerical modelling 

6-63.1 Compatibility equation solution 
When a mechanism basis characterised by [D] has been found, finite mechanisms 
are activated and this is achieved without any deformation. Then we have to solve: 

E6.32 [B]i_f {d ~. = {e}= {0} 

which allows us to reach a geometric stable equilibrium state, "GSES" (Liu and 
Morro, [Ref 6-11 ]). 

The subscript "i" shows that [B] needs to be updated after each elementary nodal 
displacement. As [B ]~_ 1 is a rectangular matrix, the general solution of E 6.32 takes 

the form: 

E 6.33 {d}i= ([ I ]-  [B]i- f [B]i_l)-{~}i = [D]i_ f {G}i 

with [B ];-1, generalised inverse matrix of [B]i_l, and 

E 6.34 [D]i_l = [{81} .... ;{Sm}]i_ 1 

is the basis matrix of mechanisms in the structure, in the final configuration of step 
" i - l " .  Some of these mechanisms may be finite, and others inf'mitesimal. {(x}~ is an 
arbitrary vector; to accelerate the iterative process, it wil l be determined by energetic 
considerations. 

6-63.2 Energetic considerations 

The potential energy variation of the system, under external nodal exterior load 
vector {f}, associated to the nodal displacement vector {d}i, is: 

E6.35 AH y -{d}l. {f}< 0. 
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It is judicious to choose {ct}i along the gradient of AII, in order to minimise the 
potential energy variation. That is: 

E6.36 {ix}. tp �9 [D]I_,. (f) 

(D is the parameter which defines the increment amplitude for the displacement 
along the direction of the potential energy gradient. The scalar q) is taken to obtain 
a final longitudinal deformation of any element smaller than a fixed value e. This 
deformation is due to the presence of infinitesimal mechanisms in [D]~_~ matrices. 

With such a q), the condition "[[{d}i[I small" is still verified. From E 6.33 and E 

6.35, it appears that every mechanism of the structure {~}~_~is balanced by 

coefficient r showing that the potential energy variation of the system, due to the 

displacement r i" {~i i}i-1, is minimal. 

6-7 M o d e l l i n g  the contact  of  t wo  struts 

6-7.1 Introduction 
When one or more contacts occur, a new cinematic restriction imposing the 
condition that struts in contact cannot penetrate each other is added to the condition 
that the elements are not allowed to deform and that displacement boundary 
conditions have to be satisfied, all of which has been previously discussed. The 
objective of this section is to introduce a way of modelling "Strut-Strut Contacts" 
during the folding process of tensegrity systems, which has been specifically studied 
by Le Saux [Ref 6-14]. 

6-7.2 Motion modelling of two struts in permanent contact 

Figure 6.37 Two struts in contact. Initial configuration (To) 

Let us consider two struts AB and CD (numbered 1 and 2 in the following 
developments) in permanent contact at point I, as in Figure 6.37, but without any 
boundary conditions and subjected to arbitrary nodal loads. The initial configuration 
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is (Fo): (Ao, Bo, Co, Do). The numerical model we chose decomposes the motion of 
the two struts into two parts. The real motion of two struts in permanent contact is in 
fact a combination of: 

�9 a relative sliding of the struts in contact which implies only independent 
translations of each strut. This will be called (below), the first part of the real 
motion; 

�9 a global translation of the struts considered as constituting a single body; 
�9 a relative rotation of struts. 

These two movements will be considered together as the second part of real motion. 
There is no relative sliding in this second part even if a contact point exists. 

Real motion of two struts in permanent 
contact : sliding +associated translation + rotation 

i / "x 
Part I ~ Part 2 

EZ 

Relative sliding JJ Global translation + relative rotation 

Figure 6.38 Decomposition of the real motion 

Part 1. It describes the relative sliding of struts in contact, and hence the variation of 
the contact point between the struts. Sliding is characterised by four independent 
mechanisms, expressed in terms of nodal displacements. 

�9 a translation of strut CD in AoBo direction: {6~} 
�9 a translation of strut CD in CoDo direction: {52} 
�9 a translation of strut AB in CoDo direction: {53} 
�9 a translation of strut AB in AoBo direction: {/54} 

The energetic considerations of section 6-63.2 devoted to the modelling of tensegrity 
folding without contact, lead us to define the four mechanism amplitudes as follows: 

= . }t. 
E6.37 ~j tp {Sj {f} j=1,...,4 

The nodal displacement vector resulting from sliding is: 

E6.38 ~ ' } =  ~ a j .  {Sj} 
j=l 

Thus, we obtain the resulting configuration from Part 1: 

(Fl) = (Al, Bl, Cl, Dl, I O- 
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Part 2. This part models the global translation and the relative rotation motions of 
struts in contact, without relative sliding. Contact point I~ does not move on struts 
AB and CD, but moves with respect to the global reference, by the rigid-body 
motion of each strut. The latter is defined by three translations and three rotations, 
relative to the global reference directions (x,y,z). This induces us to define for each 

~ 2  2 . 
l l l strut in contact, a "translation vector" i and a "rotation vector" rj , grouped in 

i 

E6.39 {'d ~t= ~ ~};~ ~ll t 

The subscript "j" and superscript "2" refer to the "j" strut and part "2" of the motion. 
"*A" indicates that A is expressed in strut translation and rotation terms. 

The permanent character of the contact and the non-sliding is written as" 

E6.40 {d ~(I)}= {d ~(I)} 
In other words, the displacement of contact point I, belonging to strut 1, is equal to 
the displacement of contact point I, belonging to strut 2. 

With: 

E 6.41 {d;(I)}= ~ ~}+ {~ ~}^ {OI} j= 1,2 

Equation E 6.40, projected onto the global reference directions, gives the following 
system of equations: 

E6.42 ['B]- {'d 2}= {0} 

with: 

E643 {d2} 1 - -  2 
2 

['!3 2J is rectangular, so the general solution of system E 6.42 takes the form: 

E 6.44 {'d 2}= Q-[ 'B2]  -. ['B2D �9 {r = ['D2] �9 {o~ 2 } 

Then the basis of mechanisms for the structure in the (I'~) configuration is: 

E6.45 I'D 2J= 1{; 6 2}{g/5 2}...., {m$ 2 ~ 

These are rigid-body mechanisms defined by particular strut rotations and 
translations. They respect the permanent and non-sliding character of the contact. 
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With the intention of using the previously developed energetic considerations, to 

determine the {a2} vector, a linear transformation is used to express I'D 2J in nodal 

displacement terms" [D2] 

The transformed equation E 6.44 is: 

E 6.46 {d2}= [D2]. ~ 2 }  

And {(z 2} is chosen as: 

E6.47 {(z2}= (p �9 [D2]t �9 {f} 

So {d 2 }, the displacement vector of all structure nodes, resulting from Part 2 of the 

motion is: 

E 6.48 {d2}= ~p [D �9 [ D .  2] 2] t " {f} 

and the structural configuration, at~er the nodal displacement 

E 6.49 {d}= {dl}+ {(:12 } 
i ,  

Thus an iterative process "{6}i" is defined such that the final configuration of the 

structure {F 2/~-1, at step "i-1" is the initial one (F0)i, at step 'T'. 

For each step, the nodal displacement vector {d}i verifies: 

E6.50 [B],_,- {d}r= {0 } 
It means that {d}i does not generate longitudinal deformation of elements in contact: 

E6.51 {e} .  {0} 
This is due to the fact that in Parts 1 and 2, only rigid body mechanisms appear. 

6-7.3 An example 
Let us apply the above model to the problem of a strut AB, sliding on another one 
CD that is held fixed (Figure 6.37). Node A can move only in the horizontal plane 
(x,y). At free node B, a load F is applied in the CD direction, it monitors the strut- 
strut contact. Due to the boundary condition at node A, a cinematic restriction is 
introduced: equation E 6.52 is this condition and it is added to system E 6.42; 

E 6.52 1 A -Z+ I -Z=0  
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Figure 6.40 Nodes trajectories xy view 

Examination of Figure 6.39 and Figure 6.40 leads us to conclude that sliding at 
points A and I has been correctly modelled. A sign change of the Y direction sliding 
of node A appears during the simulation, which causes the corresponding trajectory 
to curve. Of course, divergence between the real and numerical trajectories may 
occur due to the fact that the thickness and self-weight of the elements and also 
friction at points A and I have been neglected. Nevertheless the results are 
satisfactory. 

6-7.4 Another example 
The first stage in the folding of a tensegrity system does not involve any contacts, 
but the second stage requires the modelling of strut-strut contact. During the second 
stage, at every step, we must first write the equation E 6.38 for each contact and 

determine ; then we write equation E 6.42 for each contact: 

Ea.53 [a ,_,]. {a ,}-- {~}- {0 t 
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Boundary condition equations in displacement, such as E 6.52 are then applied. This 
section presents results given by the numerical simulation of the folding of the four- 
strut module in Figure 6.41. Cables 1-8 and 3-6 have been lengthened to create 
mechanisms and then allow folding. As shown in Table 6.1, nodes 3 and 4 are able 
to slide along the Y direction, and the folding is achieved on the vertical plane 
containing the three nodes 1, 2 and 8. Moreover, cable 3-4 has been removed to 
observe the relative motion of nodes 3 and 4, during the simulation. 

Table 6.1 Initial configuration of system with co-ordinates, degrees of freedom (d. o..D of 
nodes and external nodal actions 

Coordinates D. o. F. 
, . 

X Y Z X Y Z 
1 0.5 0.5 0 none 0 0 0 
2 -0.5 0.5 0 ' ~: ~: none 0 0 0 
3 - 0.5 - 0.5 0 )I 0 1 0 
4 0.5 - 0.5 0 -" y 0 I 0 

5 - 0.5 0 0.5 6 0 0 

6 0 - 0.5 0.5 ..... x,y,z 0 0 0 

7 0.5 0 0.5 x,y,z 0 0 0 
X~Z 

Figure 6.41 Applied actions on four-strut module 

From the results of the simulation, we can say that at every step of the first stage 
(without contact), nodes 3 and 4 have the same Y-direction displacement. Then a 
contact appears between strut 1-5 and 3-7 at point I (node 9 in Figure 6.43), which 
has a negative x co-ordinate. At every step of the second stage (with permanent 
contact), the Y-direction displacement of node 4 is higher than the displacement of 
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node 3. This is due to the position of I in the global reference, to the relative 
positions of struts 1-5 and 3-7, and to the fact that node 3 belongs to a strut in 
contact, contrary to node 4. Thus, node 4 reaches the folding plane before node 3. 
The simulation did not show any other contacts. 

s 8 i; 
1 -  

0.6-  0 . . . .  x 
" ~  / 9 0 . 4 :  z ~ - . -  

0.2 :  ,~ 

0 ' . 0 o 
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-0.5 0 0 . 5  

Figure 6.42 Nodal trajectories during four-strut module folding and folded configuration. 
First set 
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Figure 6 . 4 3  Nodal trajectories during four-strut module folding and folded configuration. 
Second set 

The trajectories of nodes 5, 6, 7 and 8, each present an irregularity corresponding to 
the appearance of the contact: they are the highest d.o.f nodes. The contact appears 
to occur late in the simulation, because only 15% of the total iterations numbers 
correspond to the second stage. 

Results given by the simulation are in conformity with the experimental ones. 
However, we do not have a real trajectories graphic permitting an accurate 
comparison with the numerical ones. It is worth bearing in mind that that the 
thickness and the self-weight of the elements, friction and imperfections in the 
construction of the system (element fabrication length, play in nodes etc) have all 
been neglected. 

Another folding mode, and one which is more efficient, exists and consists of 
applying three Y-direction loads at nodes 3, 4 and 6. At the end of the folding, node 
6 is indeed in the folding plane (experimental result). However, during the process, 
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two contacts appear between strut "1-5, 2-6" and strut "2-6, 3-7". It means that strut 
2-6 participates in two different contacts. W call this type of contact: related 
contact. The existing numerical model can treat several simultaneous contacts only 
if they are unrelated. 

6-8 Conclusion 
Needless to say, the work presented here is a first approach in the development of a 
numerical model for tensegrity systems folding with strut-strut contacts. 
Nevertheless, this numerical model has produced a number of interesting results 
such as particular relative motions of some nodes, trajectory irregularity due to 
contact appearance, and the existence of related contacts. 

The challenge is to continue this modelling effort by the realisation of a complete 
and rigorous numerical model taking into account the following: self-weight, 
thickness of elements, friction, related contacts and breaking of contacts. It should 
provide useful information for the technological design of nodes and the 
development of efficient foldable tensegrity systems. For this goal it is also helpful 
to build some physical models. 

Nevertheless, the future field of tensegrity systems is partly an appropriate 
combination of active control and folding process. 
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7 

Tensegrity: Latest and Future 
Developments 

7-1. Introduction 

It is now over half a century since the earliest work relating to tensegrity was carried 
out, which leads one to ask what its future might be. It appears that a number of 
current works demonstrate the feasibility of these types of structure and their 
application to the world of architecture has become a reality. For instance we have 
ourselves developed new designs of tensegrity grids, which are described with other 
projects and are in the process of being built. 

Tensegrity systems are characterised by initial states of self-stress. We described in 
Chapter 6 the foldability of tensegrities. These two features give access to the 
development of smart tensegrity structures: it is possible to monitor the level and 
distribution of self-stress in the deployed state. 

Finally, tensegrity can be considered as a specific state independently of its field of 
application. For it constitutes a model with its own properties and has thus become a 
structural principle that can be used in fields other than architecture. 

7-2. New t e n s e g r i t y  g r ids  

7-2.1. Introduction 

Since early 1998, a three year research & development project, called "Tensarch", 
was launched by our own team at the Mechanics and Civil Engineering Laboratory 
in Montpellier, France. It was sponsored by a company called Ferrari- the leading 
fabric membrane producer in France. We had to study the real possibilities of 
introducing tensegrity in architecture, as a genuine building system, and also to 
produce a basic industrial design of a tensegrity grid, of about 100 square meters, 
with a feasibility study. To sum up the key question was: 'What kind of tensegrity 
and what of its applications in architecture?' 

This project constituted the main part of the thesis of Vinicius Raducanu [Ref 7-1]. 
Several illustrations in this section are reprinted from his work. 
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7-2.2. Design considerations 

Generally previous grids were designed by agglomeration of self-stressed cells put 
together. This was true for one of our projects (Figure 7.1). 

Figure 7.1 Double layer tensegrity grid (R. Morro, 1990) 

The decomposition of this type of grid into separate compressed components has 
been described in Chapter 2 "History and Definitions". 

Figure 7.2 Double layer tensegrity grid: axonometric view 

The previous grid design methods (see [Ref 7-2][Ref 7-3][Ref 7-5]) by proliferation 
of a self-stable tensegrity unit, kept the original infinitesimal mechanism of this and 
generated a permanent lack of stiffness. These twisted prisms (general shape of a 
tensegrity simplex) are tiled upon intricate patterns with strut/middle-of-cable 
jointing solutions. In true symmetrical grid solutions, interaction balance does not 
require self-sufficient subsystems. Our first aim was to find this kind of tensegrity 
grids. 
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It seemed obvious that another design approach had to be employed. Analogy, 
geometry, topology, static, none of these points of view is able to independently 
produce genuine new layouts- whereas a synthesis does. 

7-2.3. Tensarch project 

The complete description of the Tensarch project is given in the PhD dissertation 
written by Raducanu. Some key ideas are nevertheless set out in this section. Our 
intention was to design grids by another way - rather than via the agglomeration of 
self-stressed cells. 

In order to avoid the problems that have until recently prevented the employment of 
tensegrity in architecture, we planned a specific checklist for new flat tensegrity grid 
layouts: 

�9 A single pattern for all linear components- i. e. each element's projection on 
the grid plane will be a side of one and the same regular tiling of this plane 
(simplifies the structure). 

�9 Minimal strut density over a fixed covered area (weight gain). 
�9 No mechanisms (infinitesimal nor finite) and stiffness which match building 

standards. 
�9 Simplified pre-stressing process, with about one tenth of active elements among 

the total number. 

7-23.1. Analogy 

Many scientific papers have compared tensegrity systems with a football - the 
rubber membrane acts as the continuous tensioned cable net, and the inside air as the 
struts do, the whole achieving a state of self-stress. In the ease of a tensegrity grid, 
we have put forward a new analogy, that of the spring mattress. It is composed of a 
regular array of isolated spiral springs, tied up by continuous knotted strings and 
compressed by supplemental transversal strings (the active elements in pre-stress), 
that go fight through the mattress, binding the upper and lower faces. A tensegrity 
grid may be considered as a kind of spring mattress, regarding the similar external 
behaviour and internal layout ("islands of  compression in a ocean of  tension"). 

Each of these systems is a whole made by an outer flexible surface, tensioned by 
including tandems of tensioned and compressed devices (so it does not necessary 
comprise autonomous small pa r t s -  the basic tensegrity systems). The self-stress 
may be introduced by acting only on some internal components. The external 
flexible "skin" of the tensegrity grid can be made by reticulate nets but also by 
continuous sheets. 

7-23.2. Constitutive approach 

The spring mattress analogy led us to an intuitive but overall vision of a tvnsegrity 
grid outlook (see Figure 7.3), bringing into question the nature of a tensegrity grid, 
beneath the simple way of disposing struts and cables in a self-stress state. 
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I st. The tensegrity grid is bordered by layers (see 2 na pt) and contains inside 
"expanders" (see 3 ra pt), the whole making a statically stable system, 
thanks to mutually balanced efforts. 
2 Ra. Each of those layers is a surface net (hi-dimensional entity), totally 
flexible (formed by linear, rigid-only-in-tension components) and regular 
(the elements are spread out over a projection of a regular tiling of the 
plane). The junctions of the linear elements form nodes, the only contacts 
between layer and extenders. 
3 rd. Identical subsets of struts and cables, named expanders, are distributed 
inside the grid, between the layers, joining up a node cluster of one layer to 
another node cluster of the other. In each layer, the expander spreads the 
nodes of a cluster away from one another. The same device keeps the two 
groups of nodes at a stable relative distance. 
4 th. Any node belongs to at least one expander. 

Figure 7.3 General constitution of a tensegrity grid 

We gave a shape to those concepts, layers and expanders, using geometry and 
topology. 

7-23.3. Geometric approach 

The study of regular, plane or space tiling is the first geometric tool which dictates 
global layout, as was the case for reticulate space frames, generating linear elements 
with the same plane incidences and the same lengths. With the same stress in each 
linear element, the entire flame should be in static balance, thanks to its geometric 
regularity. Consequently, we made a powerful hypothesis: assembling mutually 
balanced frames of tension and frames of compression (basic ingredients of a self- 
stress state). They are geometrically superposed on the same regular tiling. This 
should lead to a system of describing nodes stabilised by this self-stress state-  and 
the whole making a tensegrity system. Our hypothesis is of an infinite frame and, 
moreover, we will have to solve border problems as soon as we 'cut' the frame on a 
finite number of modules. Firstly, by disposing on the same tiling different tension 
or compression frames of elements, we needed another tool to avoid their 
intersection: topology. 
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7-23.4. Topological approach 

R. B. Fuller's "islands of  compression" may be an articulate flame of struts, 
avoiding any tension or bending effort. We will retrieve the fundamental tensegrity 
principle by assembling many topologically isolated islands of this kind inside a 
continuous cable net. Struts may be connected as a weaving of isolate, open paths of 
struts (Figure 7.4); as a single network of adjacent, closed circuits of struts; as 
multiple, intertwined or superposed networks of the same kind. Combined with 
geometric generations, about a dozen stable tensegrity grids were submitted for 
checking by computer. 

Figure 7.4 Weaving of compressed components 

7-23.5. Models and computer analysis 

A computing procedure (including home sot~ware "Tensdgritd 2000", see [Ref 7- 
6]), indicated self-stress states and internal mechanisms, both with complete 3D 
modelling and imagery. The fmal step of this constitution-finding process was to 
carry out five physical models of about 0.2 x 2 x 2m each. We evaluated the level of 
difficulty and "policies" of the assembling and pre-stressing process for different 
grid layouts, before choosing the large industrial prototype. 

7-23.6. A new grid configuration 

Based on the same mechanic principle (the V expander) but applied to different 
geometry, the new grids are named according to the number of distinct directions of 
strut proliferation onto the grid's plane. 

Figure 7.5 Directions of strut proliferation for bi-, tri- and quadri-directional 
tensegrity grids 
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7-236.1 The "V expander" 

One basic 'device' that generates self-stress states for many new tensegrity grids, 
including the bi-directional, is the V expander, constituted by: 

1. Two struts, each one converging to a pin jointed node, placed respectively 
on either grid's flexible layer. The expander's axis, joining this couple of 
nodes, is normal to the layer's surface. 2, 3 or 4 struts, uniformly 
distributed around the expander's axis can constitute any expander. 

2. An active cable materialising the expander's axis (if one considers a 
horizontal grid, this cable will be vertical). By reducing its length, it is 
tensioned and meanwhile it introduces a self-stress state among some 
elements of the grid, in its neighbourhood. 

3. Many layers' cables, joining respectively the converging node of one pencil 
of struts to the nodes on the free ends of the other pencil's struts. Thus, 
those cables belong to the layer and the expander simultaneously. Their 
number is equal to the number of the struts forming the expander. 

The bi-directional grid presented here is composed of a 2V expander (2 + 2 struts), 
shown in Figure 7.6. 

Different expander principles were also imagined; they are described in [Ref 7-1 ]. 

Figure 7.6 2 V expander 

7-236.2 Elementary stitches 

Another way of describing the grids is their decomposition in elementary stitches. 
This was how we named regular prismatic subsets, formed by cable edges and 
containing struts on some diagonals. These stitches have no structural stiffness in an 
isolate situation because of, on the one hand, unbalanced lateral thrusts provided by 
diagonal struts and, on the other hand, finite mechanisms. Nevertheless, assembling 
these stitches by symmetric duplication along each of the vertical faces results in 
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statically stable systems by providing appropriate border solutions (e.g. specific 
edge cables) which balances the lateral thrusts of the struts. 

Figure 7.7 Cubic elementary stitch 

Figure 7.7 shows a regular cubic stitch (that generates the bi-directional grid), but 
we may also have irregular proportions and/or bevelled forms (for example, they 
may become truncated pyramids). This flexibility allows the creation of grids 
adapted to various plan implementations and/or curved general shapes. For the sake 
of clarity however, we will retain here only the regular shape, which generates only 
fiat grids on regular plane tiling. It is interesting to point out that the elementary 
stitch is the well-known, four-strut simple tensegrity system "straightened up". 

7-236.3 The bi-directional tensegritY ~ i d  

This tensegrity grid layout is of an astonishing simplicity (see the plane view in 
Figure 7.8). We can describe this grid either by its 2V expander or by its cubic 
elementary stitch (see Figures 7.6 and 7.7), but also by frames. It is made up of 
repeating frames of struts and cables, disposed alternatively upside down and upon 
two directions. One of these frames is apart on the following Figure 7.9. The 
structure depicted here is also formed by 8 x 8 cubic stitches. So, all the layer cables 
and vertical cables have the same final stretched length. On the periphery, each 
extreme end of one strut (i.e. frame) is bound by two oblique bracing cables to the 
neighbouring strut ends, which are actually placed on the other side of the grid. 
Thus, all of those edge cables are forming a continuous zigzag pattern along the 
border of the grid, visible in the upper middle zone of Figure 7.10. This cable acts as 
a shoelace for the grid, by "bringing nearer" the borders of the two cable layers. 

This plane view may reveal the finite mechanism of each frame: a relative 
displacement of the frame along its longitudinal axis. Specific support cases or 
supplemental diagonal border cables (not shown here) preclude the activation of this 
mechanism. Diagonal bracing solutions are similar to those applied for stabilising 
orthogonal framing structural systems. 
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Figure 7.8 Plan view of the bi-directional grid; surrounded constitutive parts: 1) a 2 V 
expander, 2) an elementary cubic stitch, 3) a frame 

Figure 7.9 From top to bottom: axonometric view of the bi-directional grid; one of  the 
repetitive frames 
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Figure 7.10 Split axonometric view of the bi-directional grid; from top to bottom: the upper 
layer of cables, the bracing cables, the taffeta-woven struts, the lower layer of cables 

It should be noted that, topologically speaking, each frame contains a single 
continuous path of struts from one end to another. This subset of struts constitutes 
one of the isolate compressed components of the grid. The reason is that the way of 
crossing between any two perpendicular frames is done by creating a 2V expander at 
the intersection axis. Respecting this kind of crossover each time, the general pattern 
of strut subsets becomes a taffeta-style weaving. 
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Uniformly reducing the length of each vertical bracing cable performs the self-stress 
implementation. This reduction activates the closest expander and stiffens a local 
grid area. In this way, one acts on the minimal number of elements. 

7-236.4 prototype 

Among the new tensegrity grids, the bi-directional layout is certainly the simplest, 
both for understanding and prototyping. Therefore, a first industrial grid of this kind 
was created by the LMGC ~ for the Tensarch Project during the winter of 2000-2001. 
Covering a 82m 2 area and weighing 900kg, this steel structure was designed 
according to the Eurocode3 building standard for a 160daN/m 2 external downward 
load and peripheral supports. 

Figure 7.11 Assembled prototype of a bi-directional grid at Nimes, France, in December 
2000 

LMGC: Laboratoire de M~canique et G6nie Civil (Mechanics and Civil Engineering 
Laboratory). 
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Figure 7.12 Assembly at node 

Specific nodes were designed for this project. Two cable layers go through the 
nodes, which also receive two struts and one vertical tensioned component (Figure 
7.12). A detail of strut link with the node is also depicted in the same figure. 

All details were first tested on a so-called "mini grid" (Figure 7.13). 

Figure 7.13 "Mini grid" 

This project assessed the feasibility of simple tensegfity systems; implementation of 
self-stress was controlled on the mini grid with a precision under 3%. Other tests are 
currently being carried out on the whole grid, the rigidity of which is surprising 
(Figure 7.14). 
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Figure 7.14 Tensegrity grid in lifted position 

7-2.4. New grids 

Other grids based on the same concepts of symmetrical expanders and plane tiling 
were also imagined. A patent protects those set out here since 2001 [Ref 7-7]. The 
three main types can be compared with classical space structures according to the 
orientation of strut paths: two, three and four way grids are represented below. For 
each of them we have given a view of expander, a plane view and an axonometric 
view. 
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Figure 7.15 Two ways grid 

Figure 7.16 Three ways grid 
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Figure 7.17 Four ways grid 

It is possible for the three cases to check the definition of tensegfity that we 
submitted at the beginning of this book. For example, the following decomposition 
can be made for the four way grid. The whole system in Figure 7.18 contains a 
continuum of cables and three compressed components, each being achieved with a 
set of struts, and these three sets do not touch each other. 

Figure 7.18 Complete four ways grid 
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Figure 7.19 Continuum of tensioned components 

Figure 7.20 First compressed component 

Figure 7.21 Second compressed component 
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Figure 7.22 Third compressed component 

7-2.5. Conclusion and perspectives 

An important step was reached by conceiving these simple tensegrity grids, together 
with proper self-stress calculus and implementation. At this stage, a wide range of 
developments has opened up: conceptual, morphological, technological and, one 
hopes, architectural achievements too. 

The different understandings of tensegrity systems that occurred in the design 
process, as 'discrete pneumatic structures', enabled us to propose a general 
definition of tensegrity systems [Ref 7-4]. The by-layer composition of the grids 
enabled the concept of modular design for optimised nodes. The regular array of 
elementary stitches allows fluid passing integration in multifunctional wall 
solutions. Finally, one may consider the tensegrity grids as reliable, solid, adaptive 
and quite rigid discrete pneumatic structures. 

Several morphological developments are in the process of being studied: 

rotated 'cutting pattern' (e.g. a bi-directional grid with struts oriented at 45 ~ in 
a rectangular plan of the grid) in order to achieve more structural efficiency. 
possibility of introducing holes with the same bracing cables as the exterior 
borders of the grid, enabling access or natural lightning. 
introducing simple or double, local or general curvature, in grids with constant 
or variable thickness: a lenticular shape for a square grid, or a waveform shaped 
grid with constant thickness. For a general curvature, the actual node positions 
may be found by simply projecting the grid's tiling upon the desired layer 
surface, and then summarily check the static of each type of node (i.e. the 
correct incidence of struts inside the solid angle formed by the cables). 
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Figure 7.23 A tensegrity tube, based on a 'rolled' bi-directional grid connected on itself 

�9 irregular tiling which permits complex area coverings, as trapezoidal or 
diamond shaped. This is now an obvious development, but not so long ago, the 
strict equilibrium of tensegrity basic systems did not allow any 'deformed' 
shapes for covering 'any' polygon by assembling them in grids. 

�9 structural connection by interpenetrating two or more similar grids, in order to 
create rigid border links between them (for example with continuous strut paths 
from one side/grid to the other). 

We also have to answer other fundamental questions: what building parts will be 
able to be carried out in accordance with tensegrity principles, at a given sca le -  
centimetre, metre or decametre? What material associations and jointing solutions 
must be employed for each of these scales? Giving appropriate answers to these new 
questions will offer a wide field of application to tensegrity. 

7-3. Other projects 

Until recently very few projects with tensegrity systems have been developed. Some 
have been inspired by concepts such as cable domes, but we soon pointed out why 
they could not be considered as tensegrity systems. 

Nevertheless, in recent years many publications 2 have appeared on the subject of 
tensegfity systems: many are theoretical and contribute to the knowledge in this 
field. Since it is always difficult to know all of the realised projects in any field, I 
will only point out some of them since they appear to be indicative of current trends. 

7-3.1. Dynamic study of double layer grids 

One project has been developed by Kono et al [Ref 7-8]: It has already been 
described in a previous chapter. Its constitutive cell is given in Figure 7.24. It is a 

2 See the Bibliography. 
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modified simplex the lower triangle of which is linked to the three nodes by three 
supplementary cables: the three new nodes are common to contiguous cells and 
create an interpenetrating system. Figure 7.25 shows the realisation with an 
associate membrane, which is apparently not used as a resistant component. The 
authors carried out an interesting and dynamic study. 

Figure 7.24 Plane view and constitutive cell 

Figure 7.25 Kono's project 

7-3.2. Passera and Pedretti projects 

Another work constitutes a major step in the field of tensegdty systems. It has been 
carried out by Passera and Pedretti who worked for international Swiss Expo '02. 
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They built many models and designed a specific node. A prototype has been erected 
in Lugano, but until now it has not been loaded. Another prototype has also been 
built in Lausanne at the Polytechnic School with fewer cells; it is used for active 
control studies by I. Smith and E. Fest [Ref 7-9] and will be presented in the next 
section. The entire work completed by these engineers constitutes, to the best of my 
knowledge, one of the first "intrusions" of tensegrity in engineering. Effective 
projects will certainly follow these interesting early studies. Passera and Pedretti are 
currently constructing two projects based on their experience gained in the field of 
tensegrity. 

The first project concerns directly a so-called "Arteplage". Mauro Pedretti decided 
to call his structure $3 that corresponds to Strut-String Structures, since he was not 
convinced at this time that this structure was a tensegrity system. 

Figure 7.26 EXPO '02 Arteplage Yverdon-Les-Bains- Ch 

The second project has been designed with Diller & Scofidio (Architecture New 
York) with Passera Pedretti. 

The form of the roof of the Velodrome is an ellipse. The major and minor axes are 
90.8m and 67.1m, respectively. The upper part of the roof is a pneumatic structure 
made of two layers of fabric membrane. The pneumatic structure is supported on a 
ring of steel Strut-String Structure, which is composed of "Bi-Pyramidal 
Tensegrity Modules". The covered area of the roof is 4780m2. The unit weight of 
the roof is 34kg/m 2. 
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Figure 7.27 Centre Mondial Du Cyclisme A Aigle- Ch 

These two projects are currently under completion. 

7-3.3. Tor Vergat~ arch 

We established a close scientific collaboration with some Italian scientists who are 
also working on tensegrity. We had a first colloquium in Rome (May 2001). This 
scientific program is supported by a research partnership between several 
laboratories both in Italy and in France ("Groupement de Recherche Lagrange"). 
The Dean of Tor Vergat~t University had decided to build a tensegrity arch on the 
campus and asked Paulo Podio Guidugli to design the project. The f'trst idea for this 
arch with a clear span of about 50 m is to assemble elementary six-strut cells like the 
one called "expanded octahedron". This composition rule has already been 
experienced on a smaller scale during a workshop on tensegfity that I held at the 
special school of architecture in Paris in 1999 (Figures 7.28 and 7.29). We hope to 
carry out this project in the next few years and use it as a real physical model to 
estimate the effective actions of wind. 
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Figure 7.28 Tensegrity arch: side view 

Figure 7.29 Tensegrity arch: front view 
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7-3.4. Smart structures 

7-34.1. Basic ideas 

E. Freyssinet explicitly introduced pre-stress at the beginning of the twentieth 
century (his patent goes fight back to 1928). This famous engineer applied pre-stress 
mainly for concrete structures. Some years later, engineers began to think about pre- 
stressing other materials. Bernard Laffaille was one of the pioneers in the field, 
together with Zagreb Rotunda (1937). Frei Otto developed the entire architectural 
vocabulary on pre-stressed cable nets and membranes and was in his early years in 
contact with Laffaille. With tensegrity systems a new step can be reached: using 
captors and actuators, it is now possible not only to have a pre- or self-stressed 
system, but also to modify the level and the distribution of this prescribed state of 
stress. This modification may help to adapt the system to its environment and to 
satisfy some criteria. This is known as active control and was illustrated in the 
chapter devoted to models. 

7-34.2. Active control 

Under the active impulsion of Mauro Pedretti and Professor Leopold Pflug, studies 
on active control have been undertaken at the "Ecole Polytechnique F6d6rale de 
Lausanne" (Switzerland). The configuration of assembly of three cells (Figures 7.30 
and 7.31) is identical to the one previously developed in Lugano by Passera & 
Pedretti. The node has been modified (Figure 7.32). 

Figure 7.30 Assembly of three cells- general view 
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Figure 7.31 Assembly of three cells 

Figure 7.32 Central node 

Currently this project is being carded out by Etienne Fest with lan Smith as 
supervisor. 
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7-34.3. Structures of the future 

During the seminar in Tor Vergat/l, Sergio Pellegrino described a radar project. In 
this project several characteristics of tensegrity systems are used: cable net 
membrane and struts are associated in a complex foldable system. This is an 
example of the possible applications of tensegrity in the field of the conquest of 
space. 

The basic model is a hexagonal tensegrity prism. One of the layers is realised with a 
cable net, the other with a flexible membrane. 

Figure 7.33 Radar's model: view oJ'the cable net 

Figure 7.34 Radar's model: view of  the membrane 
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The cable net and the membrane are linked with ties instrumented by small springs. 
The whole process of design has been published by G. Tibert [Ref 7-10]. 

7-4. Tensegrity as a structural principle 

7-4.1. Introduction 

As we come towards the end of this work on tensegfity, it appears that even if 
tensegrity systems have not yet been used in the field of architecture or building, the 
years to come will certainly be characterised by a major development in this regard. 
Furthermore, it is perhaps possible to extend the concept of tensegrity to other fields 
by analogy as Donald Ingber has already demonstrated in the field of biology. 

I had the opportunity of participating in a seminar at the "College de Philosophic" in 
Pads. Tensegdty was the theme of the seminar. Donald Ingber and Patrizia 
d'Alessio spoke about tensegrity and biology and showed the components of the 
cytoskeleton (Figure 7.35) and also the progression of the cell (Figure 7.36) with 
adhesion description. They established the analogy with tensegrity and put emphasis 
on the form modification of cells from their beginning to their end. 

Figure 7.35 Components of cytoskeleton 
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Figure 7.36 Progression of the cell 

Simultaneously Luc Brisson, who is an eminent Hellenist, described the analogy set 
by Plato in Tim6e between the elements and the five regular polyhedra. It is well- 
known that the four elements that constitute the world according to Plato's 
cosmogony are symbolised by the tetrahedron (fire), the cube (earth), the octahedron 
(air) and the icosahedron (water). Plato claimed that four of them are included in the 
fifth one. I provided the geometric proof of this insertion in the so-called "ether" 
symbolised by the fifth platonician polyhedron, the dodecahedron [Ref 7-11] (see 
Figure 7.37). 

Figure 7.37 Geometric insertion of the four elements in the "ether" symbolised by 
dodecahedron 
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Closing the session Jean Dhombrcs enlightened the major role of geometric models. 
All these elements were very fruitful so far as tensegfity could be considered as a 
structural principle. 

7-4.2. Coupling the visible and the invisible 

A simple analogy cannot be considered superficially. The example of the arch is 
interesting. Let us consider a classical arch, and let us allow Marco Polo to say a few 
words: 
Marco Polo describes a bridge stone by stone 
But which is the stone which supports the bridge? Asks Kublai Khan. 
The bridge is not supported by one or another stone, replies Marco Polo, but by the 
arch line that they constitute together. 
Kublai Kahn remains silent. He is thinking. Then he adds: 
Why do you speak me about stones? It is only the arch, which interests me. 
Polo replies 
Because. without stones, there is no arch. 

Figure 7.38 Arch at the entry of Olympia Stadium 

With these words Marco Polo was describing a coupling between forms and forces, 
between the visible and the invisible. But we have to keep in mind that this coupling 
between forms and forces also depends on materials and structure (this last word 
being taken in its relational meaning). One more time between the visible and the 
invisible. We have to take care of the limits of this process of analogy. It appears, 
for example, that it can be operated between the stone arch in Figure 7.38 and the 
slate arch in Figure 7.39. 
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Figure 7.39 Slate arch (Andy Goldworthy) 

But, from a mechanical point of view, it is difficult to extend the analogy to a glass 
arch (Figure 7.40), since the freezing water acts to agglomerate the different pieces 
and transforms the system into a continuous system. 

Figure 7.40 Glass arch (An@ Goldworthy) 

7-4.3. Tensegrity as a structural principle 

Even if caution is advised, it seems that a state of tensegfity can be considered as a 
structural principle which can be materialised or not. It corresponds to a specific 
field of forces, in a stable equilibrium, with a very specific distribution of the 
components which are always inside a continuum of tensiom ("islands of 
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compression in an ocean of tensions"). These forces are either compression or 
traction, and they can be associated with repulsion and attraction respectively. This 
enables the transposition of tensegrity to fields other than material ones. 

7-5. Conclusion 

As a conclusion I will take a quotation from Heraclites who claimed that the 
"Universe is an harmony  of tensions" and described the Polemos principle as 
follows: 

"The supreme principle brings together conflicting opposites. I t  adapts the ones with 
the others in a balance, which is incessantly threatened by a dislocation risk. This 
law is valid in all fields at every level. 
.... the same law of  conflicting opposites adjustment, also called under the divine 
name of  Harmonia". 
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Appendices 

A: Representation of nodes and actions 

Reticulated system nodes are assimilated to material points that are represented by 
circles. These points are either free to be distributed in the space, either partially or 
totally fixed. Corresponding representations are illustrated in Figure A.1. First one is 
totally free, second free along X and Y directions, third totally fixed. 

Figure A.I Convention for node representation 

Nodes are submitted to actions exerted by elements (Figure A.2) that are: 
- either forces taking them for final end (centripetal), which are represented by 
black arrows; these forces are exerted by elements in a state of compression, 
which "push" the node. 
- or forces taking the node for origin (centrifugal), which are represented by 
white arrows; these forces are exerted by elements in a state of tension, which 
"pull" the node. 
- or external actions if any, which are represented by shadowed arrows. 
The same convention is used for other solids. 
Nodes are in equilibrium under the action of the totality of forces applied on 
them. Equilibrium of a system is equivalent to equilibrium of the totality of its 
nodes I. 

! This equilibrium can be studied algebraically or graphically with the help of dynamics of forces. 
The graphic method is well adapted to plan problems and to these that can be associated to them. 
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Figure A.2 Actions exerted by elements on nodes 

B: Tension and compression 

If one notes dij the effective distance between two nodes 'T'  and "j" in the system the 

element b of manufacture let ~th lij will be 2 

"tensioned" if 

E A-1 lij < dij 

"compressed" if 
E A-2 lij > dij 

no stressed if 
E A-3 lij = dij 

Figure A.3 Tension-compression 

2 These distances and these lengths are evaluated by assuming that nodes are points on which 
punctual extremities of elements are supcrposcd. This hypothesis allows to forget real dimensions 
of the nodes. 
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C: Sneison's correspondence 

Letter from Kenneth Snelson to Ren6 Motro, published in November 1990, in 
International Journal of Space Structures: 

R. Morro 
International Journal of Space Structures 
Space Structures Research Centre 
Department of Civil Engineering 
University of Surrey, Guildford 
Surrey GU2 5XH 

Dear Mr. Motro: 

I regret it has taken me so long to respond to your letter about the special issue of Space 
Structure dedicated to tensegrity. 

As you probably know, I am not an engineer but an artist so I don't really feel qualified 
to write for an engineering journal. Nonetheless I know something about this particular 
form of structure from making so many sculptures over the years which use the principle 
which I prefer to call floating compression. 

I have long been troubled that most people who have heard of"tensegrity" have been led 
to believe that the structure was a Bucky Fuller invention, which it was not. Of course, 
we are now in the year 1990 and not 1948 so all of this fades into the dim footnotes of 
history. There is a line somewhere in a theater piece which goes, "But that was long ago 
in another land-- and besides, the wench is dead." 

Whenever an inventor defends his authorship the issue invariably turns out to be 
important only to the author himself, to others it is trivia. Maybe you're acquainted with 
the tale of Buckminster Fuller and me, but I'd like, somehow, to set the record straight, 
especially because Mr. Fuller, during his long and impressive career, was strong on 
publicity and, for his own purposes, successfully led the public to believe tensegrity was 
his discovery. He spoke and wrote about it in such a way as to confuse the issue even 
though he never, in so many words, claimed to have been its inventor. He talked about it 
publicly as "my tensegrity" as he also spoke of "my octet truss". But since he rarely 
accredited anyone else for anything, none of this is all that surprising. What Bucky did, 
however, was to coin the word tensegfity as he did octet truss and geodesic dome, 
dymaxion, etc., a powerful strategy for appropriating an idea. If it's his name, isn't it his 
idea? 
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As many new ideas do, the "tensegrity" discovery resulted in a way from play; in this 
case, play aimed at making mobile sculptures. A second-year art student at the 
University of Oregon in 1948, I took a summer off to attend a session in North Carolina 
at Black Mountain College because I had been excited by what I had read about the 
Bauhaus. The attraction at Black Mountain was the Bauhaus master himself, the painter 
Josef Albers who had taught at the German school and immigrated to the U.S. in 1933 to 
join the faculty of that tiny liberal arts college (fifty students that summer) in the Blue 
Mountains of North Carolina, fifteen miles from Asheville. 

Buckminster Fuller, unknown to most of us in those early days, turned up two weeks 
into the session, a substitute for a professor of architecture who canceled a week before 
the summer began. Josef Albers asked me to assist the new faculty member in 
assembling his assortment of geometric models for his evening lecture to the college. 
There was no such thing as a tensegrity or discontinuous compression structure in his 
collection, only an early, great circle, version of his geodesic dome. Albers picked me to 
help because I had shown special ability in his three-dimensional design class. 

During his lecture that evening Professor Fuller mesmerized us all with his ranging 
futurist ideas. As the summer quickly went by with most of the small school monitoring 
Fuller's classes I began to think I should try something three-dimensional rather than 
painting. Albers counseled me that I demonstrated talent for sculpture. But, more 
importantly, I had already become the first in a trail of students from colleges and 
universities who, over the years, were to become electrified "Fullerites". He had that 
cult-master's kind of charisma. I blush for it now, but it was true. We were young and 
looking for great issues and he claimed to encompass them all. 

At the end of the summer session, I returned home to Pendleton, Oregon. In my 
Fullerian trance the descent into the real world was greatly confusing. I spent the autumn 
at home, making my parents miserable by moping and spending hours in the basement, 
building things; small mobile sculptures mostly, using thread, wire, clay, metal from tin 
cans, cardboard, etc. I had learned much about geometry from Fuller as well as art and 
design from the Bauhaus. While Albers' teachings were imparted as useable ideas in 
public-domain, Bucky's lessons were laden somehow with the sense that the ideas were 
proprietary--"his" geometry. I believed, literally, because he claimed so, that before 
Buckminster Fuller came along, no human had ever noticed, for example, that to inscribe 
the diagonals of the square faces of a cube was to define two interlocking tetrahedra 
within. Students joked that, at~er all, hadn't Bucky invented the triangle? None of us 
knew, for example, of Alexander Graham Bell's early space frames, nor anything at all 
about crystallography. 

In the autumn of 1948, as I said, I made numbers of small studies. Were they structures 
or sculptures? They incorporated the attitudes of both Fuller and Albers. The three small 
works which are of interest here were concerned both with balance of successive 
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modular elements hinged one-to-another and stacked vertically as seen in photo # 1; and, 
later, suspended one-to-the-next by means of thread-slings as shown in photograph #2. 
They were, of course, but amplifications of the familiar balancing toys seen often in 
novelty shops. My small discoveries in these two pieces were logical enough, though 
one could imagine that they might just as well lead to something other than to the first 
tensegrity structure; perhaps to variations on Calder mobiles. 

It was the effort to make the pieces move which resulted in their spinal-column, 
modular, property. If I pushed on them lightly or blew on them, they swayed gently in a 
snake-like fashion. In photo #2 One can see module-to-module sling tension members 
replacing the wire hinges connecting the modules shown in photo # 1. I thought of these 
threads as adding a note of mystery, causing the connections to be more or less invisible, 
at least as invisible as marionette strings; an Indian rope trick. 

One step leading to the next, I saw that I could make the structure even more mysterious 
by tying off the movement altogether, replacing the clay weights with additional tension 
lines to stabilize the modules one to another, which I did, making "X", kite-like modules 
out of plywood. Thus, while forfeiting mobility, I managed to gain something even more 
exotic, solid elements fixed in space, one-to-another, held together only by tension 
members. I was quite amazed at what I had done. Photo #3 

Still confused about my purposes and direction in school, I enrolled for engineering that 
winter ('48-'49) at Oregon State College. The classes depressed me even further. I hated 
it and did very poorly. I corresponded with Bucky and I told about my dilemma and also 
sent photos of the sequence of small sculptures. He must have understood from the letter 
how confused and depressed I was at school for he suggested I return for another Black 
Mountain Summer Session. 

When we got together again in June I brought with me the plywood X-Piece (#3). When 
I showed him the sculpture, it was clear from his reaction that he hadn't understood it 
from the photos I had sent. He was quite struck with it, holding it in his hands, turning it 
over, studying it for a very long moment. He then asked if I might allow him to keep it. 
It hadn't been my intention to part with it, but I gave it to him, partly because I felt 
relieved that he wasn't angry that I had employed geometry (Buckminster Fuller's 
geometry) in making art. That original small sculpture disappeared from his apartment, 
so he told me at the end of the summer. 

Next day he said he had given a lot of thought to my "X-column" structure and had 
determined that the configuration was wrong. Rather than the X-module for compression 
members, they should be shaped like the central angles of a tetrahedron, that is like 
spokes radiating from the gravitational center, to the vertices of a tetrahedron. Of course 
the irony was that I had already used that tetrahedral form in my moving sculpture #2, 
and rejected it in favor of the kite-like X modules because they permitted growth along 



224 Tensegrity 

all three axes, a true space-filling system, rather than only along a single linear axis. 
Those were not yet the years when students easily contradicted their elders, let alone 
their professors. 

Next day I went into town and purchased metal telescoping curtain rods in order to build 
the "correct" structure for Bucky. I felt a little wistful but not at all suspicious of his 
motive as he had his picture taken, triumphantly holding the new structure I had built. 

The rest of the story is one of numerous photographs and statements in print, grand 
claims in magazine articles and public presentations. In Time magazine he declared that, 
with "his" tensegrity, he could now span the Grand Canyon. He also described it as a 
structure which grows stronger the taller you build it - whatever that may have meant. 

The absorption process began early, even though Bucky penned the following in a letter 
to me dated December 22, 1949: 

"In all my public lectures I tell of your original demonstration of 
discontinuous - pressure - (com-pressure)and continuous tension 
structural advantage; - in which right makes light in a prototype 
structure, the ready reproduction of which, properly incorporated 
in fundamental structures, may advance the spontaneous good will 
and understanding of mankind by many centuries. The event was 
one of those 'I t  happened' events, but demonstrates how the 
important events happen where the atmosphere is most favorable. 
If you had demonstrated this structure to an art  audience it would 
not have rung the bell that it rang in me, who had been seeking 
this structure in Energetic Geometry. That you were excited by 
the latter, E.G., into spontaneous articulation of the solution, also 
demonstrates the importance of good faith of colleagues of this 
frontier. The name of Ken Snelson [his underline] will come to be 
known as a true pioneer of the realized good life and good will." 

Bucky's warm and uplifting letter arrived about six months after I first showed him my 
small sculpture. In that it was dated three days before Christmas, I suppose he was in a 
festive, generous, mood. A year later, January 1951 he published a picture of the 
structure in Architectural Forum magazine and, surprisingly, I was not mentioned. When 
I posed the question some years later why he accredited me, as he said, in his public 
lectures and never in print, he replied, "Ken, old man, you can afford to remain 
anonymous for a while." 

Finally, in 1959 1 learned that Fuller was to have a show at the Museum of Modem Art 
in New York and included in it was to be a thirty-feet high tensegrity "mast". Calling it a 
mast seemed especially obtuse, but he regarded himself as a man of the sea. With some 



Appendices 225 

persistence and with the lucky aid of Bucky's assistant I was able to get word to Arthur 
Drexler, curator at the Museum, about my part in tensegrity. This forced Bucky's hand. 
At last, my credit for tensegrity found its way into the public record. 

One of the ironies of this not-too-unusual tale in the history of teacher-student 
relationships, is that by Bueky's transposing my original "X" module into the eentral- 
angles-of-the-tetrahedron shape to rationalize calling it his own, he managed 
successfully to put under wraps my original form, the highly adaptable X form. He could 
not have lived with himself with the blatant theft of my original system, of course, and 
besides, he had denounced it as the "wrong" form. As a result, none of the many 
students in schools where he lectured ever got to see it. In those years, any number of 
students labored to constructed their own "masts", but all were built using the tetrahedral 
form. That moment of recognition at the Museum of Modem Art in November 1959, 
transitory as it was, was quite fortifying and enabled me to once again pick up my 
absorbing interest in this kind of structure with the feeling that now I was free and on my 
own. Especially I picked up where I had left off with the neglected X-module which was 
left unnoticed for an entire decade. I no longer felt anonymous. 

As I said earlier, this is but a footnote to a storm in a teapot. I have continued to make 
sculptures which now stand in public sites in many places. Sorry there are none in 
England or France. The ghost of Bucky Fuller continues to muddy the water in regard to 
"tensegrity". I tell myself o~en that, since I know where the ideas came from, that ought 
to be enough. 

As I see it, this type of structure, at least in its purest form is not likely to prove highly 
efficient or utilitarian. As the engineer Mario Salvadori put it to me many years ago, 
"The moment you tell me that the compression members reside interior of the tension 
system, I can tell you I can build a better beam than you can." He was speaking 
metaphorically about this type of structure in general, of course. Over the years I've seen 
numbers of fanciful plans proposed by architects which have yet to convince me there is 
any advantage to using tensegrity over other methods of design. Usually the philosophy 
is akin to turning an antique coffee-grinder into the base for a lamp: it's there, so why 
not find a way to put it to some use. No, I see the richness of the floating compression 
principle to lie in the way I've used it from the beginning, for no other purpose than to 
unveil the exquisite beauty of structure itself. Consciously or unconsciously we respond 
to the many aspects of order in nature. For me, these studies in forces are a rich source 
for an art which celebrates the aesthetic of structure, of physical forces at work; force- 
diagrams in three-dimensional space, as I describe them. 

Whether or not you are able to use this narrative about the beginnings of tensegrity, I 
wish you the very best with your special issue on the subject. 

Sincerely, Kenneth Snelson 



226 Tensegrity 

Photo #1 (Snelson, 1948) 
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Photo #2 (Snelson, 1948) 
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Photo #3 (Snelson, 1948) 
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