ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.И. ЛЕНИНА»

Кафедра теоретических основ теплотехники

РАСЧЕТ КОЭФФИЦИЕНТА КОНВЕКТИВНОЙ ТЕПЛООТДАЧИ (основные критериальные уравнения)

Методические указания к выполнению практических и лабораторных занятий

Иваново 2007

Составитель В.В. Бухмиров

Редактор Д.В. Ракутина

Методические указания предназначены для студентов, обучающихся по специальностям теплотехнического профиля 140101, 140103, 140104, 140106 и 220301 дневного и заочного отделений и изучающих курс "Тепломассообмен" или "Теплотехника".

Методические указания содержат наиболее апробированные критериальные формулы для расчета коэффициента конвективной теплоотдачи в однофазных средах и при изменении агрегатного состояния вещества. В приложении приведены физические свойства некоторых жидкостей и газов, применяемых в теплоэнергетике.

Методические указания могут быть полезны студентам при решении задач по теме «Конвективный теплообмен» во время проведения практических и лабораторных занятий, а также при выполнении контрольных и домашних заданий.

Методические указания утверждены цикловой методической комиссией ТЭФ.

Рецензент

кафедра теоретических основ теплотехники Ивановского государственного энергетического университета

1. Конвективная теплоотдача при свободном движении текучей среды

$$Nu = f(Gr, Pr), Pr \ge 0.7$$

1.1. Теплоотдача при свободной конвекции около вертикальных пластин и вертикальных труб

(критериальные формулы В.П. Исаченко [2])

1.1.1. Местный (локальный) и средний коэффициенты теплоотдачи *при ламинарном режиме течения* жидкости ($10^3 < Ra \le 10^9$) рассчитывают по формулам [2]:

при
$$T_w = \text{const}$$
 $Nu_{f,x} = 0.55 \cdot Ra_{f,x}^{0.25} \cdot \varepsilon_t$; (1.1)

$$\overline{Nu}_{f,h} = 0.73 \cdot Ra_f^{0.25} \cdot \varepsilon_t; \qquad (1.2)$$

$$\overline{Nu}_{f,h} = 0.75 \cdot Ra_f^{0.25} \cdot \varepsilon_t \qquad (1.4)$$

В формулы (1.1) – (1.4) входит поправка, учитывающая зависимость физических свойств текучей среды от температуры:

$$\varepsilon_{t} = \left(\frac{Pr_{f}}{Pr_{w}}\right)^{0.25},\tag{1.5}$$

где критерий Прандтля Pr_f принимают по справочным данным для текучей среды при определяющей температуре флюида, а критерий Прандтля Pr_w принимают по справочным данным для текучей среды при температуре стенки.

Определяющие параметры:

 $R_0 = x$ – локальная координата по высоте – для формул (1.1) и (1.3);

 $R_0 = h$ — высота вертикальной пластины или высота вертикальной трубы — для формул (1.2) и (1.4);

 $T_0 = T_f$ – температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя).

1.1.2. Местный (локальный) и средний коэффициенты теплоотдачи при развитом *турбулентном режиме течения* флюида ($Ra \ge 6 \cdot 10^{10}$) при $T_w = const$ и при $T_w =$

$$Nu_{f,x} = 0.15 \cdot Ra_{f,x}^{0.333} \cdot \varepsilon_t;$$
 (1.6)

$$\overline{\mathbf{N}\mathbf{u}}_{\mathbf{f}} = 0.15 \cdot \mathbf{R} \mathbf{a}_{\mathbf{f}}^{0.333} \cdot \mathbf{\varepsilon}_{\mathbf{f}}. \tag{1.7}$$

Определяющие параметры:

 $R_0 = x -$ локальная координата по высоте – для формулы (1.6);

 $R_0 = h - высота вертикальной пластины или вертикальной трубы - для формулы (1.7);$

 $T_0 = T_{\rm f} -$ температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя).

Замечание. Поправку $\varepsilon_{\rm t}$, учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5).

1.1.3. Переходный режим течения флюида наступает при числах Релея $10^9 < \mathrm{Ra_{f,x}} < 6 \cdot 10^{10}$ отличается неустойчивостью течения. В приближенных расчетах теплоотдачи при переходном режиме В.П. Исаченко рекомендует использовать формулы (1.6) и (1.7) для турбулентного режима течения.

1.2. Теплоотдача при свободной конвекции около горизонтальных пластин

(критериальные формулы В. П. Исаченко [2])

Средний коэффициент теплоотдачи на поверхности горизонтальных пластин можно приближённо рассчитать по формулам для вертикальной поверхности (1.2), (1.4) и (1.7) с последующим введением поправок на расположение теплоотдающей поверхности [3]:

для поверхности теплообмена обращенной вверх

$$\overline{\alpha_{\text{rop}}} = 1.3 \cdot \overline{\alpha_{\text{pacter}}} , \qquad (1.8)$$

для поверхности теплообмена обращенной вниз

$$\overline{\alpha_{\text{rop}}} = 0.7 \cdot \overline{\alpha_{\text{pac-qer}}}, \tag{1.9}$$

где $\alpha_{\rm pacчer}$ – коэффициент теплоотдачи, рассчитанный по одной из формул (1.2), (1.4) или (1.7).

Определяющие параметры:

 $R_0 = min(a, b)$, где а и b – размеры прямоугольной пластины;

 $T_0 = T_{\rm f} -$ температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя).

1.3. Теплоотдача при свободном движении текучей среды при малых числах Рэлея ($Ra_{md} < 1$)

Такого рода теплообмен возникает около тонких проволок и режим течения в этом случае называют пленочным. Для расчета среднего коэффициента теплоотдачи при пленочном течении рекомендуем использовать следующие критериальные формулы:

а) по данным [1] пленочный режим течения имеет место при числах Рэлея $Ra_{md} = 10^{-10} \div 10^{-2}$:

$$\overline{\text{Nu}}_{\text{m,d}} = 0,675 \cdot \text{Ra}_{\text{m,d}}^{0,058};$$
 (1.10)

б) по данным Л.С. Эйгенсона [4] пленочный режим течения на тонких нагретых проволоках (d = 0,2÷2мм) существует при числах Рэлея $Ra_{\rm md}$ <1:

$$\overline{Nu}_{m,d} = 0.5 ; (1.11)$$

в) по данным М.А. Михеева.[4] пленочный режим существует при числах $Ra_{m,d} < 10^{-3}$ и только в этом случае можно использовать формулу (1.11). В диапазоне $Ra_{m,d} = 10^{-3} \div 5 \cdot 10^2$ наблюдается переходный от пленочного к ламинарному режим течения, для которого М.А. Михеев рекомендует формулу [4]:

$$\overline{\text{Nu}}_{\text{m,d}} = 1.18 \cdot \text{Ra}_{\text{m,d}}^{1/8}$$
 (1.12)

Определяющие параметры:

 $T_0 = T_m = 0.5 \cdot (T_f + T_w)$ — средняя температура пограничного слоя; $R_0 = d_{_{\rm H}}$ — наружный диаметр проволоки.

1.4. Теплоотдача при свободной конвекции около горизонтальных цилиндров (труб) (критериальная формула И.М. Михеевой [4])

Средний коэффициент теплоотдачи при *паминарном* режиме течения ($Ra_{f,d} = 10^3 \div 10^8$) по данным И.М. Михеевой равен [4]:

$$\overline{Nu}_{f,d} = 0.5 \cdot Ra_{f,d}^{0.25} \cdot \varepsilon_t \tag{1.13}$$

Определяющие параметры:

 ${
m T_0} = {
m T_f}\, -$ температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя);

 $R_0 = d_{_{
m H}}$ – наружный диаметр трубы (цилиндра).

Замечание. Поправку ε_{t} , учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5).

1.5. Теплоотдача при свободной конвекции около вертикальных пластин, вертикальных труб, горизонтальных пластин, горизонтальных труб и шаров (критериальная формула М.А. Михеева)

По данным академика М.А. Михеева средний коэффициент теплоотдачи при свободном движении текучей среды около тел, указанных в заголовке раздела, можно рассчитать по единой формуле:

$$\overline{Nu}_{m} = C \cdot Ra_{m}^{n}, \qquad (1.14)$$

где коэффициенты С и n в зависимости от режима течения приведены в табл. 1.1.

Таблица 1.1. Значения коэффициентов С и п в формуле (1.14)

$Ra_{m} = Gr_{m} \cdot Pr_{m}$	Режим течения	С	n
<10 ⁻³	Пленочный	0,5	0
$10^{-3} \div 5 \cdot 10^2$	Переходный от пленочного к ламинарному	1,18	1/8
$5\cdot10^2 \div 2\cdot10^7$	Ламинарный и переходный к турбулентному	0,54	1/4
> 2 · 10 ⁷	Турбулентный	0,135	1/3

Определяющие параметры:

 $T_0 = T_m = 0.5 \cdot (T_f + T_w)$ — средняя температура пограничного слоя;

 $R_0 = d_{_{\rm H}}$ – наружный диаметр горизонтальных труб и шаров;

 $R_0 = h$ — высота вертикальной пластины или высота вертикальной трубы; $R_0 = \min(a,b)$, где a и b — размеры прямоугольной пластины. При этом в зависимости от расположения теплоотдающей (тепловоспринимающей) поверхности коэффициент теплоотдачи либо увеличивают на 30 %, либо уменьшают на 30% (см. формулы (1.8) и (1.9)).

1.6. Теплообмен при свободном движении текучей среды в ограниченном пространстве

В узких щелях, плоских и кольцевых каналах, прослойках различной формы плотность теплового потока q рассчитывают по формулам стационарной теплопроводности в плоской стенке, вводя при этом понятие эквивалентного коэффициента теплопроводности [4]:

$$q = \frac{\lambda_{\text{SKB}}}{\delta} (T_{\text{w1}} - T_{\text{w2}}); \qquad (1.15)$$

где $\lambda_{_{9KB}}$ — эквивалентный коэффициент теплопроводности; δ — толщина щели или узкого канала; T_{w1} и T_{w2} — температура на стенках узкой прослойки.

Эквивалентный коэффициент теплопроводности определяют по формуле:

$$\lambda_{_{2KB}} = \lambda_{f} \cdot \varepsilon_{_{K}} \tag{1.16}$$

где $\lambda_{\rm f}$ — коэффициент теплопроводности текучей среды; $\epsilon_{\rm k}$ — коэффициент конвекции — поправка, учитывающая увеличение теплового потока вследствие свободной конвекции в щели [4].

Коэффициент конвекции зависит от критерия Рэлея:

а) при значениях $Ra_f \le 10^3$:

$$\varepsilon_{\kappa} = 1;$$
 (1.17)

б) при значениях $10^3 < Ra_f < 10^6$:

$$\varepsilon_{\rm K} = 0.105 \cdot {\rm Ra_f^{0.3}};$$
 (1.18)

в) при значениях $10^6 \le Ra_f \le 10^{10}$:

$$\varepsilon_{\kappa} = 0.40 \cdot Ra_{\rm f}^{0.2} \,. \tag{1.19}$$

В приближенных расчетах вместо двух уравнений (1.18) и (1.19) для всей области значений аргументов $Ra_f > 10^3$ можно использовать зависимость [4]:

$$\varepsilon_{\kappa} = 0.18 \cdot \text{Ra}_{\text{f}}^{0.25}$$
 (1.20)

Определяющие параметры:

 $T_0 = T_f = 0.5 \cdot (T_{w1} + T_{w2}) -$ средняя температура текучей среды в щели; $R_0 = \delta -$ ширина щели.

2. Конвективная теплоотдача при вынужденном движении текучей среды в трубах и каналах

$$\overline{Nu} = f(Re, Gr, Pr), Pr \ge 0.7$$

2.1. Теплоотдача при движении флюида в прямых гладких трубах

При движении жидкостей и газов в трубах и каналах существуют ламинарный ($\mathrm{Re_{f,d}} \leq 2300$), турбулентный ($\mathrm{Re_{f,d}} \geq 10^4$) и переходный от ламинарного к турбулентному ($2300 < \mathrm{Re_{f,d}} < 10^4$) режимы течения флюида.

Определяющие параметры для расчета критерия Рейнольдса:

$${
m T}_0 = {
m \overline{T}}_{
m f} = 0.5 \cdot \left({
m T}_{
m f,BX} + {
m T}_{
m f,BMX}
ight) -$$
 средняя температура флюида в трубе;

 $\mathbf{R}_0 = \mathbf{d}_{\scriptscriptstyle \mathrm{BH}} \, - \mathrm{внутренний}$ диаметр трубы;

 ${\bf w}_0 = G/(\rho \cdot {\bf f})$ — средняя по сечению трубы скорость движения флюида.

2.1.1. Теплоотдача при ламинарном режиме движения текучей среды в трубах (Re ≤ 2300)

Теплоотдача в трубах при *стабилизированном течении* и *стабилизированном теплообмене* может быть рассчитана при $T_w = const$ и при $q_w = const$ по приближенной формуле [3]:

$$\overline{Nu} = 4 \cdot \varepsilon_t \,, \tag{2.1}$$

где поправку ε_t рассчитывают по формуле (1.5).

Определяющие параметры в формуле (2.1):

 $T_0 = T_f = 0.5 \cdot (T_{f,BX} + T_{f,BMX}) -$ средняя температура флюида в трубе;

 $R_0 = d_{BH} - внутренний диаметр трубы;$

 $w_0 = G/(\rho \cdot f)$ – средняя по сечению трубы скорость движения флюида.

При ламинарном режиме движения в прямых гладких трубах и наличии участков гидродинамической и тепловой стабилизации для более точной аппроксимации экспериментальных данных выделяют два подрежима: ламинарный вязкостный и ламинарный вязкостногравитационный. Ламинарный вязкостный режим течения имеет место при числах Рэлея Ra $< 8\cdot10^5$, а ламинарный вязкостногравитационный режим при числах Рэлея Ra $\ge 8\cdot10^5$. При этом определяющие параметры для расчета критерия Рэлея находят по формулам:

$$T_0 = 0.5 \cdot (T_w + \overline{T}_f)$$
, где $\overline{T}_f = 0.5 \cdot (T_{f,BX} + T_{f,BMX})$;

 $R_0 = d_{_{\rm BH}} - внутренний диаметр трубы.$

Теплоотдача при ламинарном вязкостном режиме движения текучей среды в трубах ($R \in 2300$; $Ra < 8.10^5$)

Средний по внутренней поверхности трубы длиной ℓ коэффициент теплоотдачи рассчитывают по формуле Б.Г.Петухова [3], которая получена при $\ell/(\text{Pe}\cdot d) \leq 0.05$ и $0.07 \leq \mu_w/\mu_f \leq 1500$:

$$\overline{Nu} = 1,55 \cdot (Pe \cdot d_{_{BH}}/\ell)^{1/3} \cdot (\mu_f/\mu_w)^{0.14} \cdot \overline{\epsilon_\ell}. \tag{2.2}$$

Определяющие параметры:

$$T_0 = 0.5 \cdot (T_w + \overline{T}_f)$$
, где $\overline{T}_f = 0.5 \cdot (T_{f,BX} + T_{f,BMX})$;

 $R_0 = d_{_{\rm BH}} - внутренний диаметр трубы;$

 $w_0 = G/(\rho \cdot f)$ – средняя по сечению трубы скорость движения флюида.

Замечание. Значение μ_w выбирают для флюида при температуре стенки T_w . Величина ϵ_ℓ — поправка, учитывающая влияние на теплоотдачу гидродинамической стабилизации потока на начальном участке теплообмена:

при
$$\ell/(\text{Re} \cdot \text{d}) < 0,1$$
 — $\overline{\epsilon_\ell} = 0,6 \cdot \left[\ell/(\text{Re} \cdot \text{d})\right]^{-1/7} \cdot \left[1 + 2,5 \cdot \ell/(\text{Re} \cdot \text{d})\right];$ (2.3) при $\ell/(\text{Re} \cdot \text{d}) \ge 0,1$ — $\overline{\epsilon_\ell} \approx 1$, (2.4) где ℓ — длина трубы.

Определяющие параметры в формулах (2.3) и (2.4):

$$T_0 = T_f = 0.5 \cdot (T_{f,\text{вх}} + T_{f,\text{вых}})$$
 – средняя температура флюида в трубе; $R_0 = d_{\text{вн}}$ – внутренний диаметр трубы;

 ${\bf w}_0 = {\bf G}/({\bf \rho}\cdot{\bf f})$ – средняя по сечению трубы скорость движения флюида.

Теплоотдача при ламинарном вязкостно-гравитационном режиме движения текучей среды в трубах $(Re \le 2300; Ra \ge 8.10^5)$

Средний коэффициент теплоотдачи при ламинарном вязкостногравитационном режиме течения может быть рассчитан по критериальному уравнению М. А. Михеева [4]:

$$\overline{Nu}_{f,d} = 0.15 \cdot Re_{f,d}^{0.33} \cdot Pr_f^{0.33} \cdot (Gr_{f,d} \cdot Pr_f)^{0.1} \cdot \epsilon_t \cdot \overline{\epsilon_\ell} . \qquad (2.5)$$

Определяющие параметры:

 $T_0 = \overline{T}_f = 0.5 \cdot \left(T_{f, \text{вх}} + T_{f, \text{вых}}\right)$ — средняя температура флюида в трубе; $R_0 = d_{\text{вн}}$ — внутренний диаметр трубы;

 $w_0 = G/(\rho \cdot f)$ – средняя по сечению трубы скорость движения флюида.

Замечание. Поправку ε_{t} , учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5).

Поправочный коэффициент $\overline{\epsilon_\ell}$, учитывающий влияние на теплоотдачу процесса гидродинамической стабилизации потока на начальном участке теплообмена равен:

при $\ell/d < 50$ значение $\overline{\epsilon_\ell}$ находят по данным таблицы 2.1;

при
$$\ell/d \ge 50$$
 — $\overline{\epsilon_{\ell}} = 1$.

Таблица 2.1

Значение $ \epsilon_{\ell} $ при вязкостно-гравитационном режиме течения флюида											
ℓ/d	1	2	5	10	15	20	30	40	50		
$\overline{\epsilon_\ell}$	1,9	1,7	1,44	1,28	1,18	1,13	1,05	1,02	1,0		

2.1.2. Теплоотдача при турбулентном режиме движения текучей среды в трубах ($Re \ge 10^4$)

Средний коэффициент теплоотдачи при турбулентном течении флюида в прямых гладких трубах рассчитывают по формуле М. А. Михеева [4]:

$$\overline{Nu}_{f,d} = 0.021 \cdot Re_{f,d}^{0.8} \cdot Pr_f^{0.43} \cdot \varepsilon_t \cdot \overline{\varepsilon_\ell} . \qquad (2.6)$$

Замечание. Поправку $\varepsilon_{\rm t}$, учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5).

Поправочный коэффициент ϵ_ℓ , учитывающий влияние на теплоотдачу процесса гидродинамической стабилизации потока на начальном участке теплообмена равен:

при
$$\ell/d\,<50$$
 — $\overline{\epsilon}_{\ell}\,\approx 1 + 2\,d/\ell$;

при
$$\ell/d > 50 - \overline{\epsilon_\ell} = 1$$
.

Более точные значения $\overline{\epsilon_\ell}$ в зависимости от критерия Рейнольдса приведены в табл. 2.2.

				ℓ/d				
Re	1	2	5	10	15	20	30	40
1.104	1,65	1,50	1,34	1,23	1,17	1,13	1,07	1,03
$2 \cdot 10^4$	1,51	1,40	1,27	1,18	1,13	1,10	1,05	1,02
$5\cdot10^4$	1,34	1,27	1,18	1,13	1,10	1,0 8	1,04	1,02
$10 \cdot 10^4$	1,28	1,22	1,15	1,10	1,08	1,06	1,03	1,02
$100 \cdot 10^4$	1,14	1,11	1,08	1,05	1,04	1,03	1,02	1,01

Определяющие параметры:

$${
m T_0} = {
m \overline{T}_f} = 0.5 \cdot \left({
m T_{f,BX}} + {
m T_{f,BMX}}
ight) -$$
 средняя температура флюида в трубе;

 $R_0 = d_{_{\rm BH}} - внутренний диаметр трубы;$

 $w_0 = G/(\rho \cdot f)$ – средняя по сечению трубы скорость движения флюида.

2.1.3. Теплоотдача при переходном режиме движения текучей среды в трубах (2300 < Re < 10^4)

Переходный режим течения характеризуется перемежаемостью ламинарного и турбулентного течений. В этом случае коэффициент теплоотдачи можно рассчитать по формуле [4]:

$$\overline{Nu}_{f,d} = K_0 \cdot Pr_{f,d}^{0,43} \cdot \varepsilon_f \cdot \overline{\varepsilon}_\ell, \qquad (2.7)$$

где комплекс K_0 зависит от числа Рейнольдса (см. табл. 2.3.), а поправку $\bar{\epsilon}_\ell$ рассчитывают также как и при турбулентном режиме течения флюида.

 $\label{eq:2.3.} Таблица\ 2.3. \\ Зависимость комплекса\ K_0\ от\ числа\ Рейнольдса$

Re·10 ⁻³	2,2	2,3	2,5	3,0	3,5	4,0	5	6	7	8	9	10
\mathbf{K}_{0}	2,2	3,6	4,9	7,5	10	12,2	16,5	20	24	27	30	33

Замечание. Поправку ε_{t} , учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5).

Определяющие параметры:

$$T_0 = T_f = 0.5 \cdot (T_{f,BX} + T_{f,BMX})$$
 – средняя температура флюида в трубе;

 $R_0 = d_{_{\rm BH}}$ – внутренний диаметр трубы;

$$w_0 = G/(\rho \cdot f)$$
 — средняя по сечению трубы скорость движения флюида.

Переходный режим течения флюида в прямых гладких трубах также можно рассчитать по методике, изложенной в учебнике [10]:

$$\overline{Nu} = \gamma \cdot \overline{Nu}_{Typ6} + (1 - \gamma) \cdot \overline{Nu}_{\pi am}, \qquad (2.8)$$

где $\overline{\text{Nu}}_{\text{лам}}$ и $\overline{\text{Nu}}_{\text{турб}}$ числа Нуссельта, рассчитанные по формулам (2.1) и (2.6) для стабилизированного ламинарного и турбулентного режимов течения соответственно, γ – коэффициент перемежаемости равный:

$$\gamma = 1 - \exp(1 - \text{Re}/2300)$$
. (2.9)

2.1.4. Теплоотдача при движении газов в трубах

Для газов критерий Прандтля $Pr_f \approx 0.7 \div 1.0$ и практически не зависит от температуры, поэтому температурная поправка $\epsilon_t = (Pr_f/Pr_w)^{0.25} \approx 1$. С учетом этого формулы (2.5), (2.6) и (2.7) можно упростить и записать в виде:

ламинарный режим
$$\overline{Nu}_{f,d} = 0.146 \cdot Re_{f,d}^{0.33} \cdot Gr_{f,d}^{0.1};$$
 (2.10)

турбулентный режим
$$\overline{\text{Nu}}_{\text{f,d}} = 0.018 \cdot \text{Re}_{\text{f,d}}^{0.8}$$
; (2.11)

переходный режим
$$\overline{\text{Nu}}_{\text{f,d}} = 0.86 \cdot \text{K}_0$$
. (2.12)

Замечание. При наличии больших температурных напоров и турбулентном режиме течения газов коэффициенты теплоотдачи могут отличаться от значений, вычисленных по уравнениям (2.10), (2.11) и (2.12). В этом случае расчет необходимо проводить по формулам (2.5), (2.6) и (2.7), принимая в качестве температурной поправки выражение:

$$\varepsilon_{t} = \left(\frac{\overline{T}_{f}}{\overline{T}_{w}}\right)^{m}, \tag{2.13}$$

где \overline{T}_f – средняя температура газа в трубе, Кельвин; \overline{T}_w – средняя температура стенки трубы, Кельвин; m=0,4 если $\overline{T}_w > \overline{T}_f$ и m=0, если $\overline{T}_w < \overline{T}_f$.

Определяющие параметры:

$$T_0 = T_f = 0.5 \cdot (T_{f,BX} + T_{f,BMX}) -$$
средняя температура газа в трубе;

 $R_0 = d_{_{\rm BH}} - внутренний диаметр трубы;$

 $w_0 = G/(\rho \cdot f)$ — средняя по сечению трубы скорость движения флюида.

2.2. Теплоотдача при движении текучей среды в каналах произвольного поперечного сечения

Все вышеприведенные критериальные формулы для расчета теплоотдачи в круглой трубе применимы и для расчета коэффициента теплоотдачи при течении жидкостей и газов в каналах другой (не круглой) формы поперечного сечения (прямоугольной, треугольной, кольцевой и т.д.), при продольном омывании пучков труб, заключенных в канал произвольного поперечного сечения, а также при движении жидкости, не заполняющей всего сечения канала. При этом в качестве характерного размера следует применять эквивалентный или гидравлический диаметр канала:

$$R_0 = d_{_{19KB}} = d_{_{\Gamma}} = 4f/P,$$
 (2.14)

где f – площадь поперечного сечения потока, m^2 ; P – смоченный периметр канала, м.

2.3. Теплоотдача при турбулентном движении текучей среды в изогнутых трубах

При движении флюида в изогнутых трубах (коленах, змеевиках) происходит его дополнительная турбулизация и, как следствие, увеличение коэффициента теплоотдачи. Для расчета теплоотдачи в изогнутых трубах необходимо число Нуссельта, рассчитанное по формуле (2.6), умножить на поправочный коэффициент:

$$\varepsilon_{\Gamma} = 1 + 1.8 \cdot d_{BH} / R_{\Gamma}, \qquad (2.15)$$

где $d_{\mbox{\tiny BH}}$ – внутренний диаметр трубы, а $R_{\mbox{\tiny \Gamma}}$ – радиус гиба.

3. Конвективная теплоотдача при вынужденном внешнем обтекании тел

$$Nu = f(Re, Pr), Pr \ge 0.7$$

3.1. Продольное обтекание пластины и внешней поверхности трубы

3.1.1. Толщина гидродинамического пограничного слоя на расстоянии **x** от передней кромки пластины (трубы) при течении жидкости или газа с постоянными физическими свойствами вдоль пластины или вдоль внешней поверхности трубы равна [3]:

при
$$\text{Re}_{x} \le 5.10^{5}$$
 $\delta / x = 4,64 / \text{Re}_{x}^{0,5}$; (3.1)

при
$$Re_x > 5 \cdot 10^5$$
 $\delta / x = 0.376 / Re_x^{0.2}$. (3.2)

Определяющие параметры:

 $T_0 = T_f$ — температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя);

 $R_0 = x - продольная координата;$

 w_0 — скорость невозмущенного потока (за пределами гидродинамического пограничного слоя).

3.1.2. Местный и средний по поверхности коэффициенты теплоотдачи при *паминарном течении* флюида (Re $< 5\cdot 10^5$) вдоль пластины или внешней поверхности трубы по данным [1] и [6] равны:

при
$$T_w$$
=const $Nu_x = 0.332 \cdot Re_x^{0.5} \cdot Pr^{1/3} \cdot (Pr_f / Pr_w)^{0.25};$ (3.3)

$$\overline{Nu} = 0.664 \cdot Re^{0.5} \cdot Pr^{1/3} \cdot (Pr_f / Pr_w)^{0.25}; \qquad (3.4)$$

при
$$q_w$$
=const Nu_x = 0,46 · Re_x^{0,5} · Pr^{1/3} · $(Pr_f/Pr_w)^{0,25}$; (3.5)

$$\overline{Nu} = 0.69 \cdot \text{Re}^{0.5} \cdot \text{Pr}^{1/3} \cdot (\text{Pr}_f / \text{Pr}_w)^{0.25}$$
 (3.6)

3.1.3. Местный и средний коэффициенты теплоотдачи при *турбулент-ном течении* флюида ($Re \ge 5 \cdot 10^5$) вдоль пластины или внешней поверхности трубы по данным [2] равны:

$$Nu_{x} = 0.0296 \cdot Re_{x}^{0.8} \cdot Pr^{0.43} \cdot (Pr_{f}/Pr_{w})^{0.25};$$
 (3.7)

$$\overline{\text{Nu}} = 0.037 \cdot \text{Re}^{-0.8} \cdot \text{Pr}^{0.43} \cdot (\text{Pr}_{f} / \text{Pr}_{w})^{0.25}$$
 (3.8)

Определяющие параметры:

 $T_0 = T_f$ — температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя);

 $R_0 = x - продольная координата в формулах (3.3), (3.5) и (3.7);$

 $R_0 = \ell$ – длина пластины или трубы в формулах (3.4), (3.6) и (3.8);

 w_0 — скорость невозмущенного потока (за пределами гидродинамического пограничного слоя).

3.2. Теплоотдача при поперечном обтекании одиночной трубы

Средний по поверхности трубы или цилиндра коэффициент теплоотдачи по данным [5] равен:

$$1 < \text{Re} < 40, \qquad \overline{\text{Nu}} = 0.76 \cdot \text{Re}^{0.4} \text{ Pr}^{0.37} \, \varepsilon_{t} \cdot \varepsilon_{a} \cdot \varepsilon_{o}; \qquad (3.9)$$

$$40 \le \text{Re} < 10^3$$
, $\overline{\text{Nu}} = 0.52 \cdot \text{Re}^{0.5} \text{ Pr}^{0.37} \, \epsilon_t \cdot \epsilon_q \cdot \epsilon_{\phi}$; (3.10)

$$10^{3} \le Re < 2 \cdot 10^{5} , \quad \overline{Nu} = 0.26 \cdot Re^{0.6} \ Pr^{0.37} \ \epsilon_{t} \cdot \epsilon_{q} \cdot \epsilon_{\phi}; \eqno(3.11)$$

$$2 \cdot 10^{5} \le Re < 10^{7} \,, \quad \overline{Nu} = 0.023 \cdot Re^{0.8} \, \, Pr^{0.4} \, \, \epsilon_{t} \, \cdot \epsilon_{q} \, \cdot \epsilon_{\phi} \,, \eqno(3.12)$$

Замечания.

- 1. Поправку ε_{t} , учитывающую изменение физических свойств среды в зависимости от температуры, рассчитывают по формуле (1.5).
- 2. Поправку ε_q , учитывающую сужение потока в самом узком сечении канала (см. рис.1.3), рассчитывают по формуле:

$$\varepsilon_{\rm q} = \left[1 - \left({\rm d/H}\right)^2\right]^{0.8}$$
 (3.13)

3. Поправку ε_{ϕ} , учитывающую влияние угла атаки ϕ набегающего потока (угол атаки ϕ – угол между вектором скорости и осью трубы) на коэффициент теплоотдачи, принимают по данным табл. 3.1, приведенной в задачнике [3]:

Таблица 3.1. Поправка на угол атаки набегающего потока

φ°	90	80	70	60	50	40	30
ϵ_{ϕ}	1,0	1,0	0,99	0,93	0,87	0,76	0,66

Для приближенного расчета ϵ_{ϕ} предложены формулы, аппроксимирующие экспериментальные данные:

— по данным [1]

$$\varepsilon_{\varphi} = 1 - 0.54 \cos^2 \varphi \,; \tag{3.14}$$

— по данным [5]

$$\varepsilon_{0} = \sqrt{\sin \varphi} \ . \tag{3.15}$$

Определяющие параметры:

 $T_0 = T_{\rm f} -$ температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя);

 $R_0 = d_{\scriptscriptstyle \mathrm{H}} -$ наружный диаметр трубы;

 $w_0 = w_{max} = G/(\rho \cdot f_{min})$ — максимальная скорость потока в самом узком поперечном сечении канала в ограниченном потоке (рис. 3.1.а) или скорость набегания неограниченного потока (рис. 3.1.б).

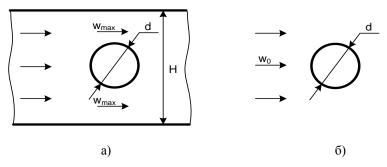


Рис.3.1. Поперечное обтекание одиночной трубы в ограниченном (a) и неограниченном потоке (б)

3.3. Теплоотдача при поперечном обтекании трубного пучка

3.3.1. Средний коэффициент теплоотдачи α_3 для третьего ряда пучка труб и всех последующих рядов труб в пучке по направлению движения флюида при 10^3 <Re< $2\cdot10^5$ по данным [3] равен:

$$\overline{Nu}_{3} = C \cdot Re^{n} \cdot Pr^{1/3} \left(Pr_{f} / Pr_{w} \right)^{0.25} \cdot \epsilon_{\phi} \cdot \epsilon_{s}$$
 (3.16)

где C=0,26 и n=0,65 — при коридорном расположении труб в пучке (рис.3.2.a); C=0,41 и n=0,60 — при шахматном расположении труб в пучке (рис.3.2.б).

Замечания.

1. Поправку ε_{ϕ} , учитывающую влияние угла атаки ϕ набегающего потока (угол атаки ϕ – угол между вектором скорости и осью трубы) на коэффициент теплоотдачи, рассчитывают по формуле (3.14) или по формуле (3.15). Более точные значения поправки ε_{ϕ} для пучка труб в зависимости от угла атаки ϕ приведены в табл. 3.2, приведенной в задачнике [3].

Таблица 3.2. Поправка на угол атаки набегающего потока в трубном пучке

-				60					
ϵ_{ϕ}	1,0	1,0	0,98	0,94	0,88	0,78	0,67	0,52	0,42

- 2. Поправку ε_s , учитывающую взаимное расположение труб в пучке, рассчитывают по формулам:
- для глубинных рядов труб коридорного пучка

$$\varepsilon_{\rm s} = \left({\rm d/S_2}\right)^{0.15};\tag{3.17}$$

— для глубинных рядов труб шахматного пучка

$$\varepsilon_{s} = (S_{1}/S_{2})^{1/6}$$
, если $S_{1}/S_{2} < 2$, (3.18)

$$\varepsilon_{s} = 1,12,$$
 если $S_{1}/S_{2} \ge 2;$ (3.19)

где S_1 – поперечный шаг труб в пучке; S_2 – продольный шаг труб в пучке.

Определяющие параметры:

 $T_0 = T_f = 0.5 \cdot (T_{f,BX} + T_{f,BMX}) -$ средняя температура флюида в пучке;

 $R_0 = d_H -$ наружный диаметр трубы;

 $w_0 = w_{max} = G/(\rho \cdot f_{min})$ — максимальная скорость потока в самом узком поперечном сечении пучка.

3.3.2. Средний коэффициент теплоотдачи для труб первого ряда по направлению потока в коридорных и шахматных пучках равен:

$$\alpha_1 = 0.6 \cdot \alpha_3 \,. \tag{3.20}$$

Средний коэффициент теплоотдачи для труб второго ряда в коридорных и шахматных пучках соответственно равен:

— коридорный пучок
$$\alpha_2 = 0.9 \cdot \alpha_3$$
; (3.21)

— шахматный пучок
$$\alpha_2 = 0.7 \cdot \alpha_3$$
, (3.22)

где $\,\alpha_3$ – коэффициент теплоотдачи для труб третьего ряда пучка.

3.3.3. Средний коэффициент теплоотдачи для всего пучка при его обтекании жидкостью или газом (Re= $10^3 \div 2 \cdot 10^5$) в зависимости от числа рядов по ходу движения флюида (n \ge 3) равен:

$$\overline{\alpha} = \left[\alpha_1 + \alpha_2 + (n_2 - 2) \cdot \alpha_3\right] / n_2, \tag{3.23}$$

где n_2 – число рядов труб по направлению движения флюида (жидкости или газа).

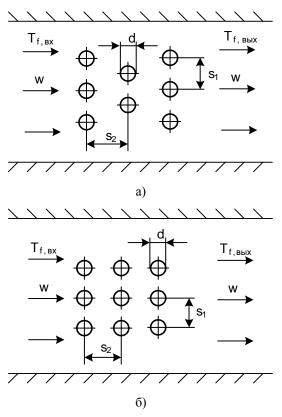


Рис.3.2. Геометрические параметры шахматного (a) и коридорного (б) пучков.

4. Конвективный теплообмен при изменении агрегатного состояния вещества

В зависимости от фазового состояния флюида различают конвективный теплообмен в однофазной среде и конвективный теплообмен при фазовых превращениях, к которому относят теплообмен при конденсации (переход пара в жидкость) и теплообмен при кипении (переход жидкости в пар).

4.1. Теплоотдача при пленочной конденсации паров

4.1.1. Средний коэффициент теплоотдачи при пленочной конденсации паров на вертикальной поверхности рассчитывают по формуле Нуссельта [2,3]:

$$\overline{\alpha} = 0.943 \cdot \sqrt[4]{\frac{g \cdot r \cdot \rho_{\Pi\Pi}^2 \cdot \lambda_{\Pi\Pi}^3}{\mu_{\Pi\Pi} \cdot (T_H - T_W) \cdot H}},$$
(4.1)

где $g=9.8~\text{м/c}^2$ — ускорение свободного падения; ${\bf r}$ — скрытая теплота парообразования, Дж/кг; $\lambda_{\rm пл}$ — коэффициент теплопроводности пленки конденсата, ${\rm Br/(m\cdot K)};~\mu_{\rm пл}$ — динамический коэффициент вязкости конденсата, $\Pi {\bf a \cdot c};~\rho_{\rm пл}$ — плотность пленки, ${\rm кг/m}^3;~T_{\rm H}$ — температура насыщения при данном давлении; $T_{\rm w}$ — температура стенки; H — высота вертикальной поверхности.

Определяющие параметры:

 $T_0 = T_{_{
m H}} \, - {
m температура} \; {
m насыщения} \; {
m при} \; {
m данном} \; {
m давлении};$

 ${\bf R}_0 = {\bf H} \, - {\bf B}$ ысота вертикальной пластины или высота трубы.

4.1.2. Средний коэффициент теплоотдачи при пленочной конденсации на наклонной поверхности рассчитывают по формуле [2,3]:

$$\overline{\alpha}_{\text{hakti}} = \overline{\alpha}_{\text{вертик}} \cdot \sqrt[4]{\cos \phi} , \qquad (4.2)$$

где $\overline{\alpha}_{\text{вертик}}$ – коэффициент теплоотдачи, рассчитываемый по формуле (4.1) для вертикальной поверхности; ϕ – угол между направлением силы тяжести и осью, направленной вдоль поверхности теплообмена.

4.1.3. Средний коэффициент теплоотдачи при пленочной конденсации на горизонтальной трубе при ламинарном течении пленки конденсата рассчитывают по формуле Нуссельта [2,3]:

$$\overline{\alpha} = 0.728 \cdot 4 \sqrt{\frac{g \cdot r \cdot \rho_{\Pi\Pi}^2 \cdot \lambda_{\Pi\Pi}^3}{\mu_{\Pi\Pi} \cdot (T_H - T_W) \cdot d_{Tp}}}, \qquad (4.3)$$

где $g = 9.8 \text{ м/c}^2$ – ускорение свободного падения; \mathbf{r} – скрытая теплота парообразования, Дж/кг; $\lambda_{\rm пл}$ – коэффициент теплопроводности плен-

ки конденсата, Вт/(м·К); $\mu_{\rm пл}$ – динамический коэффициент вязкости конденсата, Па·с; $\rho_{\rm пл}$ – плотность пленки, кг/м³; $T_{\rm H}$ – температура насыщения при данном давлении; $T_{\rm w}$ – температура стенки; $d_{\rm тp}$ – наружный диаметр трубы, м.

Формула (4.3) справедлива для ламинарного режима течения пленки, который существует при выполнении условия:

$$d_{\rm rp} < 20 \cdot \left(\frac{\sigma_{\rm nn}}{g \cdot \rho_{\rm nn}}\right)^{0.5}, \tag{4.4}$$

где $\sigma_{\rm пл}$ — сила поверхностного натяжения пленки, H/м; $g=9.8\,$ м/с 2 — ускорение свободного падения; $\rho_{\rm пл}$ — плотность пленки, кг/м 3 .

Определяющие параметры:

 $T_0 = T_{_{\rm H}} -$ температура насыщения при данном давлении;

 $R_0 = d_{Tp}$ – наружный диаметр трубы.

Формулы для расчета локальных коэффициентов теплоотдачи, теплоотдачи при волновом и турбулентном течении пленки, а также толщины конденсатной пленки приведены в литературе [1-3, 5].

4.2. Теплоотдача при кипении жидкостей

4.2.1. Пузырьковое кипение в большом объеме

Для расчета теплоотдачи при кипении воды в большом объеме используют следующие формулы[2,3, 8]:

$$\alpha = 38.7 \cdot \Delta T^{2,33} \cdot p_{u}^{0,5} \tag{4.5}$$

$$\alpha = 3.0 \cdot q^{0.7} \cdot p_{_{\rm H}}^{0.15}, \tag{4.6}$$

где $p_{_{\rm H}}$ – давление насыщения, **бар**; q – плотность теплового потока, ${\rm BT/m}^2$. $\Delta T = T_{_{\rm W}} - T_{_{\rm H}}$ – перегрев жидкости в пограничном слое.

4.2.2.. Пленочное кипение в большом объеме

Используя аналогию процессов конденсации и пленочного кипения для расчета коэффициента теплоотдачи при пленочном кипении можно использовать следующие формулы:

кипение на вертикальной поверхности

$$\alpha = 0.943 \cdot \sqrt[4]{\frac{g \cdot r \cdot \rho_{\pi} \cdot (\rho_{\pi} - \rho_{\pi}) \cdot \lambda_{\pi}^{3}}{\mu_{\pi} \cdot \Delta T \cdot H}}; \qquad (4.7)$$

— кипение на горизонтальной трубе

$$\alpha = 0.728 \cdot 4 \sqrt{\frac{g \cdot r \cdot \rho_{\pi} \cdot (\rho_{\pi} - \rho_{\pi}) \cdot \lambda_{\pi}^{3}}{\mu_{\pi} \cdot \Delta T \cdot d_{\tau p}}}, \qquad (4.8)$$

где $\rho_{\rm n}$, $\lambda_{\rm n}$ и $\mu_{\rm n}$ – плотность, коэффициент теплопроводности и динамический коэффициент вязкости пара; $\rho_{\rm w}$ – плотность жидкости; ${\bf r}$ – скрытая теплота парообразования.

В качестве определяющей температуры в формулах (4.7) и (4.8) принята температура насыщения при данном давлении.

Перечень основных обозначений

- a коэффициент температуропроводности, м²/с;
- с удельная массовая теплоемкость, Дж/(кг·К);
- d диаметр, м;
- F площадь поверхности теплообмена, M^2 ;
- f площадь поперечного сечения, м²;
- g ускорение силы тяжести, M/c^2 ;
- G массовый расход, кг/с;
- h высота, м; удельная энтальпия, Дж/кг;
- Р периметр, м;
- ℓ линейный размер, м; длина, м;
- р давление, Па;
- Δp перепад давлений, Па;
- q поверхностная плотность теплового потока, Bт/м²;
- q_{ℓ} линейная плотность теплового потока, $B_{T/M}$;
- Q тепловой поток, Вт;
- r радиус, м; скрытая теплота парообразования, Дж/кг;
- T температура, 0 С или K;
- w скорость, m/c;
- х координата, м; степень сухости пара;
- α коэффициент теплоотдачи, $BT/(M^2 \cdot K)$;
- β коэффициент объемного расширения, K^{-1} ;
- δ толщина стенки, м; толщина пограничного слоя, м;
- λ коэффициент теплопроводности, Bт/(м·K);
- μ динамический коэффициент вязкости, Па·с;
- v кинематический коэффициент вязкости, m^2/c ;
- ρ плотность, кг/м³;
- σ коэффициент поверхностного натяжения, Н/м.

Критерии (числа) подобия

$$Nu = \frac{\alpha \cdot R_0}{\lambda}$$
 — критерий (число) Нуссельта;

$$Gr = \frac{g \cdot R_0^3}{v^2} \cdot \beta \cdot \Delta T_0 - \kappa ритерий Грасгофа;$$

$$\begin{split} & \Pr = \frac{\nu}{a} = \frac{\mu \cdot c_p}{\lambda} \, - \text{критерий Прандтля;} \\ & \text{Ra} = \text{Gr} \cdot \text{Pr} \, - \text{критерий Рэлея;} \\ & \text{Re} = \frac{w_0 \cdot R_0}{\nu} = \frac{\rho \cdot w_0 \cdot R_0}{\mu} \, - \text{критерий Ре́йнольдса;} \\ & \text{Pe} = \frac{w_0 \cdot R_0}{\lambda} = \text{Re} \cdot \text{Pr} \, - \text{критерий Пекле́.} \end{split}$$

Индексы

```
стенка;
W

    флюид – текучая среда (жидкость или газ);

f
кр – критический;

– эквивалентный;

ЭКВ
г - гидравлический;
тур – турбулентный;
лам – ламинарный;
     – знак осреднения;
0
      - относится к определяющему параметру;
BX
      – вход;
вых
     – выход.
```

Определяющие (характерные) величины

```
R_0 — определяющий (характерный) размер, м; T_0 — определяющая (характерная) температура, {}^0C; w_0 — определяющая (характерная) скорость, м/с; \Delta T_0 — определяющая (характерная) разность температур, {}^0C (K);
```

Приложение

Таблица 1. **Физические свойства сухого воздуха** (B=1,01 $^{\circ}$ 10 $^{\circ}$ Па) [3]

Т, °С	ρ, κΓ/м ³	с _р , кДж/(кг·К)	$\begin{array}{c} \lambda\cdot10^2,\\ B_T/(\text{M}\cdot\text{K}) \end{array}$	µ:10 ⁶ , Па∙с	v·10 ⁶ , м ² /с	а·10 ⁶ м ² /с	Pr
-50	1,584	1,013	2,04	14,6	9,23	14,6	0,728
-40	1,515	1,013	2,12	15,2	10,04	15,2	0,728
-30	1,453	1,013	2,20	15,7	10,80	15,7	0,723
-20	1,395	1,009	2,28	16,2	12,79	16,2	0,716
-10	1,342	1,009	2,36	16,7	12,43	16,7	0,712
0	1,293	1,005	2,44	17,2	13,28	17,2	0,707
10	1,247	1,005	2,51	17,6	14,16	17,6	0,705
20	1,205	1,005	2,59	18,1	15,06	18,1	0,703
30	1,165	1,005	2,67	18,6	16,00	18,6	0,701
40	1,128	1,005	2,76	19,1	16,96	19,1	0,699
50	1,093	1,005	2,83	19,6	17,95	19,6	0,698
60	1,060	1,005	2,90	20,1	18,97	20,1	0,696
70	1,029	1,009	2,96	20,6	20,02	20,6	0,694
80	1,000	1,009	3,05	21,1	21,09	21,1	0,692
90	0,972	1,009	3,13	21,5	22,10	21,5	0,690
100	0,946	1,009	3,21	21,9	23,13	21,9	0,688
120	0,898	1,009	3,34	22,8	25,45	22,8	0,686
140	0,854	1,013	3,49	23,7	27,80	23,7	0,684
160	0,815	1,017	3,64	24,5	30,09	24,5	0,682
180	0,779	1,022	3,78	25,3	32,49	25,3	0,681
200	0,746	1,026	3,93	26,0	34,85	26,0	0,680
250	0,674	1,038	4,27	27,4	40,61	27,4	0,677
300	0,615	1,047	4,60	29,7	48,33	29,7	0,674
350	0,566	1,059	4,91	31,4	55,46	31,4	0,676
400	0,524	1,068	5,21	33,0	63,09	33,0	0,678
500	0,456	1,093	5,74	36,2	79,38	36,2	0,687
600	0,404	1,114	6,22	39,1	96,89	39,1	0,699
700	0,362	1,135	6,71	41,8	115,4	41,8	0,706
800	0,329	1,156	7,18	44,3	134,8	44,3	0,713
900	0,301	1,172	7,63	46,7	155,1	46,7	0,717
1000	0,277	1,185	8,07	49,0	177,1	49,0	0,719
1100	0,257	1,197	8,50	51,2	199,3	51,2	0,722
1200	0,239	1,210	9,15	53,5	233,7	53,5	0,724

Таблица 2. **Физические параметры двуокиси углерода СО** $_2$ (B=1.01·10⁵ Па) [7]

T, °C	ρ, κγ/m³	с _р , кДж/(кг∙К)	λ·10², Βτ/(м·К)	μ·10 ⁶ , H·c/м ²	v·10 ⁶ , m²/c	а·10 ⁶ м ² /с	Pr
0 100 200 300 400 500 600 700 800 900	1.9767 1.4470 1.1430 0.9440 0.8020 0.6980 0.6180 0.5550 0.5020 0.4600	0.8148 0.9136 0.9927 1.0567 1.1103 1.1547 1.1920 1.2230 1.2493 1.2715	14.7 22.8 30.9 39.1 47.2 54.9 62.1 68.7 75.1 80.9	14.0 18.2 22.4 26.4 30.2 34.0 37.7 41.1 44.6 48.2	7.09 12.6 19.2 27.3 36.7 47.2 58.3 71.5 85.3 100	3.28 6.21 9.83 14.1 19.1 24.6 30.8 36.6 43.2 49.9	0.780 0.733 0.715 0.712 0.709 0.713 0.723 0.730 0.741
1000	0.4230	1.2713	86.3	51.5	116	56.9	0.734

Таблица 3. **Физические параметры азота N**₂ (B=1.01·10⁵ Па) [7]

T, °C	ρ, _{ΚΓ/Μ} ³	с _{р,} кДж/(кг·К)	λ·10², Βτ/(м·Κ)	μ·10 ⁶ , H·c/м ²	v·10 ⁶ , м²/c	а·10 ⁶ м ² /с	Pr
0 100 200 300 400 500 600 700 800	1.250 0.916 0.723 0.597 0.508 0.442 0.392 0.352 0.318	1.030 1.034 1.043 1.060 1.082 1.106 1.129 1.151 1.171	24.3 31.5 38.5 44.9 50.7 55.8 60.4 64.2 67.2	16.7 20.7 24.2 27.7 30.9 33.9 36.9 39.6 42.3	13.3 22.5 33.6 46.4 60.9 76.9 94.3 113	6.89 11.6 18.3 25.5 33.3 41.1 49.1 57.0 65.4	0.705 0.678 0.656 0.652 0.659 0.672 0.689 0.710
800 900 1000	0.318 0.291 0.268	1.171 1.188 1.203	67.2 70.1 72.3	42.3 45.0 47.5	133 154 177	65.4 73.1 80.2	0.734 0.762 0.795

Таблица 4. **Физические параметры водорода Н** $_2$ (B=1.01·10⁵ Па) [7]

Т, ⁰ С	ρ, κγ/m³	с _{р,} кДж/(кг·К)	λ·10², Βτ/(м·Κ)	$\mu \cdot 10^6$, $H \cdot c/m^2$	v·10 ⁶ , м²/с	а·10 ⁶ м²/с	Pr
0	0.0899	14.19	172	8.36	93	48.6	0.688
100	0.0657	14.45	220	10.3	157	83.4	0.677
200	0.0519	14.50	264	12.1	233	126	0.666
300	0.0428	14.53	307	13.8	323	178	0.655
400	0.0364	14.58	348	15.4	423	236	0.644
500	0.0317	14.66	387	16.9	534	300	0.640
600	0.0281	14.78	427	18.3	656	370	0.635
700	0.0252	14.93	463	19.7	785	443	0.637
800	0.0228	15.11	500	21.1	924	523	0.638
900	0.0209	15.31	536	22.4	1070	603	0.640
1000	0.0192	15.52	571	23.7	1230	688	0.644

Таблица 5. **Физические свойства метана СН₄** ($B=1.01\cdot10^5$ Па) [7]

					-	, , ,	-	
	T, °C	ρ, κγ/м ³	с _р , кДж/(кг·К)	λ·10 ³ , Βτ/(м·K)	µ·10 ⁶ , Па∙с	v·10 ⁶ , m²/c	а·10 ⁶ м ² /с	Pr
•	0 100 200 300 400 500 600	0.7168 0.525 0.414 0.342 0.291 0.253 0.224	2.1654 2.4484 2.8068 3.1753 3.5295 3.8560 4.1529	30.7 46.5 63.7 82.3 102 122.1 144.2	10.39 13.24 15.89 18.34 20.69 22.95 25.20	14.5 25.1 38.2 53.5 71.9 90.8 113.0	9.81 36.11 55.00 75.83 99.44 125.30 155.00	0.734 0.698 0.703 0.707 0.717 0.726 0.726

Таблица 6. **Физические свойства этана** $\mathbf{C_2H_6}$ ($B=1.01\cdot10^5\ \Pi a)$ [7]

				7.2.2					
Т, ⁰ С	ρ, κγ/m³	с _р , кДж/(кг∙К)	λ·10 ³ , Βτ/(м·K)	µ·10 ⁶ , Па∙с	v·10 ⁶ , м ² /с	а·10 ⁶ м ² /с	Pr		
0	1.342	1.6471	19	8.60	6.41	8.58	0.746		
100	0.983	2.0674	31.9	11.38	11.6	15.66	0.738		
200	0.776	2.4899	47.5	14.12	18.2	24.98	0.741		
300	0.640	2.8696	65.4	16.79	26.2	35.55	0.736		
400	0.545	3.2138	85.5	19.32	35.6	48.61	0.726		
500	0.474	3.5190	107.9	21.97	46.4	64.72	0.715		
600	0.420	3.7869	132.6	24.52	58.5	83.61	0.701		

Таблица 7. **Физические свойства газообразного пропана** C_3H_8 ($B=1.01\cdot10^5$ Па) [7]

T, °C	ρ, κγ/m³	с _р , кДж/(кг·К)	$\lambda \cdot 10^3$, BT/(M·K)	µ·10 ⁶ , Па∙с	v·10 ⁶ , м ² /с	а·10 ⁶ м²/с	Pr
0	1.967	1.5495	15.2	7.50	3.8	5.00	0.762
100	1.440	2.0168	26.3	10.00	6.9	9.06	0.768
200	1.140	2.4581	40.1	12.45	10.9	14.36	0.763
300	0.939	2.8345	56.2	14.81	15.8	21.14	0.748
400	0.799	3.1610	74.8	17.16	21.6	29.72	0.727
500	0.694	3.4487	95.6	19.42	28.2	40.00	0.700
600	0.616	3.6974	118.6	21.77	35.6	52.22	0.678

Бухмиров В.В. Расчет коэффициента теплоотдачи (справочник) v.6

	27	.ров в.в.	. 1 40 101 110	оффиции		. отда тт (е		11/_ 110		
Таблиі	ца 8. Физи	ческие	свойства	воды на	линии	насыще	ния [3]			
Т, °С	р·10 ⁻⁵ , Па	ρ, _{ΚΓ/M} ³	с _р , кДж/ (кг·К)	λ·10 ² B _T / (м·K)	а·10 ⁸ м ² /с	µ10 ⁶ , Па с	v·10 ⁶ , м ² /с	β·10 ⁴ , K ⁻¹	σ·10 ⁴ , Н/м	Pr
	1.012	000.0	4.010	55.1	12.1	1700	1.700	0.62	756.4	12.67
0 10	1,013 1,013	999,9 999.7	4,212 4,191	55,1 57,4	13,1 13,7	1788 1306	1,789 1,306	-0,63 +0,7	756,4 741,6	13,67 9,52
20	1,013	999,7	4,191	57,4 59,9	14,3	1004	1,006	1,82	741,6 726,9	7,02
30	1,013	995,7	4,174	61,8	14,9	801,5	0,805	3,21	712,2	5,42
40	1,013	992,2	4,174	63,5	15,3	653,3	0,659	3,87	696,5	4,31
50	1,013	988,1	4,174	64,8	15,7	549,4	0,556	4,49	676,9	3,54
60	1,013	983,2	4,179	65,9	16,0	469,9	0,478	5,11	662,2	2,93
70	1,013	977,8	4,187	66,8	16,3	406,1	0,415	5,70	643,5	2,55
80	1,013	971,8	4,195	67,5	16,6	355,1	0,365	6,32	625,9	2,21
90	1,013	965,3	4,208	68,0	16,8	314,9	0,326	6,95	607,2	1,95
100	1,013	958,4	4,220	68,3	16,9	282,5	0,295	7,52	588,6	1,75
110	1,43	951,0	4,223	68,5	17,0	259,0	0,272	8,08	569,0	1,60
120	1,98	943,1	4,250	68,6	17,1	237,4	0,252	8,64	548,4	1,74
130	2,7	934,8	4,266	68,6	17,2	217,8	0,233	9,19	528,8	1,36
140	3,61	926,1	4,287	68,5	17,2	201,1	0,217	9,72	507,2	1,26
150	4,76	917,0	4,313	68,4	17,3	186,4	0,203	10,3	486,6	1,17
160	6,18	907,4	4,346	68,3	17,3	173,6	0,191	10,7	466,0	1,10
170	7,92	897,3	4,380	67,9	17,3	162,8	0,181	11,3	443,4	1,05
180	10,03	886,9	4,417	67,4	17,2	153,0	0,173	11,9	422,8	1,00
190	12,55	876,0	4,459	67,0	17,1	144,2	0,165	12,6	400,2	0,96
200	15,55	863,0	4,505	66,3	17,0	136,4	0,158	13,3	376,7	0,93
210	19,08	852,8	4,555	65,5	16,9	130,5	0,153	14,1	354,1	0,91
220	23,20	840,3	4,614	64,5	16,6	124,6	0,148	14,8	331,6	0,89
230	27,98	823,3	4,681	63,7	16,4	119,7	0,145	15,9	310,0	0,88
240	33,48	813,6	4,766	62,8	16,2	114,8	0,141	16,8	285,5	0,87
250	39,78	799,0	4,844	61,8	15,9	109,9	0,137	18,1	261,9	0,86
260	46,94	784,0	4,949	60,5	15,6	105,9	0,135	19,1	237,4	0,87
270	55,05	767,9	5,070	59,0	15,1	102,0	0,133	21,6	214,8	0,88
280	64,19	750,7	5,230	57,4	14,6	98,1	0,131	23,7	191,3	0,90
290	74,45	732,3	5,485	55,8	13,9	94,2	0,129	26,2	168,7	0,93
300	85,92	512,5	5,736	54,0	13,2	91,2	0,128	29,2	144,2	0,97
310 320	98,70 112,9	691,1 667,1	6,071 6,574	52,3 50,6	12,5 11,5	88,3 85,3	0,128 0,128	32,9 38,2	120,7 98,10	1,03 1,11
330	112,9	640,2	7,244	30,6 48,4	10,4	85,3 81,4	0,128	43,3	98,10 76,71	1,11
340	146,08	610,1	8,165	45,7	9,17	77,5	0,127	53,4	56,70	1,22
350	165,37	574,4	9,504	43,7	7,88	72,6	0,127	66,8	38,16	1,60
360	186.74	528,0	13,984	39,5	5,36	66,7	0.126	109	20,21	2,35
370	210,53	450,5	40,321	33,7	1,86	56,9	0,126	264	4,709	6,79
	,	,0	,	,,	-,	,-	-,0	_~.	.,,	

Таблица 9. Физические свойства водяного пара в состоянии насыщения [1]

					•			
Т, °С	р·10 ⁻⁵ , Па	ρ, κγ/m³	r , кДж/кг	с _р , кДж/ (кг·К)	λ·10 ² , Βτ/(м·К)	µ·10 ⁶ , Па∙с	v·10 ⁶ , m²/c	Pr
0,01	0,0061	0,00485	2500	1,861	1,697	9,156	1888	1,00
10	0,0123	0,00483	2477	1,869	1,770	9,493	1011	1,00
20	0,0234	0,01729	2453	1,877	1,824	9,746	563,7	1,00
30	0,0424	0,03037	2430	1,885	1,883	9,989	328,9	1,00
40	0,0738	0,05037	2406	1,895	1,953	10,270	200,7	1,00
50	0,1233	0,08303	2382	1,907	2,034	10,586	127,5	0,99
60	0,1992	0,1302	2358	1,923	2,122	10,921	83,88	0,99
70	0,3116	0,1981	2333	1,942	2,214	11,272	56,90	0,99
80	0,4736	0,2932	2309	1,967	2,309	11,620	39,63	0,99
90	0,7011	0,4232	2283	1,997	2,407	11,960	28,26	0,99
	.,	,,,,,,,		-,	_,	,,	,	-,
100	1,013	0,598	2256,822	2,135	2,372	11,97	20,02	1,08
110	1,43	0,826	2230,0	2,177	2,489	12,46	15,07	1,09
120	1,98	1,121	2202,8	2,206	2,593	12,85	11,46	1,09
130	2,7	1,496	2174,3	2,257	2,686	13,24	8,85	1,11
140	3,61	1,966	2145,0	2,315	2,791	13,54	6,89	1,12
150	4,76	2,547	2114,4	2,395	2,884	13,93	5,47	1,16
160	6,18	3,258	2082,6	2,479	3,012	14,32	4,39	1,18
170	7,92	4,122	2049,5	2,583	3,128	14,72	3,57	1,21
180	10,03	5,157	2015,2	2,709	3,268	15,11	2,93	1,25
190	12,55	6,394	1978,8	2,856	3,419	15,60	2,44	1,30
200		5 0.0	4040.5	2.022	2 5 45	45.00	2.02	
200	15,55	7,862	1940,7	3,023	3,547	15,99	2,03	1,36
210	19,08	9,588	1900,5	3,199	3,722	16,38	1,71	1,41
220	23,20	11,62	1857,8	3,408	3,896	16,87	1,45	1,47
230	27,98	13,99	1813,0	3,634	4,094	17,36	1,24	1,54
240	33,48	16,76	1765,6	3,881	4,291	17,76	1,06	1,61
250	39,78	19,98	1715,8	4,158	4,512	18,25	0,913	1,68
260	46,94	23,72	1661,4	4,468	4,803	18,84	0,794	1,75
270	55,05	28,09	1604,4	4,815	5,106	19,32	0,688	1,82
280	64,19	33,19	1542,9	5,234	5,489	19,91	0,600	1,90
290	74,45	39,15	1476,3	5,694	5,827	20,60	0,526	2,01
		,		,	ŕ	,		
300	85,92	46,21	1404,3	6,280	6,268	21,29	0,461	2,13
310	98,70	54,58	1325,2	7,118	6,838	21,97	0,403	2,29
320	112,9	64,72	1238,1	8,206	7,513	22,86	0,353	2,50
330	128,65	77,10	1139,7	9,881	8,257	23,94	0,310	2,86
340	146,08	92,76	1027,1	12,35	9,304	25,21	0,272	3,35
250	4.55.05		002.4	1.50/	10.50	2 - 50	0.004	4.05
350	165,37	113,6	893,1	16,24	10,70	26,58	0,234	4,03
360	186,74	144,0	719,7	23,03	12,79	29,14	0,202	5,23
370	210,53	203,0	438,4	56,52	17,10	33,75	0,166	11,10

Бухмиров В.В. Расчет коэффициента теплоотдачи (справочник) v.6

Таблица	10. Q	Ризические свойства масла М І	K [3	1

Т, °С	ρ, κγ/м³	с _р , кДж/(кг∙К)	λ, Βτ/(м·K)	µ·10 ⁴ , Па∙с	$v \cdot 10^{-6}$, m^2/c	β·10 ⁴ , Κ ⁻¹	Pr
10	911,0	1,645	0,1510	35414	3883	8,56	39000
20	903,0	1,712	0,1485	18560	1514	8,64	15800
30	894,5	1,758	0,1461	6180	691,2	8,71	7450
40	887,5	1,804	0,1437	3031	342,0	8,79	3810
50	879,0	1,851	0,1413	1638	186,2	8,86	2140
60	871,5	1,897	0,1389	961,4	110,6	8,95	1320
70	864,0	1,943	0,1363	603,3	69,3	9,03	858
80	856,0	1,989	0,1340	399,3	46,6	9,12	591
90	848,2	2,035	0,1314	273,7	32,3	9,20	424
100	840,7	2,081	0,1290	202,1	24,0	9,28	327
110	838,0	2,127	0,1264	145,2	17,4	9,37	245
120	825,0	2,173	0,1240	110,4	13,4	9,46	193,5
130	817,0	2,219	0,1214	87,31	10,7	9,54	160
140	809,2	2,265	0,1188	70,34	8,7	9,65	133,3
150	801,6	2,311	0,1168	56,90	7,1	9,73	113,5

Таблица 11. Физические свойства трансформаторного масла [7]

T,	ρ,	с _р ,	λ,	µ·10 ⁴ ,	v·10 ⁶ ,	β·10 ⁴ ,	Pr
°C	κγ/м³	кДж/(кг·К)	Βτ/(M · K)	Па∙с	м²/с	K ⁻¹	
0	892,5	1,549	0,1123	629,8	70,5	6,80	866
10	886,4	1,620	0,1115	335,5	37,9	6,85	484
20	880,3	1,666	0,1106	198,2	22,5	6,90	298
30	874,2	1,729	0,1008	128,5	14,7	6,95	202
40	868,2	1,788	0,1090	89,4	10,3	7,00	146
50	862,1	1,846	0,1082	65,3	7,58	7,05	111
60	856,0	1,905	0,1072	49,5	5,78	7,10	87,8
70	850,0	1,964	0,1064	38,6	4,54	7,15	71,3
80	843,9	2,026	0,1056	30,8	3,66	7,20	59,3
90	837,8	2,085	0,1047	25,4	3,03	7,25	50,5
100	831,8	2,144	0,1038	21,3	2,56	7,30	43,9
110	825,7	2,202	0,1030	18,1	2,20	7,35	38,8
120	819,6	2,261	0,1022	15,7	1,92	7,40	34,9

Таблица	12. Физич	еские свойств	а масла МС	-20 в завис	имости от	температ	уры [3]
						4	

		cckne cbone i b					J P == [e]
Т, ⁰ С	ρ, κγ/м ³	с _р , кДж/(кг·К)	λ, Βτ/(м·K)	µ·10 ⁴ , Па∙с	v·10 ⁶ , м²/с	β·10 ⁴ , Κ ⁻¹	Pr
-10	990,3	1,951	0,136	_	_	6,24	_
0	903,6	1,980	0,135	_	_	6,24	_
+10	897,9	2,010	0,135	_	_	6,31	_
20	892,3	2,043	0,134	10026	1125	6,35	15400
30	886,6	2,072	0,132	4670	526	6,38	7310
40	881,0	2,106	0,131	2433	276	6,42	3890
50	875,3	2,135	0,130	1334	153	6,46	2180
60	869,6	2,165	0,129	798,5	91,9	6,51	1340
70	864,0	2,198	0,128	498,3	58,4	6,55	865
80	858,3	2,227	0,127	336,5	39,2	6,60	588
90	852,7	2,261	0,126	234,4	27,5	6,64	420
100	847,0	2,290	0,126	171,7	20,3	6,69	315
110	841,3	2,320	0,124	132,4	15,7	6,73	247
120	835,7	2,353	0,123	101,0	12,1	6,77	193
130	830,0	2,382	0,122	79,76	9,61	6,82	156
140	824,4	2,420	0,121	61,80	7,5	6,87	123
150	818,7	2,445	0,120	53,17	6,5	6,92	108

Таблица 13. Теплофизические свойства масла АМТ-300 [8]

T °C	Р _н кПа	ρ кг/м ³	λ Bt/(м·K)	h' кДж/кг	с _р кДж/(кг·К)	v·10 ⁶ м²/с	Pr
20	-	959	0,120	31,2	1,60	159	2030
40	-	948	0,119	64,0	1,68	44,6	596
60	-	937	0,117	96,5	1,73	16,8	233
80	-	925	0,115	134,5	1,81	8,46	123
100	-	913	0,114	170,0	1,87	5,17	77,6
120	-	901	0,112	208,2	1,94	4,44	53,8
140	0,9	889	0,111	248,0	2,01	2,47	39,7
160	1,3	879	0,108	288,0	2,08	1,77	29,8
180	1,8	863	0,106	330,0	2,14	1,31	22,9
200	2,8	849	0,104	374,0	2,22	1,09	19,9
220	4,2	835	0,102	418,0	2,28	0,914	16,5
240	6,5	822	0,100	462,0	2,34	0,775	15,0
260	10,2	808	0,099	510,0	2,42	0,663	13,1
280	15,8	794	0,095	556,0	2,48	0,569	11,8
300	24,8	781	0,093	612,0	2,53	0,507	10,8
320	30,9	767	0,091	672,0	2,62	0,465	10,1
340	66,6	753	0,088	715,0	2,68	0,406	9,3
360	90,3	740	0,086	770,0	2,73	0,359	8,5

Таблица 14. Физические свойства аммиачного пара в состоянии насыщения [7]

Tuominga 1 1. This receive	ne ebonerba ammana mor	o napa b cocronnin naci	ищении [7]
T,	р·10 ^{−5} ,	г ,	ρ,
°C	Па.	кДж/кг	_{κΓ/M} ³
-40	0,7464	1387,2	0,645
-30	1,2443	1358,6	1,038
-20	1,9788	1554,6	1,604
-10	3,0253	1296,5	2,390
0	4,466	1262,5	3,542
10	6,396	1226,1	4,859
20	10,776	1187,2	6,694
30	12,133	1143,5	9,034
40	16,167	1100,6	12,005

Таблица 15. Физические свойства жидкого аммиака в состоянии насыщения [7]

Т, ⁰ С	р·10 ^{−5} , Па.	ρ, κγ/m³	c_p , Дж/(кг·К)	λ, Βτ/(M · K)	ν·10 ⁶ , _{м²/c}	β·10 ⁴ , K ⁻¹	Pr
-40 -30 -20 -10 0	0,7464 1,2443 1,9788 3,0253 4,466 6,396	690,0 677,7 665,0 652,0 638,6	4,442 4,47 4,401 4,549 4,594	0,629 0,608 0,585 0,563 0,540	0,355 0,304 0,264 0,245	17,28 18,32 19,32 20,25 21,12 22,54	1,95 1,77 1,56 1,38 1,33
20 30 40	10,776 12,133 16,167	610,3 595,2 579,5	4,708 4,777 4,860	0,494 0,472 0,449	0,227 0,222 0,216	23,86 25,66 33,14	1,32 1,335 1,33

Таблица 16. **Физические свойства дымовых газов** [3] $(B{=}1,01{\cdot}10^5~\Pi a;~~\overline{p}_{CO_2}=0,13;~~\overline{p}_{H_2O}=0,11;~~\overline{p}_{N_2}=0,76)$

Т,	ρ,	с _Р ,	λ·10²,	а·10 ⁶ ,	µ·10 ⁶ ,	v·10 ⁶ ,	Pr
°С	κΓ/м ³	кДж/(кг·К)	Βτ/(м·K)	м ² /с	Па∙с	м²/с	
0 100 200 300 400 500 600 700 800 900 1100 1100	1,295 0,950 0,748 0,617 0,525 0,457 0,405 0,363 0,330 0,301 0,275 0,257 0,240	1,042 1,068 1,097 1,122 1,151 1,185 1,214 1,239 1,264 1,290 1,306 1,323 1,340	2,28 3,13 4,01 4,84 5,70 6,56 7,42 8,27 9,15 10,0 10,90 11,75 12,62	16,9 30,8 48,9 69,9 94,3 121,1 150,9 183,8 219,7 258,0 303,4 345,5 392,4	15,8 20,4 24,5 28,2 31,7 34,8 37,9 40,7 43,4 45,9 48,4 50,7 53,0	12,20 21,54 32,80 45,81 60,38 76,30 93,613 112,1 131,8 152,5 174,3 197,1 221,0	0,72 0,69 0,67 0,65 0,64 0,63 0,62 0,61 0,60 0,59 0,58 0,57

Таблица 17. Физические свойства ртути и некоторых расплавленных металлов [3]

таолица 17. Физическ	ие свои	CIBA PIYII	1 и неко	горых рас	плавлен	іных мета	mior [2]
Металл	T, C	ρ, κτ/м ³	λ, Βτ / (м·K)	с _р , , кДж / (кг·К)	a·10 ⁶ , m²/c	v·10 ⁸ , м ² /с	$ m Pr \cdot 10^2$
Ртуть Нд	20	13500	7,90	0,1390	4,36	11,4	2,72
T_{nn} =-38,9 °C;	100	13350	8,95	0,1373	4,89	9,4	1,92
$T_{\text{KMII}} = 357 {}^{\circ}\text{C};$	150	13230	9,65	0,1373	5,30	8,6	1,62
r _{пп} =11,72 кДж/кг;	200	13120	10,3	0,1373	5,72	8,0	1,40
r _{ис} =291,8 кДж/кг	300	12880	11,7	0,1373	6,64	7,1	1,07
Олово Sn	250	6980	34,1	0,255	19,2	27,0	1,41
T _{пл} =231,9 °С;	300	6940	33,7	0,255	19,0	24,0	1,26
Т _{кип} =2270 °С;	400	6865	33,1	0,255	18,9	20,0	1,06
r _{пл} =58,2 кДж/кг; r _{ис} =3015 кДж/кг	500	6790	32,6	0,255	18,8	17,3	0,92
Висмут Ві	300	10030	13,0	0,151	8,61	17,1	1,98
T _{пл} =271 °С;	400	9910	14,4	0,151	9,72	14,2	1,46
T _{кип} =1477 °С;	500	9785	15,8	0,151	10,8	12,2	1,13
r _{пл} =50,2 кДж/кг;	600	9660	17,2	0,151	11,9	10,8	0,91
r _{ис} =855,4 кДж/кг							
Литий Li	200	515	37,2	4,187	17,2	111,0	6,43
$T_{nn}=179 {}^{\circ}\text{C};$	300	505	39,0	4,187	18,3	92,7	5,03
Ткип=1317 °С;	400	495	41,9	4,187	20,3	81,7	4,04
r _{пл} =661,5 кДж/кг;	500	484	45,3	4,187	22,3	73,4	3,28
r _{ис} =19595 кДж/кг							
Сплав	150	10550	9,8	0,146	6,39	28,9	4,50
56,5% Bi+43,5%	200	10490	10,3	0,146	6,67	24,3	3,64
Pb;	300	10360	11,4	0,146	7,50	18,7	2,50
$T_{nn}=123,5 {}^{\circ}C;$	400	10240	12,6	0,146	8,33	15,7	1,87
$T_{\text{кип}} = 1670 {}^{\circ}\text{C}$	500	10120	14,0	0,146	9,44	13,6	1,44
Сплав 25%	100	852	23,2	1,143	23,9	60,7	2,51
Na+75% K	200	828	24,5	1,072	27,6	45,2	1,64
$T_{nn} = -11 {}^{\circ}C;$	300	808	25,8	1,038	31,0	36,6	1,18
Т _{кип} =784 °С	400	778	27,1	1,005	34,7	30,8	0,89
	500	753	28,4	0,967	39,0	26,7	0,69
	600	729	29,6	0,934	43,6	23,7	0,54
	700	704	30,9	0,900	48,8	21,4	0,44
Натрий Na	150	916	84,9	1,356	68,3	59,4	0,87
T _{пл} =97,8 °С;	200	903	81,4	1,327	67,8	50,6	0,75
Т _{кип} =883 °С;	300	878	70,9	1,281	63,0	39,4	0,63
r _{пл} =113,26кДж/кг;	400	854	63,9	1,273	58,9	33,0	0,56
r _{ис} =4208 кДж/кг;	500	829	57,0	1,273	54,2	28,9	0,53

Литература

- 1. Задачник по тепломассообмену / Ф.Ф. Цветков, Р.В. Керимов, В.И.Величко; Под ред. Ф.Ф. Цветков. М.:Издательство МЭИ, 1997-136с
- 2. **Исаченко В.П. ,Осипов В.А. , Сукомел А.С.** _Теплопередача. М.:Энергоиздат, 1981. 416 с.
- 3. **Краснощеков Е.А.**, **Сукомел А.С.**_Задачник по теплопередаче. М.: Энергия, 1980. 288 с.
- 4. **Михеев М.А.** Основы теплопередачи. М. Л.: ГЭИ, 1956. 390 с.
- 5. **Галин Н.М., Кириллов Л.П.** Тепломассообмен (в ядерной энергетике). М.: Энергоатомиздат, 1987. 376 с.
- 6. **Теплотехнический** справочник/Под.ред. В.Н. Юренева и П.Д. Лебедева. Т. 2. М., Энергия 1976. 896 с.
- 7. **Проиышленные** печи.Справочное руководство для расчётов и проектирования / Казанцев Е.И. М., Металлургия, 1975 386 с.
- 8. **Промышленная** теплоэнергетика и теплотехника: Справочник М., 1983.
- 9. **Чечёткин А.В.** Высокотемпературные теплоносители. М., Энергия, 1971.
- 10. Практикум по теплопередаче: Учеб. пособие для вузов/ А.П. Солодов, Ф.Ф. Цветков, А.В. Елисеев, В.А. Осипова; Под ред. А.П. Солодова.— М.: Энергоатомиздат, 1986–296 с.

Содержание

1. Конвективная теплоотдача при свооодном движении	
текучей среды	3
1.1 Теплоотдача при свободной конвекции около вертикальных	
пластин и вертикальных труб	
(критериальные формулы В.П. Исаченко [2])	3
1.2. Теплоотдача при свободной конвекции около	
горизонтальных пластин	
(критериальные формулы В. П. Исаченко [2])	4
1.3. Теплоотдача при свободном движении текучей среды	
при малых числах Рэлея ($Ra_{md} < 1$)	5
1.4. Теплоотдача при свободной конвекции около горизонтальн	ιых
цилиндров (труб)	
(критериальная формула И.М. Михеевой [4])	6
1.5. Теплоотдача при свободной конвекции около	
вертикальных пластин, вертикальных труб, горизонтальнь	IX
пластин, горизонтальных труб и шаров	
(критериальная формула М.А. Михеева)	6
1.6. Теплообмен при свободном движении текучей среды	
в ограниченном пространстве	7
2. Конвективная теплоотдача при вынужденном движении	
текучей среды в трубах и каналах	8
2.1. Теплоотдача при движении флюида в прямых	
гладких трубах	8
2.1.1. Теплоотдача при ламинарном режиме движения	
текучей среды в трубах (Re ≤ 2300)	8
2.1.2. Теплоотдача при турбулентном режиме движения	
текучей среды в трубах ($\mathrm{Re} \geq 10^4$)	11
2.1.3. Теплоотдача при переходном режиме движения	
текучей среды в трубах ($2300 < \text{Re } < 10^4$)	12
2.1.4. Теплоотдача при движении газов в трубах	13
2.2. Теплоотдача при движении текучей среды в каналах	
произвольного поперечного сечения	14
2.3. Теплоотдача при турбулентном течении флюида	
в изогнутых трубах	14
3. Конвективная теплоотдача при вынужденном внешнем	
обтекании тел	15
3.1. Продольное обтекание пластины и внешней	
поверхности трубы	15
3.2. Теплоотдача при поперечном обтекании	

одиночной трубы	16	
3.3. Теплоотдача при поперечном обтекании трубного пучка	18	
4. Конвективный теплообмен при изменении агрегатного		
состояния вещества	20	
4.1. Теплоотдача при пленочной конденсации паров	21	
4.2. Теплоотдача при кипении жидкостей	22	
4.2.1. Пузырьковое кипение в большом объеме	22	
4.2.2 Пленочное кипение в большом объеме	23	
Перечень основных обозначений		
Приложение	26	
Литература	36	

РАСЧЕТ КОЭФФИЦИЕНТА КОНВЕКТИВНОЙ ТЕПЛООТДАЧИ (основные критериальные уравнения)

Методические указания к выполнению практических и лабораторных занятий

Составитель: БУХМИРОВ Вячеслав Викторович

Редактор М.А. Иванова Лицензия ЛР № 020264 от 15.12.96 г.

Подписано в печать . Формат $60\times84^1/_{16}$. Печать плоская. Усл.печ.л.0,93. Тираж . Заказ . Ивановский государственный энергетический университет Отпечатано в 153003 Иваново, ул. Рабфаковская, 34