УДК 621.564

Синтетические холодильные агенты, регулируемые Киотским протоколом

Д-р техн. наук Цветков О.Б. max_iar@gunipt.spb.ru
Д-р техн. наук Бараненко А.В., канд. техн. наук Лаптев Ю.А.
Университет ИТМО
191002, Россия, Санкт-Петербург, ул. Ломоносова, 9
Д-р техн. наук Сапожников С.З. serg.sapozhnikov@mail.ru
НИУ СПбГПУ Петра Великого
Д-р техн. наук Федоров А.В. fedorov@vniig.org
ВНИИ жиров РАН
Канд. техн. наук Кушнеров А.В. arthem@mail.ru
Центр сотрудничества с ЮНИДО в РФ

В статье рассмотрены рабочие вещества низкотемпературной техники в контексте их неблагоприятного воздействия на окружающую среду. В центре внимания гидрофторуглероды (ГФУ), ставшие альтернативой хлорфторуглеродам (ХФУ) и хладагентам гидрохлорфторуглеродного сегмента (ГХФУ). Рассматриваемые группы хладагентов вошли в списки веществ, производство и потребление которых регулируется на международном уровне Монреальским и Киотским протоколами. Претензии к галогенопроизводным хладагентам связаны с их воздействием на озоновый слой Земли и на глобальное потепление. Рассмотрены показатели к применяемым хладагентам, касающиеся негорючести, времени существования в атмосфере Земли, воздействию на озоновый слой и парниковый эффект.

Ключевые слова: холодильные агенты, Монреальский протокол, Киотский протокол, парниковый эффект.

Kyoto Protocol and environmentally acceptable Synthetic halocarbon refrigerants

D.Sc. **Tsvetkov O.B.** max_iar@gunipt .spb.ru D.Sc. **Baranenko A.V.**, Ph.D. **Laptev Yu.A.**

ITMO University

191002, Russia, St. Petersburg, Lomonosov St., 9

D.Sc. **Sapozhnikov S.Z.** serg .sapozhnikov@mail.ru SPBGPU Peter the Great's NIU

D.Sc. **Fedorov** A.V. fedorov@vniig.org

All-union scientific research institute of fats of the Russian Academy of Sciences

Ph.D. **Kushnerov A.B.** arthem@mail.ru

The center of cooperation with YuNIDO in the Russian Federation

The paper deals with the expected impact of the safety and environmental issues concerning the use hydrofluorocarbons (HFCs) and presents a status report on alternative compounds under development. A brief overview is provided of the key market segments and end uses of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). As a result of scientific studies an international agreements has been reached called the Montreal and Kyoto Protocols. The protocols call for the regulation of consumption of CFCs and HCFCs that depleted the ozone layer and HFCs refrigerants that are responsible for predicted global warming trend. To be acceptable as a modern refrigerant a fluid must satisfy a variety of criteria, in-

dicated in this paper, as examples the requirements of a nonflammable refrigerant, the atmospheric lifetimes, ozon depletion and greenhouse effect potentials.

Keywords: refrigerants, Kyoto Protocol, Montreal protocol, greenhouse effect

В июне 1992 года в Рио-де-Жанейро по инициативе ООН состоялся Саммит глав государств и правительств, основным вопросом которого стало обсуждение климатических изменений, происходящих на планете, прежде всего, связанных с воздействием парниковых газов на климат Земли. В декабре 1997 года принят Киотский протокол, зафиксировавший список парниковых газов –ответственных за изменение климата Земли: диоксид углерода, метан, закись азота, синтетические хладагенты и шестифтористая сера. Появилось понятие потенциала глобального потепления (ПГП). За единицу ПГП принят потенциал диоксида углерода [1–10].

Гидрофторуглероды (ГФУ) – озонобезопасны, однако их высокие потенциалы глобального потепления вызывают беспокойство, поскольку прямые выбросы ГФУ могут воздействовать на климат. Гидрофторуглероды попадают под юрисдикцию Киотского протокола, а теперь и расширенные версии Монреальского протокола, в связи с чем ряд стран, особенно страны Европейского союза, осуществляют меры по регулированию фторсодержащих газов (F-газы), включая хладагент R134a, смеси с ГФУ, такие как R407C, R410A, R404A и др. (табл. 1) [11–15].

В связи с принятием графика изъятия гидрофторхлоруглеродов и проблемами воздействия ГФУ на климат в настоящее время осуществляется разработка новых озонобезопасных хладагентов с низким потенциалов глобального потепления [16-21].

Таблица 1

Статус хладагентов

Хладагент	Статус
ГХФУ	Принимаются меры по сокращению потребления согласно
ΙΑΨΥ	Монреальскому протоколу
Cycon FV DV	Принимаются меры по сокращению потребления согласно
Смеси ГХФУ	Монреальскому протоколу
Интирительный ГФУ	Выбросы контролируются согласно Киотскому протоколу
Индивидуальные ГФУ	и Североамериканской поправкой к Монреальскому протоколу
Смеси ГФУ	Выбросы контролируются согласно Киотскому протоколу
Имети из утпереженования	Применяются в соответствии с местными и национальными
Чистые углеводороды	нормативами безопасного использования
Creary	Применяются в соответствии с местными и национальными
Смеси углеводородов	нормативами безопасного использования
Пичи с имене и и и и и и и и и и и и и и и и и и	Применяются в соответствии с местными и национальными
Природные хладагенты	нормативами безопасного использования

Также важна разработка неогнеопасных хладагентов с низким потенциалом глобального потепления и низкой токсичностью, хотя не ясно, когда они будут доступны и окажутся ли, в конечном счете, коммерчески оправданными. Диоксид углерода рассматривается как альтернативный хладагент. Важно другое – решить, при каких обстоятельствах этот хладагент будет использоваться в большем масштабе, так как системы с CO₂ основываются на конструктивных решениях, компонентной базе и требованиях к обслуживанию, которые существенно отличаются от систем, работающих на других хладагентах [22–24].

В табл. 2 приведены некоторые возможные направления использования альтернативных хладагентов в новом оборудовании. Переходные хладагенты прямого замещения $\Gamma\Phi Y$ -417A, $\Gamma\Phi Y$ -422A и $\Gamma\Phi Y$ -422D не рассматривались, так как предназначаются для действующего оборудования [25-27]. Углеводороды пока редко используются в торговом секторе, однако широко применяются в бытовых холодильниках, сократив потребление озоноразрушающих веществ приблизительно на 12 % в этом секторе. В Китае более 85 % внутреннего производства домашних холодильников основано на хладагенте R600a.

Таблица 2 Возможные направления применения альтернативных хладагентов для использования в новом оборудовании (ориентировочные рекомендации)*

	Хладагенты							
Оборудование	R134a	R404A R507A	R407C	R410A	R290	Аммиак	CO ₂	
Торговое автономное оборудование	+	+	0	0	+	_	0	
Торговые холодильные агрегаты	+	+	0	0	_	_	_	
Торговые централизованные системы	+	+	0	0		0	_	
Торговое оборудование глубокого замораживания с одним контуром	_	+	_	0	_	_	_	
Торговые системы глубокого замораживания двухконтурные (супермаркеты)	_	+	_	0	-	_	0	
Комнатные кондиционеры	0	-	+	+	+	_	_	
Бесканальные сплит-системы	0	-	+	+	0	_	_	
Канальные сплит-системы центра- лизованного кондиционирования	0	_	+	+	0	_	_	
Корпусные воздух-воздух и торговые сплит-системы	_	_	+	+	_	_	_	
Малые чиллеры (спиральные)	_	_	+	+	0	_	_	
Большие чиллеры (винтовые)	+	_	0	+	_	+	_	

Примечание:

В табл. 3–7 приведены экологические характеристики хладагентов, в большинстве своем прошедших международную классификацию, но в ряде случаев ее не получившие, но известные в низкотемпературной технике. В таблицах указаны типы хладагентов (ХФУ, ГХФУ, ГФУ, природные), их обозначение, химическая формула или состав смеси, время жизни в атмосфере (годы), потенциалы разрушения озонового слоя (ОРП) и глобального потепления (ПГП), группа безопасности, статус по международным соглашениям (М – Монреальский протокол, К – Киотский протокол) [28, 29].

^{+ –} приемлемы с точки зрения технической перспективы или предпочтительны для широкого использования;

⁰ — не очень приемлемы с точки зрения технической перспективы, но могут использоваться, если не принимать во внимание определенные недостатки;

⁻ — почти невозможно использовать или можно использовать только с существенными экономическими и техническими ограничениями.

^{*}Источник: Пересмотренный анализ основных категорий затрат по сокращению потребления $X\Phi V$ (решение 53/37 (I) и 54/40) UNEP/OzL.Pro/ExCom/55/47.

Таблица 3 **ХФУ**–хладагенты (выведенные из употребления/регулируемые Монреальским протоколом)

ХФУ	Химическая формула/ общепринятое название	Время жизни в атмосфере, годы	ОРП	ПГП (100 лет)	Группа безопасности	Статус
R11	CCl ₃ F	52	1	5160	A1	M
R113	CCl ₂ F-CClF ₂	93	0,81	6080	A1	M
R114	CClF ₂ -CClF ₂	189	0,5	7710	A1	M
R115	CClF ₂ -CF ₃	540	0,26	5780	A1	M
R12	CCl ₂ F ₂	102	0,73	10800	A1	M
R13	CC1F ₃	640	1	10900	A1	M
R400	R12/R114 (50,0/50,0)	_	1	10000	A1	M
R500	R12/R152a (73,8/26,2)	_	0,5	1700	A1	M
R502	R22/R115 (48,8/51,2)	_	0,1	5600	A1	M
R503	R23/R13 (40,1/499)	_	0,6	11000	_	M

Таблица 4

Однокомпонентные ГХФУ-хладагенты (сокращаемые/регулируемые Монреальским протоколом)

ГХФУ	Химическая формула/ общепринятое название	Время жизни в атмосфере, годы	ОРП	ПГП (100 лет)	Группа безопасности	Статус
R123	CHCl ₂ -CF ₃	1,3	0,01	79	B1	M
R124	CHClF-CF ₃	5,9	0,02	527	A1	M
R142b	CH ₃ -CClF ₂	17,9	0,07	2310	A2	M
R21	CHClF ₂	_	0,05	1850	A1	M
R141b	CH ₃ -CCl ₂ F	_	0,11	630	A2	M

Таблица 5

Однокомпонентные ГФУ-хладагенты (регулируемые Киотским протоколом)

	Химическая формула/	Время жизни	ОРП	ПГП	Группа	Статус
	общепринятое название	в атмосфере,		(100 лет)	безопасности	
ГФУ	-	годы				
R125	CHF ₂ -CF ₃	31	0	3450	A1	K
R134a	CHF-CF ₃	14	0	1360	A1	K
R143a	CH ₃ -CF ₃	51	0	5080	A2L	K
R152a	CH ₃ -CHF ₂	1,6	0	124	A2	K
R161	CH ₃ -CH ₂ F	0,21	0	12	_	K
R227ea	CF ₃ -CHF-CF ₃	42	0	3220	A1	K
R23	CHF ₃	270	0	14760	A1	K
R236ea	CHF ₂ -CHF-CF ₃	10,7	0	1370	_	K
R236fa	CF ₃ -CH ₂ -CF ₃	240	0	9810	A1	K
R245fa	CHF ₂ -CH ₂ -CF ₃	7,6	0	1030	B1	K
R32	CH_2F_2	4,9	0	674	A2	K
R1234yf	CF ₃ -CF=CH ₂	_	0	4	A2L*	_
	тетрафторпентан					
RE347mcc	C ₃ F ₇ -O-CH ₃	_	0	575	A2	K

*необходимо подтвердить

Таблица 6

Многокомпонентные смеси ГХФУ-хладагентов (регулируемые Монреальским протоколом)

Смеси ГХФУ	Химическая формула/ общепринятое название	Время жизни в атмосфере, годы	ОРП	ПГП (100 лет)	Группа безопасности	Статус
R401A	R22/R152a/R124 (53,0/13,0/34,0)	_	0,02	1100	A1	M
R401B	R22/R152a/R124 (61,0/11,0/28,0)	_	0,03	1200	A1	M
R401C	R22/R152a/R124 (33,0/15,0/52,0)	_	0.02	880	A1	M
R402A	R125/R290/R22 (60,0/2,0/38,0)	_	0,01	2700	A1	M
R402B	R125/R290/R22 (38,0/2,0/60,0)	_	0,02	2400	A1	M
R403A	R290/R22/R218 (5,0/75,0/20,0)	_	0,03	3100	A2	M
R403B	R290/R22/R218 (5,0/56,0/39,0)	_	0,022	4500	A1	M
R405A	R22/R152a/142b/ RC318 (45,0/7,0/5,5/42,5)	-	0,026	1370	A2	M
R406A	R22/R600a/R142b (55,0/4,0/41,0)	-	0,04	1800	A2	M
R408A	R125/R143a/R22 (7,0/46,0/47,0)	_	0,02	3400	A1	M
R409A	R22/R124/R142b (60,0/25,0/15,0)	_	0,03	1500	A1	M
R409B	R22/R124/R142b (65,0/25,0/10,0)	_	0,03	1500	A1	M
R411A	R1270/R22/R152a (1,5/85,5/11,0)	_	0,03	1600	A2	M
R411B	R1270/R22/R152a (3,0/94,0/3,0)	_	0,03	1700	A2	M
R412B	R22/R218/R142b (70,0/5,0/25,0)	_	0,053	2300	A2	M
R414A	R22/R124/R600/ R142b (51,0/28,5/4,0/16,5)	_	0,03	1400	A1	M
R414B	R22/R124/R600/ R142b (50,0/39,0/1,5/9,5)	_	0,03	1300	A1	M
R415A	R22/R152a (82,0/18,0)	_	0,03	1500	A2	M
R415B	R22/R152a (25,0/75,0)	_	0,009	560	A2	M
R416A	R134a/R124/R600 (59,0/39,5/1,5)	_	0,008	1000	A1	M
R418A	R290/R22/R152a (1,5/96,0/2,5)	_	0,03	1700	A2	M
R420A	R134a/R142b (88,0/12,0)	_	0,007	1400	A1	M
R509A	R22/R218 (44,0/56,0)	_	0,01	5800	A1	M
C10M1	R21/R22/R142b (5,0/65,0/30,0)	_	0,05	1500	A2	M
C10M2	R21/R22/R134a (15,0/65,0/20,0)	_	0,04	1500	A1	M

Таблица 7

Многокомпонентные смеси ГФУ-хладагентов (выбросы компонентов, регулируемые Киотским протоколом)

Смеси ГФУ	Химическая формула/ общепринятое название	Время жизни в атмосфере, годы	ОРП	ПГП (100 лет)	Группа безопасности	Статус
R404A	R125/R143a/R134a	— Тоды —	0	4200	A1	K
	(44,0/52,0/4,0)					
R407A	R32/R125/R134a	_	0	2100	A1	K
	(20,0/40,0/40,0)					
R407B	R32/R125/R134a	_	0	2800	A1	K
	(10,0/70,0/20,0)					
R407C	R32/R125/R134a	_	0	1700	A1	K
	(23,0/25,0/52,0)					
R407D	R32/R125/R134a	_	0	1600	A1	K
	(15,0/15,0/70,0)					
R407E	R32/R125/R134a	_	0	1500	A1	K
	(25,0/15,0/60,0)					
R410A	R32/R125	_	0	2100	A1	K
	(50,0/50,0)					
R413A	R218/R134a/R600a	_	0	2000	A2	K
	(9,0/88,0/3,0)					
R417A	R125/R134a/R600	_	0	2300	A1	K
	(46,6/50,0/3,4)					
R419A	R125/R134a/RE170	_	0	2900	A2	K
	(77,0/19,0/4,0)					
R421A	R125/R134a	_	0	2600	A1	K
	(58,0/42,0)					
R421B	R125/R134a	_	0	3100	A1	K
	(85,0/15,0)					
R422A	R125/R134a/R600a	_	0	3100	A1	K
D 122D	(85,1/11,5/3,4)		0	2500		**
R422B	R125/R134a/R600a	_	0	2500	A1	K
D 422 C	(55,0/42,0/3,0)		0	2000	4.1	T.
R422C	R125/R134a/R600a	_	0	3000	A1	K
D 422D	(82,0/15,0/3,0)			2700	A 1	17
R422D	R125/R134a/R600a	_	0	2700	A1	K
D 422 A	(65,1/31,5/3,4)		0	2200	A 1	I/
R423A	R134a/R227ea	_	0	2200	A1	K
R424A	(52,5/47,5) R125/R134a/600a/		0	2400	A1	K
N424A	R125/R134a/600a/ R600/R601a	_	U	2400	A1	N.
	(50,5/47,0/0,9/1,0/1,6)					
R425A	R32/R134a/R227ea	_	0	1500	A1	K
N423A	(18,5/69,5/12,0)	_	U	1500	AI	I N
R426A	R125/R134a/R600/	_	0	1400	A1	K
N420A	R601a	_		1400	A1	I.V.
	(5,1/93,0/1,3/0.6)					
	(3,1/33,0/1,3/0.0)		<u> </u>]		

Окончание табл. 7

Смеси ГФУ	Химическая формула/ общепринятое название	Время жизни в атмосфере,	ОРП	ПГП (100 лет)	Группа безопасности	Статус
		годы				
R427A	R32/R125/143a/ R134a	_	0	2200	A1	K
	(15,0/25,0/10,0/50,0)					
R429A	RE170/R152a/R600a	_	0	21	A3	_
	(60,0/10,0/30,0)					
R430A	R152a/R600a	_	0	120	A3	_
	(76,0/24,0)					
R431A	R290/R152a	_	0	46	A3	M
	(71,0/29,0)					
R434A	R125/R143a/R134a/ R600a	_	0	3300	A1	_
	(63,2/18,0/16,0/2.8)					
R435A	RE170/R152a	_	0	30	A3	_
	(80,0/20,0)					
R437A	R125/R134a/R600/ R601a	_	0	1700	A1	_
	(19,5/78,5/1,4/0,6)					
R507A	R125/R143a	_	0	4300	A1	K
	(50,0/50,0)					
R508A	R23/R116	_	0	12000	A1	K
	(39,0/61,0)					
R508B	R23/R116	_	0	12000	A1	K
	(46,0/54,0)					

Список литературы

- 1. Справочник по международным договорам по охране озонового слоя: Венская конвенция (1985), Монреальский протокол (1987), Шестое издание (2003)-ISBN:92-807-2316. ЮНЕП, 2003.
- 2. Отчет группы экспертов по технологии и экономической оценке, май 2008, Том 1, Отчет о ходе работ. ЮНЕП/ТОЭО, 2008.
- 3. Coulomb D. The refrigerants future: the phase down of HFCFs and its consequences // Вестник Международной академии холода, 2014. № 1. С. 3-6.
- 4. Coulomb D. World tendencies and priorities in development of low-temperature engineering // Вестник Международной академии холода, 2012. № 4. С. 3-7.
- 5. Позиция Российского союза предприятий холодильной промышленности по вопросу Северо-американской поправки к Монреальскому протоколу по веществам, разрушающим озоновый слой// А.В. Бараненко, Ю.Н. Дубровин, А.С. Любимов, Н.А. Белозеров, И.М. Калнинь. Холодильная техни-ка. 2013.
- 6. Экология и холодильная техника/ Б.С. Бабакин, К.В., К.В. Показеев, В.А. Выгодин, Т.О. Чаплина. М.: ДеЛи принт, 2009. 532 с.
- 7. Кароль И.Л., Киселев А.А. Озон и фреоны: развод по-монреальски// Холодильный бизнес. $2001. N_2 6. C. 4-5.$
 - 8. Ларин И.К. Фреоны и озоновый слой Земли // Холодильная техника. 2002. № 1. С. 34–37.
- 9. Цветков О.Б. Холодильные агенты на посткиотском экологическом пространстве // Холодильная техника. -2012. -№ 1. -C.70-72
- 10. Цветков О.Б., Лаптев Ю.А. Киотский протокол за чертой 2012 года // Империя холода. 2012. Март. С. 56.

- 11. Цветков О.Б., Бараненко А.В., Сапожников С.З., Лаптев Ю.А., Ховалыг Д.М., Пятаков Г.Л. Озонобезопасные хладагенты // Научный журнал НИУ ИТМО. Серия «Холодильная техника и кондиционирование». 2014. № 3.
 - 12. Цветков О.Б. Холодильные агенты. СПб: СПбГУНиПТ, 2003. 216 с.
- 13. Цветков О.Б. Хладагенты и экологическая безопасность //Холодильная техника. 1997. № 1. С. 20-22.
- 14. Цветков О.Б., Лаптев Ю.А. Холодильные агенты без границ // Вестник Международной академии холода, 2010. № 1. С. 24–27.
 - 15. Ларин И.К. Фреоны и озоновый слой Земли// Холодильная техника. 2002. № 1. С. 34–37.
- 16. Molina M.J., Rowland F.S. Stratospheric sink for chlorofluorome- thanes; chlorine atoms catalyzed destruction of ozone// Nature. 1974. Vol. 249. P. 810–814.
 - 17. Бараненко А.В. Холод в глобальном мире// Холодильная техника. 2013. № 3. С. 4–9.
- 18. Цветков О.Б. Хладагенты и окружающая среда// Холодильная техника. -2013. -№ 1. C.4-7.
- 19. Цветков О.Б., Лаптев Ю.А. Гидрофторуглероды в индустрии холода после 2012 года// Холодильная техника. 2012. № 3. С. 32–34; № 4. С. 6–8.
- 20. Цветков О.Б. Климатические доминанты альтернатив ГХФУ-хладагентов// Холодильная техника. -2012.- № 6.- C. 4-6.
- 21. Цветков О.Б., Лаптев Ю.А. Энергосбережение в холодильной технике и проблемы экологии развитие и перспективы // Вестник Международной академии холода, 2011. № 2. С. 3–9.
- 22. Калнинь И.М., Смыслов В.И. Пути решения проблемы перевода бытовой холодильной техники на озонобезопасные хладагенты// Холодильная техника. 1995. N 1. C. 3-7.
- 23. Б.Д. Тимофеев, П.К. Нагула, Т.А. Заяц, Д.А. Акулич Результаты экспериментального исследования работоспособности озонобезопасной смеси Экохол 1 с использованием минерального холодильного масла/// Вестник Международной академии холода. − 2015. − № 3. − С. 54–57.
- 24. Промышленные фторорганические продукты/ Б.Н. Максимов, В.Г. Барабанов, И.Л. Серушкин, В.С. Зотиков, И.А. Семерикова, В.П. Степанов, Н.Г. Сагайдакова, Г.И. Каурова. СПб.: Химия, 1996. 544 с.
- 25. Цветков О.Б., Цветков О.Н., Лаптев Ю.А. Свойства холодильных масел и маслофреоновых растворов. СПб.: СПбГУНиПТ, 2010. 188 с.
- 26. Холодильные машины/ А.В. Бараненко, Н.Н. Бухарин, В.И. Пекарев, Л.С. Тимофеевский/ Под ред. Л.С. Тимофеевского. СПб: Политехника, 2006. 944 с.
- 27. Бабакин Б.С. Хладагенты, масла, сервис холодильных систем. Рязань: Узорочье, 2003. 470 с.
- 28. Железный В.П., Жидков В.В. Эколого-энергетические аспекты внедрения альтернативных хладагентов в холодильной технике. Донецк: Изд-во Донбасс, 1996. 144 с.
- 29. Safe use of HCFC alternatives in refrigeration and air-conditioning. An overview for developing countries// United nations environmental programme. UNEP, Division of Technology, Industry and Economics, 2015. 75 p.

Статья поступила в редакцию 13.10.2015 г.