Materials and Fabrication of 1 ¹/4Cr-¹/2Mo Steel Heavy Wall Pressure Vessels for High-pressure Hydrogen Service Operating at or Below 825 °F (441 °C)

API RECOMMENDED PRACTICE 934-C FIRST EDITION, MAY 2008

Materials and Fabrication of 1 ¹/4Cr-¹/2Mo Steel Heavy Wall Pressure Vessels for High-pressure Hydrogen Service Operating at or Below 825 °F (441 °C)

Downstream Segment

API RECOMMENDED PRACTICE 934-C FIRST EDITION, MAY 2008

Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.

Copyright © 2008 American Petroleum Institute

Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually and updated quarterly by API, 1220 L Street, N.W., Washington, D.C. 20005.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, D.C. 20005, standards@api.org.

Contents

		Page
1	Scope	1
2	References	1
3 3.1 3.2	Terms, Definitions, and Acronyms Terms and Definitions Acronyms	2
4	Design	4
5 5.1 5.2 5.3 5.4 5.5	Base Metal Requirements. Material Specification Steel Making Practice Chemical Composition Limits Heat Treatment. Mechanical Properties	4 5 5 5
6 6.1 6.2	Welding Consumable Requirements. Material Requirements Mechanical Requirements	6
7 7.1 7.2 7.3 7.4 7.5 7.6	Welding, Heat Treatment, and Production TestingGeneral Welding RequirementsWelding Procedure QualificationPreheat and Dehydrogenation Heat Treatment (DHT)Production Testing of Base Metal WeldsWeld Overlay or Integral CladFinal Postweld Heat Treatment (PWHT)	7 7 8 9 9
8 8.1 8.2 8.3 8.4 8.5 8.6	Nondestructive Testing (NDE) General NDE Prior to Fabrication NDE During Fabrication NDE After Fabrication and Prior to Final PWHT NDE After Final PWHT Positive Material Identification.	11 11 11 12 12
9	Hydrostatic Testing	12
10 11	Preparation for Shipping Documentation	
Figu 1	Location of Vickers Hardness Indentations	8
Table 1	e Base Metal Specifications	4

Introduction

This recommended practice applies to newly fabricated heavy wall pressure vessels in petroleum refining, petrochemical and chemical facilities in which hydrogen or hydrogen-containing fluids are processed at elevated temperature and pressure. It is based on decades of industry operating experience and the results of experimentation and testing conducted by independent manufacturers, fabricators, and users of heavy wall pressure vessels for this service.

Licensors and owners of process units in which these heavy wall pressure vessels are to be used may modify and/or supplement this recommended practice with additional proprietary requirements.

Materials and Fabrication of 1 ¹/₄Cr-¹/₂Mo Steel Heavy Wall Pressure Vessels for High-pressure Hydrogen Service Operating at or Below 825 °F (441 °C)

1 Scope

This recommended practice presents materials and fabrication requirements for new 1 ¹/₄Cr-¹/₂Mo steel heavy wall pressure vessels and heat exchangers for high-temperature, high-pressure hydrogen service. It applies to vessels that are designed, fabricated, certified, and documented in accordance with ASME *BPVC*, Section VIII, Division 1 or Division 2. This document may also be used as a resource for equipment fabricated of 1Cr-¹/₂Mo Steel.

This document may also be used as a resource when planning to modify an existing heavy wall pressure vessel.

The interior surfaces of these heavy wall pressure vessels may have an austenitic stainless steel or ferritic stainless steel weld overlay or cladding to provide additional corrosion resistance.

For this recommended practice, the heavy wall is defined as shell thickness 2 in. (50 mm) or greater but less or equal to 4 in. (100 mm). Integrally reinforced nozzles, flanges, tubesheets, bolted channel covers, etc. can be greater than 4 in. (100 mm). At shell or head thicknesses greater than 4 in. (100 mm), $1 \frac{1}{4}$ Cr- $\frac{1}{2}$ Mo has been shown to have difficulty meeting the toughness requirements given in this document. Although outside of the scope of this document, it can be used as a resource for vessels down to 1 in. (25 mm) shell thickness with changes defined by the purchaser.

This recommended practice is not intended for use for equipment operating above 825 °F (441 °C) or in the creep range.

2 References

The following referenced documents are cited in the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

API RP 582, Welding Guidelines for the Chemical, Oil, and Gas Industries

API RP 934-A, Materials and Fabrication of 2 ¹/₄Cr-1Mo, 2 ¹/₄Cr-1Mo-¹/₄V, 3Cr-1Mo, and 3Cr-1Mo-¹/₄V Steel Heavy Wall Pressure Vessels for High-temperature, High-pressure Hydrogen Service

API TR 938-A, An Experimental Study of Causes and Repair of Cracking of 1 ¹/₄Cr-¹/₂Mo Steel Equipment

ASME¹ Boiler and Pressure Vessel Code, Section II—Materials; Part A—Ferrous Material Specifications; Part C, Specification for Welding Rods, Electrodes and Filler Metals; Part D—Properties

ASME Boiler and Pressure Vessel Code, Section V—Nondestructive Examination

ASME Boiler and Pressure Vessel Code, Section VIII—Rules for Construction of Pressure Vessels, Division 1

ASME Boiler and Pressure Vessel Code, Section VIII—Rules for Construction of Pressure Vessels, Division 2— Alternative Rules

ASME Boiler and Pressure Vessel Code, Section IX—Welding and Brazing Qualifications

ASME SA-20, Specification for General Requirements for Steel Plates for Pressure Vessels

¹ASME International, 3 Park Avenue, New York, New York 10016, www.asme.org.

ASME SA-182, Specification for Forged or Rolled Alloy-Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service

ASME SA-263, Standard Specification for Corrosion-Resisting Chromium Steel-Clad Plate, Sheet, and Strip

ASME SA-264, Standard Specification for Stainless Chromium-Nickel Steel-Clad, Sheet and Strip

ASME SA-335, Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service

ASME SA-336, Standard Specification for Alloy Steel Forgings for Pressure and High-Temperature Parts

ASME SA-369, Carbon and Ferritic Alloy Steel Forged and Bored Pipe for High-Temperature Service

ASME SA-387, Standard Specification for Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum

ASME SA-435, Standard Specification for Straight-Beam Ultrasonic Examination of Steel Plates

ASME SA-578, Standard Specification for Straight-Beam Ultrasonic Examination of Plain and Clad Steel Plates for Special Applications

ASNT² RP SNT-TC-1A, Personnel Qualification and Certification in Nondestructive Testing

ASTM³ G-146, Standard Practice for Evaluation of Disbonding of Bimetallic Stainless Alloy/Steel Plate for Use in High-Pressure, High-Temperature Refinery Hydrogen Service

AWS⁴ A4.2, Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Austenitic-Ferritic Stainless Steel Weld Metal

AWS A4.3, Standard Methods for Determination of the Diffusible Hydrogen Content of Martensitic, Bainitic, and Ferritic Steel Weld Metal Produced by Arc Welding

WRC⁵ Bulletin 342, Stainless Steel Weld Metal: Prediction of Ferrite Content

3 Terms, Definitions, and Acronyms

3.1 Terms and Definitions

For the purposes of this recommended practice, the following terms and definitions apply.

3.1.1

ASME Code

ASME *Boiler and Pressure Vessel Code*, Section VIII, Division 1 and Division 2, including applicable addenda and Code Cases.

3.1.2

final PWHT

The last postweld heat treatment after fabrication of the vessel and prior to placing the vessel in service.

⁴American Welding Society, 550 N.W. LeJeune Road, Miami, Florida 33126, www.aws.org.

2

²American Society for Nondestructive Testing, Inc., 1711 Arlingate Lane, P.O. Box 28518, Columbus, Ohio 43228, www.asnt.org. ³ASTM International, 100 Bar Harbor Drive, West Conshohocken, Pennsylvania 19428, www.astm.org.

⁵Welding Research Council, 3 Park Avenue, 27th Floor, New York, New York 10016, www.forengineers.com.

3.1.3

hot forming

Mechanical forming of vessel components above the final PWHT temperature.

3.1.4

Larson-Miller parameter

Formula for evaluating heat treatments:

LMP = $T \times (20 + \log t)$

where

- T is the temperature in °K;
- *t* is time in hours.

3.1.5

maximum PWHT

Specified heat treatment of test specimens used to simulate all fabrication heat treatments including austenitizing, tempering, the final PWHT, a PWHT cycle for possible shop repairs, and a minimum of one extra PWHT for future use by the owner.

NOTE To determine the equivalent time at one temperature (within the PWHT range), the Larson-Miller parameter may be used; results to be agreed upon by purchaser and manufacturer.

3.1.6

minimum PWHT

Specified heat treatment of test specimens used to simulate the minimum heat treatments (austenitizing, tempering and one PWHT cycle).

NOTE To determine the equivalent time at one temperature (within the PWHT range), the Larson-Miller parameter formula may be used; results to be agreed upon by purchaser and manufacturer.

3.2 Acronyms

For the purposes of this recommended practice, the following acronyms apply.

CMTR	certified material test report
DHT	dehydrogenation heat treatment
FN	ferrite number
HAZ	heat-affected zone
HBW	Brinell hardness with tungsten carbide indenter
HV	Vickers hardness
ISR	intermediate stress relief
MDMT	minimum design metal temperature
мт	magnetic particle testing

NDE	nondestructive examination
PQR	procedure qualification record
РТ	penetrant testing
PWHT	post-weld heat treatment
RT	radiographic testing
UT	ultrasonic testing
WPS	welding procedure specification

4 Design

4.1 Design and manufacture should conform to the ASME *BPVC*, Section VIII, Division 1 or Division 2, as applicable. The latest edition including addenda effective through the date of the purchase agreement should be used.

4.2 Design issues are typically covered by a manufacturer's design report that shows compliance of the design with the user's design document, ASME Code strength calculations, drawings, and local stress analysis for extra loads, and special design requirements, if required.

4.3 This recommended practice is not intended to cover design issues other than those listed as follows.

- a) The minimum design thickness should not take any credit for the corrosion allowance and/or weld overlay or clad thickness.
- b) Weld seam layouts should provide that all welds are accessible for fabrication and in-service NDE such as RT, UT, MT, and PT.
- c) Nozzle necks should have transition to the vessel body as shown in the ASME *BPVC*, Section VIII, Division 2, Table 4.2.13. With the purchaser's approval, nozzles with nominal size 4 in. (100 mm) and less may be fabricated in accordance with the ASME *BPVC*, Section VIII, Division 2, Table 4.2.10, Detail 3 through Detail 7, with integral reinforcement.

5 Base Metal Requirements

5.1 Material Specification

5.1.1 Base metals should be in accordance with the applicable ASME specifications indicated in Table 1.

Table 1—Base Metal Specifications

S	teel	Plate	Forgings	Pipe
1 ¹ /40	Cr- ¹ /2Mo	SA 387 Gr. 11, Class 1 or Class 2	SA 182 Gr. F11, Class 2 or Class 3 SA 336 Gr. F11, Class 2 or Class 3	SA 335, Grade P11 SA 369, Grade FP11

5.1.2 All external attachments such as lugs, clips etc. welded directly to the pressure boundary should be of the same material as the pressure boundary material.

4

5.1.3 Nozzles should be manufactured from forgings. For thicker nozzles, 2 ¹/₄Cr-1 Mo may be used to ensure that toughness requirements are met. When using 2 ¹/₄Cr-1 Mo, appropriate weld procedures with higher preheat, PWHT temperatures, etc. should be used. Welding procedures should be approved by the purchaser.

5.2 Steel Making Practice

In addition to the steel making practice outlined in the applicable specifications, the steels should be vacuum degassed.

5.3 Chemical Composition Limits

For 1 ¹/₄Cr-¹/₂Mo steel, all plate and forging materials should be made to fine grain practice and should meet the following additional chemical requirements by heat analysis.

X-bar = $(10P + 5Sb + 4Sn + As)/100 \le 15 \text{ ppm}$

where

P, Sb, Sn, and As are in ppm.

Additionally

- C is 0.15 wt % max;
- P is 0.007 wt % max;
- S is 0.007 wt % max;
- Cu is 0.20 wt % max; and
- Ni is 0.30 wt % max.

5.4 Heat Treatment

All product forms should be normalized and tempered (N&T) or quenched and tempered (Q&T) to meet the required mechanical properties. For equal to or greater than 2 in. (50 mm) thickness, Q&T is typically required to meet the properties specified in this recommended practice.

5.5 Mechanical Properties

5.5.1 Location of Test Specimens

Test specimens for establishing the tensile and impact properties should be removed from the following locations:

a) Plate—from each plate transverse to the rolling direction in accordance with ASME SA-20 at the standard test locations and at the 1/2T location. When permitted by the applicable product specification, coupons for all tests should be obtained from the 1/2T location only. If required, 1/2T specimens should be used for hot tensile test.

b) Forging—from each heat transverse to the major working direction in accordance with ASME SA-182 or ASME SA-336, and test specimens should be taken at 1/2T of the prolongation or of a separate test block. A separate test block, if used, should be made from the same heat and should receive substantially the same reduction and type of hot working as the production forgings that it represents and should be of the same nominal thickness as the production forgings. The separate test forging should be heat treated in the same furnace charge and under the same conditions as the production forgings.

c) Pipe—from each heat and lot of pipe, transverse to the major working direction in accordance with ASME SA-530 except that test specimens should be taken from 1/2T.

5.5.2 Tensile Test Requirements

Tensile testing of plates and forging materials should comply with the applicable code(s) and the following additional requirements:

a) test coupon should be heat treated to represent the maximum postweld heat treatment per 3.1.6;

b) tensile properties at room temperature should meet the requirements of the applicable code(s).

5.5.3 Impact Testing Requirements

Charpy V-notch (CVN) impact testing should be performed for all 1 ¹/₄Cr-¹/₂Mo steel material used for pressure containing components except bolting. CVN impact tests should comply with the applicable code(s) and the following additional requirements.

- a) Test coupons from forgings should be oriented transverse to the major direction of metal flow.
- b) Test coupons heat treated to represent both the minimum and maximum post weld heat treatments that the equipment are expected to receive during fabrication per 3.1.5 and 3.1.6 should be tested and meet the following requirements. The minimum CVN impact values at 0 °F (-18 °C) should be 40 ft-lbs (54 Joules) average of three specimens and 20 ft-lbs (27 Joules) minimum for a single specimen. In addition, if the MDMT is < 0 °F (-18 °C), code requirements for impact testing must also be met. If the impact test at this MDMT of < 0 °F (<-18 °C) meet the 40/20 ft-lbs (54/27 Joules) criteria, retesting at 0 °F (-18 °C) is not needed.</p>

c) Percentage shear fracture should meet 25 % minimum. Lateral expansion should also be reported for information.

6 Welding Consumable Requirements

6.1 Material Requirements

6.1.1 The deposited weld metal, from each lot or batch of welding electrodes and each heat of filler wires, and each combination of filler wire and flux, should match the nominal chemical composition of the base metal to be welded.

6.1.2 The following chemical composition limits should be controlled. The chemical composition restriction applies to the heat analysis.

X-bar = $(10P + 5Sb + 4Sn + As)/100 \le 15$

where

P, Sb, Sn, and As are in ppm.

Additionally

- C is 0.15 wt % maximum,
- Cu is 0.20 wt % maximum, and
- Ni is 0.30 wt % maximum.

6.1.3 Low hydrogen welding consumables, including fluxes, having a maximum of 8 ml of diffusible hydrogen for every 100 g of weld metal, H8 per AWS A4.3, should be used. They should be baked, stored, and used in accordance with manufacturer's instructions (holding in electrode oven, length of time out of oven, etc).

6.2 Mechanical Requirements

6.2.1 Tensile Properties

The tensile properties of the deposited weld metal should meet those of the base metal in accordance with 5.5.2.

6.2.2 Impact Properties

Prior to the start of fabrication, each lot of electrodes, heat of filler wire, and combination of lot of flux and heat of wire, should be screened by impact testing of weld deposit in accordance with 5.5.3.

7 Welding, Heat Treatment, and Production Testing

7.1 General Welding Requirements

7.1.1 Base metal surfaces prior to welding or applying weld overlay should consist of clean metal, prepared by machining, grinding, or blast cleaning.

- 7.1.2 All welded joints including non-pressure attachments to the vessel body should:
- a) have full penetration joint design;
- b) be located so that full ultrasonic examination of welds can be made after fabrication and after installation is complete (in cases where this is not practical, the manufacturer should propose alternate NDE methods to verify weld quality), and;
- c) be made sufficiently smooth to facilitate NDE (MT, PT, UT, or RT), as applicable.

7.1.3 All welding should be completed prior to final PWHT except welding of internal attachments to the corrosion resistant weld overlay or cladding. For these attachment welds, a WPQT or mockup test should be performed to verify that this does not produce a HAZ in the base metal unless waived by the purchaser.

7.1.4 All weld repairs to base metal, weld joints and weld overlay should be performed using a repair welding procedure qualified in accordance with 7.2, and should meet all the same requirements as the normal fabrication welds.

7.2 Welding Procedure Qualification

7.2.1 Welding procedures should be qualified in accordance with ASME *BPVC*, Section IX, with the following additional requirements.

7.2.2 Base metal for welding procedure qualification tests should be made from the same ASME base metal specification (same P-number and Group number) and similar in chemistry as specified for the vessel, but either plate or forging may be used. The welding electrodes, wire and flux combination should be of the same type and brand as those to be used in production welding.

7.2.3 Two Vickers hardness traverses of the weld joint should be made on a weld sample in the minimum PWHT condition. These hardness traverses should be performed at ¹/₁₆ in. (1.5 mm) from the internal and external surfaces as shown in Figure 1. The HAZ readings should include locations as close as possible [approximately 8 mils

Figure 1—Location of Vickers Hardness Indentations

(0.2 mm)] to the weld fusion line. Each traverse includes ten hardness readings for a total of 20 hardness readings per weld sample. The hardness should not exceed 235 HV10.

7.2.4 A tensile test, transverse to the weld, should be performed on a weld joint of the heat treated test plate in the maximum PWHT condition and should meet the ambient temperature properties specified for the base metal in 5.5.2.

7.2.5 Charpy V-notch impact testing should be performed on weld metal and HAZ of the heat-treated test plate in the minimum and maximum PWHT conditions. These impact tests should be performed for each welding procedure and should meet the impact test temperature and acceptance requirements in 5.5.3.

7.2.6 All WPSs and PQRs should be approved by purchaser prior to fabrication.

7.3 Preheat and Dehydrogenation Heat Treatment (DHT)

7.3.1 Preheat

All base metals should be heated to a minimum of 300 °F (150 °C) during all welding, rolling, thermal cutting, and gouging operations (except during weld overlay, see 7.5.4). For butt welding and attachment welding, this preheat temperature should be maintained through the entire plate thickness for a distance of at least one plate thickness on either side of the weld but need not extend more than 4 in. (100 mm) in any direction from the edge of the weld.

The preheat temperature should be maintained until PWHT or DHT is performed in accordance with 7.3.2.

7.3.2 Dehydrogenation Heat Treatment (DHT)

The DHT should be performed at a minimum metal temperature of 570 °F (300 °C) for duration of one hour minimum.

ISR is not required. If the purchaser decides to require an ISR, the temperature and hold time should be 1100 °F (593 °C) for 2 hours minimum.

The purpose of DHT is to drive out hydrogen to minimize the risk of hydrogen cracking, and to minimize problems due to low as-welded toughness.

7.4 Production Testing of Base Metal Welds

7.4.1 Chemical Composition of Production Welds

7.4.1.1 The chemical composition of the weld deposit representing each different welding procedure should be checked by either laboratory chemical analysis or by using a portable analyzer of suitable accuracy and precision.

7.4.1.2 The chromium and molybdenum content of the weld deposits should be within the ranges specified in ASME *BPVC*, Section II, Part C for the specified electrodes.

7.4.2 Hardness of Weld Deposit and Adjacent Base Metal

7.4.2.1 After final PWHT (see 7.6) hardness determinations should be made for each pressure-retaining weld (including each nozzle and attachment welds) using a portable hardness tester.

7.4.2.2 Each hardness test result should be the average of three impressions at each test location. The test locations should include weld metal and base metals adjacent to the fusion line on both sides. All individual hardness values should be reported.

7.4.2.3 Hardness values should not exceed 225 HBW.

7.4.2.4 Hardness tests should be performed on each 10 ft (3 m) length of weld, or fraction thereof. This testing should be performed on the side exposed to the process environment when accessible.

7.4.3 Weld Impact Tests

Production test plates subjected to the minimum and maximum PWHT should be tested and should meet the requirements of 5.5.3.

7.5 Weld Overlay or Integral Clad

Both austenitic stainless steel and ferritic stainless steel may be used for integral cladding of steel. However, austenitic stainless steel is typically used for the corrosion resistant weld overlay, which also applies to clad restoration welding. The following special requirements should apply for the austenitic stainless steel overlay.

7.5.1 Material Requirements

The ferrite content of austenitic stainless steel weld overlay should be between 3 FN and 10 FN, as determined in accordance with WRC Bulletin 342, prior to any PWHT.

7.5.2 Disbonding Tests

Experience indicates that the risk of disbonding is low at the thicknesses and hydrogen charging levels at which 1 ¹/₄Cr-¹/₂Mo is used. If testing is considered, API 934-A can be used as a resource document. The purchaser should define testing requirements and acceptance criteria.

7.5.3 Weld Overlay Procedure Qualification

7.5.3.1 The selected weld overlay process and the number of layers should be qualified in accordance with ASME *BPVC*, Section IX.

7.5.3.2 Procedure qualification tests should be made on base metal of the same ASME specification as specified for the vessel, but either plate or forging may be used. Thickness of the test specimen should not be less than one-half the thickness of the vessel base metal or 2 in. (50 mm), whichever is less. The welding electrode, wire, and flux used for the weld overlay procedure qualification should be the same type and brand to be used in production.

7.5.3.3 The qualification test plates should be subjected to the maximum PWHT condition.

7.5.3.4 The chemical composition of the weld overlay should be checked by chemical analysis of samples taken at minimum thickness qualified in accordance with ASME *BPVC*, Section IX, Figure QW-462.5(a). It should meet the filler metal specification for the final layer. The chemical composition, determined by these samples, should be used to calculate the ferrite content in the austenitic stainless weld overlay. The ferrite content should be between 3 FN and 10 FN.

7.5.4 Preheat and Interpass Temperature During Weld Overlay

Base metal should be preheated to 200 $^{\circ}$ F (94 $^{\circ}$ C) for the first layer of weld overlay. The maximum interpass temperature should be 350 $^{\circ}$ F (175 $^{\circ}$ C). No preheating is required for the second and any subsequent layers of weld overlay.

7.5.5 Production Testing of Weld Overlay

7.5.5.1 Chemical Composition of Weld Overlay

The chemical composition of the weld overlay should be checked by laboratory chemical analysis of a sample taken at minimum specified thickness. This composition should meet the required chemistry of the specified overlay material (C, Cr, Ni, Mo, and Nb). At least one analysis for each shell ring and head, and one for each manual welding process for nozzles, should be required.

7.5.5.2 Ferrite Content of Weld Overlay

7.5.5.2.1 A magnetic instrument calibrated to AWS A4.2 should be used to check the ferrite content of the production weld overlay prior to any PWHT.

7.5.5.2.2 Calibration for the steel backing material in accordance with AWS A4.2, Appendix A7, Paragraph A7.1, may be used.

7.5.5.2.3 A minimum of six ferrite readings should be taken on the surface at each of the following locations:

a) at least ten locations, selected at random, should be checked for each shell ring and head;

b) two locations for each nozzle overlay (one at each end);

c) one location on cladding or overlay restoration of each Category A, Category B and Category D welds, if applicable.

7.5.5.2.4 The value of all ferrite readings at each location should meet the requirements of 7.5.1.

7.6 Final Postweld Heat Treatment (PWHT)

7.6.1 PWHT should comply with the minimum requirements of the applicable Code except that all 1 $^{1/4}Cr^{-1/2}Mo$ weld joints should be PWHT at 1225 to 1275 °F (660 to 690 °C).

7.6.2 The fabricated vessel should be post-weld heat treated as a whole in an enclosed furnace whenever possible. When vessel size does not allow PWHT as a whole in a furnace, PWHT may be performed sectionally according to the ASME *BPVC*.

7.6.3 The PWHT temperature should be strictly controlled, measuring both the vessel skin and furnace temperatures using thermocouples, including any portion of the vessel outside of the furnace. Any section of the vessel outside the furnace should be insulated such that the temperature gradient is not harmful. Thermocouple arrangements should be established for each heat treatment. The skin temperature should be measured and controlled on the inside and outside of the vessel.

7.6.4 Continuous time-temperature records of all PWHT operations should be documented to meet the requirements of the ASME *BPVC*.

8 Nondestructive Testing (NDE)

8.1 General

8.1.1 All NDE personnel should be qualified in accordance with ASNT SNT-TC-1A. Personnel interpreting and reporting results should also be qualified to the same practice.

8.1.2 Where references to ASME *BPVC*, Section VIII, Division 2, inspection requirements are listed, they should be applied to Division 1 or Division 2 vessels.

8.2 NDE Prior to Fabrication

8.2.1 Ultrasonic Testing (UT)

8.2.1.1 All base metal plates should be ultrasonically examined with 100 % scanning in accordance with ASME *BPVC*, Section V and SA 578, Level C, Supplementary Requirement S1, before forming.

8.2.1.2 All forgings for shell rings, nozzles, and manways should be ultrasonically examined with 100 % scanning in accordance with Paragraph 3.3.4 of ASME *BPVC*, Section VIII, Division 2.

8.2.2 Magnetic Particle Testing (MT) or Dye Penetrant Testing (PT)

8.2.2.1 Entire surfaces of all forgings, including welding edges, should be examined by MT in accordance with Paragraph 7.5.6 or by PT in accordance with Paragraph 7.5.7 of ASME *BPVC*, Section VIII, Division 2. Examination should be after finish machining but before welding.

8.2.2.2 For formed plates to be welded for shell rings and heads, welding edges should be examined by MT or PT.

8.2.2.3 If weld overlay is applied on the plate before forming, entire surface of all formed plates to be welded for shell rings and heads, including those for weld overlay, should be examined by MT or PT, as noted in 8.2.2.1.

8.3 NDE During Fabrication

8.3.1 MT should be performed after completion of all welds, including pressure-retaining base metal welds, weld build-up deposits, root passes, and attachment welds. MT should also be performed after any gouging or grinding operation including back gouging of root passes. MT should be in accordance with ASME *BPVC*, Section VIII, Division 2, Paragraph 7.5.6.

8.3.2 Temporary attachments should be minimized. All areas where temporary attachments have been removed should be examined by MT or PT in accordance with ASME *BPVC*, Section VIII, Division 2, Paragraph 7.5.6, or Paragraph 7.5.7, as applicable.

8.4 NDE After Fabrication and Prior to Final PWHT

8.4.1 Base Metal Welds

8.4.1.1 All pressure-retaining butt welds and vessel to support skirt welds should be fully examined by RT in accordance with Paragraph 7.5.3 of ASME *BPVC*, Section VIII, Division 2 or UW-51 of ASME *BPVC*, Section VIII, Division 1 before final PWHT, as applicable.

8.4.1.2 UT may be applicable in lieu of RT when the UT procedure fulfills the requirements of ASME *BPVC*, Section VIII, Division 2, Paragraph 7.5.5.

8.4.1.3 When RT is not practical for nozzle and skirt attachment welds, UT may be applied in lieu of RT.

8.4.2 Weld Overlay

Spot UT, four strips, equally spaced, approximately 3.2 in. (80 mm) wide along the full length of the vessel shell and one (1) strip approximately 3.2 in. (80 mm) wide across each head should be performed on weld overlay. UT should be in accordance with ASME SA-578, Level C.

8.5 NDE After Final PWHT

8.5.1 Base Metal Welds

8.5.1.1 All pressure-retaining base metal welds, including nozzles, should be fully examined by UT in accordance with ASME *BPVC*, Section VIII, Division 2, Paragraph 7.5.4.

8.5.1.2 All accessible welds should be examined by MT. An AC yoke method should be used to prevent arc strikes. PT may be substituted for MT whenever MT is impractical.

8.5.2 Weld Overlay

8.5.2.0.1 All stainless steel weld overlay, and attachments to the overlay, should be examined by PT in accordance with ASME *BPVC*, Section VIII, Division 2, Paragraph 7.5.7.

8.6 **Positive Material Identification**

Positive material identification (PMI) should be performed in accordance with the purchaser PMI specification.

9 Hydrostatic Testing

9.1 All pressure-retaining welded joints should be free from any scale and other foreign material before testing. All dirt, scale, sand, and other foreign material should be removed from the vessel.

9.2 Test water should not contain more than 50 ppm chlorides.

9.3 During the hydrostatic testing, the vessel metal temperature should be at least 30 °F (17 °C) above the MDMT, or 60 °F (15 °C), whichever is warmer.

9.4 The vessel should be drained and thoroughly dried immediately after testing.

10 Preparation for Shipping

10.1 Immediately after completion of final examination of the vessel, the interior of the vessel should be cleaned and dried. Heat drying and/or other evaporative means should not be used due to possible chloride contamination of stainless overlay or clad vessels.

10.2 All openings should be sealed with a steel cover and gasket, and the vessel should be filled with a minimum 5 psig (34.5 kPa) pressure of dry nitrogen gas. The nitrogen pressure should be maintained during transportation, erection and pre-commissioning. A non-removal tag should be attached with a warning that the vessel is filled with nitrogen.

10.3 For preservation during transportation, all exposed machined surfaces, such as flange faces, bolting, and stainless steel surfaces, should be protected by applying suitable grease, rust preventative oil or coating.

11 Documentation

The following documentation for all pressure-retaining parts, including welding consumables, should be completed prior to the start of fabrication and should be available for examination by the purchaser at the time of inspection. This documentation should be submitted to the purchaser at the completion of the project:

a) CMTRs showing all chemical composition and mechanical test results;

b) all heat treatment data showing hold time and temperature for PWHT and DHT;

c) X-bars;

d) welding procedure specifications with applicable procedure qualification records;

e) PMI Report.

Date:

Publications Order Form

Effective January 1, 2008.

API Members receive a 30% discount where applicable.

The member discount does not apply to purchases made for the purpose of resale or for incorporation into commercial products, training courses, workshops, or other commercial enterprises.

Available through IHS:

Phone Orders:	1-800-854-7179 303-397-7956	(Toll-free in the U.S. and Canada) (Local and International)
Fax Orders: Online Orders:	303-397-2740 global.ihs.com	(

"Ship To") Ship To (UPS will not deliver to a P.O. Box)

Invoice To (Check here if same as "Ship To")

Name:		Name:
Title:		Title:
Company:		Company:
Department:		Department:
Address:		Address:
City:	State/Province:	City:

City:	State/Province:
Zip/Postal Code:	Country:
Telephone:	
Fax:	
Email:	

City: State/Province: Zip/Postal Code: Country: Telephone: Fax: Email:

Quantity			Title		so★	Unit Price	Total
Payment Enclosed P.O. No. (Enclose Copy)		Subtotal					
Charge My IHS Account No.			Applicable Sales Tax (see below)				
UISA MasterCard American Express		American Express	Rush Shipping Fee (see below)				
_	Diners Club Discover		Shipping and Handling (see below)				
Credit Card No.:			Total (in U.S. Dollars)				
Print Name (As It Appears on Card): Expiration Date:			★ To be placed on Standing Order for future editions of this publication, place a check mark in the SO column and sign here:				
Signature:				Pricing an	d availabi	lity subject to change with	out notice.

Mail Orders - Payment by check or money order in U.S. dollars is required except for established accounts. State and local taxes, \$10 processing fee, and 5% shipping must be added. Send mail orders to: API Publications, IHS, 15 Inverness Way East, c/o Retail Sales, Englewood, CO 80112-5776, USA.

Purchase Orders - Purchase orders are accepted from established accounts. Invoice will include actual freight cost, a \$10 processing fee, plus state and local taxes.

Telephone Orders - If ordering by telephone, a \$10 processing fee and actual freight costs will be added to the order.

Sales Tax - All U.S. purchases must include applicable state and local sales tax. Customers claiming tax-exempt status must provide IHS with a copy of their exemption certificate. Shipping (U.S. Orders) - Orders shipped within the U.S. are sent via traceable means. Most orders are shipped the same day. Subscription updates are sent by First-Class Mail. Other options, including next-day service, air service, and fax transmission are available at additional cost. Call 1-800-854-7179 for more information.

Shipping (international Orders) - Standard international shipping is by air express courier service. Subscription updates are sent by World Mail. Normal delivery is 3-4 days from shipping date.

Rush Shipping Fee - Next Day Delivery orders charge is \$20 in addition to the carrier charges. Next Day Delivery orders must be placed by 2:00 p.m. MST to ensure overnight delivery. Returns - All returns must be pre-approved by calling the IHS Customer Service Department at 1-800-624-3974 for information and assistance. There may be a 15% restocking fee. Special order items, electronic documents, and age-dated materials are non-returnable.

THERE THIS CAME FROM.

API provides additional resources and programs to the oil and natural gas industry which are based on API Standards. For more information, contact:

API MONOGRAM[®] LICENSING PROGRAM

 Phone:
 202-962-4791

 Fax:
 202-682-8070

 Email:
 certification@api.org

API QUALITY REGISTRAR (APIQR®)

> ISO 9001 Registration
> ISO/TS 29001 Registration
> ISO 14001 Registration
> API Spec Q1[®] Registration
Phone: 202-962-4791
Fax: 202-682-8070
Email: certification@api.org

API PERFORATOR DESIGN REGISTRATION PROGRAM

 Phone:
 202-682-8490

 Fax:
 202-682-8070

 Email:
 perfdesign@api.org

API TRAINING PROVIDER CERTIFICATION PROGRAM (API TPCP[™])

 Phone:
 202-682-8490

 Fax:
 202-682-8070

 Email:
 tpcp@api.org

API INDIVIDUAL CERTIFICATION PROGRAMS (ICP®)

Phone:202-682-8064Fax:202-682-8348Email:icp@api.org

API ENGINE OIL LICENSING AND CERTIFICATION SYSTEM (EOLCS)

 Phone:
 202-682-8516

 Fax:
 202-962-4739

 Email:
 eolcs@api.org

API PETROTEAM (TRAINING, EDUCATION AND MEETINGS)

 Phone:
 202-682-8195

 Fax:
 202-682-8222

 Email:
 petroteam@api.org

API UNIVERSITYTM

 Phone:
 202-682-8195

 Fax:
 202-682-8222

 Email:
 training@api.org

Check out the API Publications, Programs, and Services Catalog online at www.api.org.

Copyright 2008 - API, all rights reserved. API, API monogram, APIQR, API Spec Q1, API TPCP, ICP, API University and the API logo are either trademarks or registered trademarks of API in the United States and/or other countries.

1220 L Street, NW Washington, DC 20005-4070 USA

202.682.8000

Additional copies are available through IHS

 Phone Orders:
 1-800-854-7179 (Toll-free in the U.S. and Canada) 303-397-7956 (Local and International)

 Fax Orders:
 303-397-2740

 Online Orders:
 global.ihs.com

Information about API Publications, Programs and Services is available on the web at **www.api.org**