TUNOBUE RPOEKTHUE PEWEHNA 503-09-7.84 MATERIAAU AAR OPDEKTUROBAHUR

ВОДООТВОДНЫЕ СООРЫЖЕНИЯ НА АВТОМОБИЛЬНЫХ ДОРОГАХ ОБШЕЙ СЕТИ СОЮЗА ССР

АЛЬБОМ I — Общие данные Конструктивные схемы и примеры применения водоотводных сооружений. Пидравлические расчеты водоотводных сооружений. Вспомогательный материал для гидравлических расчетов.

ТИПОВЫЕ ПРОЕКТНЫЕ РЕШЕНИЯ503-09-7.84

МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ

АЛЬБІМ І— Общие данные Конструктивные схемы и примеры применения водоотводных сооружений. Гидравлические расчеты водоотводных сооружений. Вспомогательный материал пла гиправлических расчетов.

PASPAGOTAHЫ

COM COMSAOPOPOEKT

FAABTPAHCOPOEKTA

MUHTPAHCCTPOS

ГЛАВНЫЙ ИНЖЕНЕР ИНСТИТИТА СИЛКОВ В.Р. ГЛАВНЫЙ ИНЖЕНЕР ПРОЕКТА СОСКИН О.Г.

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ МИНТРАНССТРОЕМ РАСПОРЯЖЕНИЕ ОТ 28.03.1984 г № АВ-80

P	n	n	c	n	Ж		u	IA	c
L	u	ш	Ł	ν	M	А	п	Y1	c

НАМ ПП. НА И МЕНОВАНИЕ ДОБЩИЕ ДАННЫЕ Примеры ОРГАНИЗАЦИИ ВОДООТВОДА Примеры ОРГАНИЗАЦИИ ВОДООТВОДА В УСЛИВИЯХ ОВРАГООБРАЗОВАНИЯ УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ЗАСЕВОМ ТРАВ ВО СЛОЮ РАСТИТЕЛЬНОГО ГРУНТА СИЛОВНЫЕ ПОКАЗАТЕЛИ ПО УКРЕПЛЕНИЮ ОТКОСОВ ГИДРОПОСЕВОМ С МУЛЬЧИРОВАНИЕМ И ЗАСЕВОМ ТРАВ ПО СЛОЮ РАСТИТЕЛЬНОГО ГРУНТА ТАБЛИЦА ДЛЯ ПОДБОРА ВИДОВОГО СОСТАВА И НОРМ ВЫСЕВА СЕМЯН МИЛОГОЛЕТНИХ ТРАВ ПРИ УКРЕПЛЕНИИ ОТКОСОВ В РАЗЛИЧНЫХ ЯРИРОДНЫХ ЗОНАХ. ПРИРОДНЫЕ ЗОНЫ СССР УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 при № − 0,5 м УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 при № − 0,5 м УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 при № − 0,5 м УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 при № − 0,5 м УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ ТО УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ ПО ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ ПО ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ ТО ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ ПО ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ ПО ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ ТО ОПРЕДЕЛЕНИЕМИЕМИЕМИЕМИЕМИЕМИЕМИЕМИЕМИЕМИЕМИЕМИЕМИ	
2 Примеры организации волоствола 3 Примеры организации волоствола в условиях оврагообразования 2 Чхрепление водостводных сооружений засебом трав по слою 3 СЗПОВНЫЕ ПОКАЗАТЕЛИ ПО УКРЕПЛЕНИЮ ОТКОСОВ ГИДРОПОСЕВОМ С МУЛЬЧРОВАНИЕМ И ЗАСЕВОМ ТРАВ ПО СЛОЮ РАСТИТЕЛЬНОГО ГРУНТА 4 Б Таблица для подбора видового состава и норм высева семян миоголетих трав при укреплении откосов в различных природных зонах. 7 Природные зоны СССР 3 В Укрепление водоотводных сооружений бетонными плитами размером 1,05 × 0,69 × 0,08 пли № - 0,5 м 3 Укрепление водоотводных сооружений бетонными плитами размером 1,05 × 0,69 × 0,08 пли № - 0,5 м 4 ПО Укрепление водоотводных сооружений бетонными плитами размером 0,85 × 0,49 × 0,08 при № - 0,5 м 5 ПО Укрепление водоотводных сооружений бетонными плитами размером 0,85 × 0,49 × 0,08 при № - 0,5 м 6 ПО Укрепление водоотводных сооружений бетонными плитами размером 0,85 × 0,49 × 0,08 при № - 0,5 м 6 ПО Укрепление водоотводных сооружений торкрет - бетоном 10 Окрепление водоотводных сооружений торкрет - бетоном 12 Окрепление водоотводных сооружений торкрет - бетоном 12 Окрепление водоотводных сооружений торкрет - бетоном 12 Поперечные сечения быстроток с трапецеилальным сечением 13 Окрепленые сечения быстроток с трапецеилальным сечением 14 Окрепленые бетонный быстроток с трапецеилальным сечением 15 Сборный железобетонный быстроток с прямоугольным сечением 17 Сборный железобетонный быстроток с прямоугольным сечением 17 Окрепление бетонный быстроток с трапецеилальным сечением 17 Окрепление бетонный быстроток с трапецеилальным сечением 17 Окрепление бетонный быстроток с трапецеилальным сечением 18 Окрепление бетонный быстроток с трапецеилальным сечением 19	N Страниц
Примеры организации водоотвода в условиях оврагообразования 2 укрепление водоотводных сооружений засевом трав во слою растительного грунта 3 сою мульчированием и засевом трав по слою растительного грунта 4 табайца для подбора видового состава и норм высева семян мирголетих трав при укреплении отхосов в различных природных зонах. 5 б жрепление водоотводных сооружений бетонными плитами размером 1,05 × 0,69 × 0,08 пли 16 - 0,5 м 7 жрепление водоотводных сооружений бетонными плитами размером 1,05 × 0,69 × 0,08 пли 16 - 0,5 м 8 хрепление водоотводных сооружений бетонными плитами размером 1,05 × 0,69 × 0,08 при 16 - 0,5 м 8 хрепление водоотводных сооружений бетонными плитами размером 0,85 × 0,49 × 0,08 при 16 - 0,5 м 9 хрепление водоотводных сооружений бетонными плитами размером 0,85 × 0,49 × 0,08 при 16 - 0,5 м 9 хрепление водоотводных сооружений бетонными плитами размером 0,85 × 0,49 × 0,08 при 16 - 0,5 м 10 хрепление водоотводных сооружений торкрет - бетоном 12 хрепление водоотводных сооружений торкрет - бетоном 14 поредельение длины и высоты укрепления в местах изменения движения потока 15 бетонных плит 15 бетонных плит 15 сборный быстроток из железобетонных телескопических лотков 16 скемы соединений заементов быстроток с трапецеидальным сечением 17 схемы соединений заементов быстроток с трапецеидальным сечением 17 схемы соединений заементов быстроток с трапецеидальным сечением 19	
ЗКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ЗАСЕВОМ ТРАВ ВО СЛОЮ В СУПОВНЫЕ ПОКАЗАТЕЛИ ПО УКРЕПЛЕНИЮ ОТКОСОВ ГИДРОПОСЕВОМ С МУЛЬЧИРОВАНИЕМ И ЗАСЕВОМ ТРАВ ПО СЛОЮ РАСТИТЕЛЬНОГО ГРУНТА Б ТАБЛИЦА ДЛЯ ПОДБОРА ВИДОВОГО СОСТАВА И НОРМ ВЫСЕВА СЕМЯН МНОГОЛЕТНИХ ТРАВ ПРИ УКРЕПЛЕНИИ ОТКОСОВ В РАЗЛИЧНЫХ ПРИРОД- НЫХ ЗОНАХ. 7 ПРИРОДНЫЕ ЗОНЫ СССР 8 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 ПРИ № - 0,5 М 9 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 ПРИ № - 0,5 М 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ № - 0,5 М 11 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ № - 0,5 М 12 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 13 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 14 ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 15 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИЛЛЬНЫМ СЕЧЕНИЕМ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛЬНЫМ СЕЧЕНИЕМ 19	17
РАСТИТЕЛЬНОГО ГРУНТА СМІОВНЫЕ ПОКАЗАТЕЛИ ПО УКРЕПЛЕНИЮ ОТКОСОВ ГИДРОПОСЕВОМ С МУЛЬЧИРОВАНИЕМ И ЗАСЕВОМ ТРАВ ПО СЛОГО РАСТИТЕЛЬНОГО ГРУНТА ТАБЛИЦА ДЛЯ ПОДБОРА ВИДОВОГО СОСТАВА И НОРМ ВЫСЕВА СЕМЯН МИОГОЛЕТНИХ ТРАВ ПРИ УКРЕПЛЕНИИ ОТКОСОВ В РАЗЛИЧНЫХ ПРИРОД- НЫХ ЗОНАХ. ПРИРОДНЫЕ ЗОНЫ СССР УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 ПЛИ НВ - 0,3 М УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 ПРИ НВ - 0,5 М УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ НВ - 0,5 М УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ НВ - 0,5 М УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ ТО УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ ТО ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ ТО ОПРЕДЕЛЕНИЕМ ТОРКРЕТ - БЕТОНОМ ТО ОПРЕТЕНИЕМ Т	18
С. С	1
МУДЬЧИРОВАНИЕМ И ЗАСЕВОМ ТРАВ ПО СЛОЮ РАСТИТЕЛЬНОГО ГРУНТА Б ТАБЛИЦА ДЛЯ ПОДБОРА ВИДОВОГО СОСТАВА И НОРМ ВЫСЕВА СЕМЯН МНОГОЛЕТНИХ ТРАВ ПРИ УКРЕПЛЕНИИ ОТКОСОВ В РАЗЛИЧНЫХ ПРИРОД- НЫХ ЗОНАХ. 7 ПРИРОДНЫЕ ЗОНЫ СССР 8 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 ПЛИ ПВ - 0,3 М 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 ПРИ ПВ - 0,5 М 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РА. МЕРОМ 0,85 × 0,49 × 0,08 ПРИ ПВ - 0,3 М 11 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ ПВ - 0,5 М 12 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 13 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 14 ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 15 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫССТРОТОКА С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 16 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 17 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 ОСТРОТОКИ С ТРАПЕЦЕИЛАЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКИ С ТРАПЕЦЕИЛАЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОК С ТРАПЕЦЕИЛАЛЬНЫМ СЕЧЕНИЕМ 19	19
ТАБАИЦА ДЛЯ ПОДБОРА ВИДОВОГО СОСТАВА И НОРМ ВЫСЕВА СЕМЯН МИОГОЛЕТИХ ТРАВ ПРИ ЧКРЕПЛЕНИИ ОТХОСОВ В РАЗАИЧНЫХ ПРИРОДНЫХ ЗОНАХ. 7 ПРИРОДНЫЕ ЗОНЫ СССР 8 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 пли hb - 0,3 м 9 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 при hb - 0,5 м 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РА. МЕРОМ 0,85 × 0,49 × 0,08 при hb - 0,3 м 9 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 при hb - 0,5 м 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 12 ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 12 ОПРЕДЕЛЕНИЕМ В МЕСТАХ ИЗМЕНЕНИЯ 13 БЕТОННЫХ ПЛИТ 14 ОПРЕДЕЛЕНИЕМ В БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 15 СБОРНЫЙ БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 17 СХЕМЫ СОЕДИНЕНИЙ ЗАЕМЕНТОВ БЫСТРОТОКА С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 18 ОМОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 18 ОМОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 19	20
МИОГОЛЕТНИХ ТРАВ ПРИ ЧКРЕПЛЕНИИ ОТКОСОВ В РАЗЛИЧНЫХ ПРИРОД- НЫХ ЗОНАХ. 7 ПРИРОДНЫЕ ЗОНЫ СССР 8 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 пли hb - 0,3 м 9 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 при hb - 0,6 м 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РА. МЕРОМ 0,85 × 0,49 × 0,08 при hb - 0,5 м 11 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 при hb - 0,6 м 12 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 13 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 14 ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 15 БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛАЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 ОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛАЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА	~~
7 ПРИРОДНЫЕ ЗОНЫ СССР 8 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 при hb - 0,3 м 9 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 при hb - 0,5 м 8 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РА. ЛЕРОМ 0,85 × 0,49 × 0,08 при hb - 0,3 м 9 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 при hb - 0,6 м 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 11 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 12 ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 13 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 14 ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 15 БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИЛЛЛЬНЫМ СЕЧЕНИЕМ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОЧГОЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛЛЬНЫМ СЕЧЕНИЕМ 19	ļ
В УКРЕПАЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПАИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 СП № 6 - 0,3 м 7 9 УКРЕПАЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПАИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 ПРИ № - 0,5 М 8 0 УКРЕПАЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПАИТАМИ РА. МЕРОМ 0,85 × 0,49 × 0,08 ПРИ № - 0,5 М 9 10 УКРЕПАЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПАИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ № - 0,6 М 10 УКРЕПАЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОАИТНЫМ БЕТОНОМ 12 УКРЕПАЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 12 ОПРЕДЕЛЕНИЕ ДАИНЫ И ОЫСОТЫ УКРЕПАЕНИЯ В МЕСТАХ ИЗМЕНЕНИЯ ДВИЖЕНИЯ ПОТОКА 13 БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 14 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 15 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 16 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОЧГОЛЬНЫМ СЕЧЕНИЕМ 17 СХЕМЫ СОЕДИНЕНИЙ ЗАЕМЕНТОВ БЫСТРОТОКА 18 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 19	21
РАЗМЕРОМ 1,05 × 0,69 × 0.08 ЛЛИ № 0,03 М 7 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 1,05 × 0,69 × 0,08 ПРИ № -0,5 М 8 О УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РА. МЕРОМ 0,85 × 0,49 × 0,08 ПРИ № -0,3 М 9 И УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ № -0,6 М 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 11 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 12 ОПРЕДЕЛЕНИЕ ДЛИНЫ И ВЫСОТЫ УКРЕПЛЕНИЯ В МЕСТАХ ИЗМЕНЕНИЯ ДВИЖЕНИЯ ПОТОКА 13 БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ 14 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИЛЛЬНЫМ СЕЧЕНИЕМ 15 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 16 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 17 СХЕМЫ СОЕДИНЕНИЙ ЗЛЕМЕНТОВ БЫСТРОТОКА 18 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛЬНЫМ СЕЧЕНИЕМ 19	22
9 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 4,05 × 0,69 × 0,08 при hb - 0,6 м 10 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РА. ЛЕРОМ 0,85 × 0,49 × 0,08 при hb - 0,3 м 11 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 при hb - 0,6 м 12 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 13 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 14 ОПРЕДЕЛЕНИЕ ДЛИНЫ И ВЫСОТЫ УКРЕПЛЕНИЯ В МЕСТАХ ИЗМЕНЕНИЯ ДВИЖЕНИЯ ПОТОКА 15 БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛАЛЬНЫМ СЕЧЕНИЕМ 19	1
РАЗМЕРОМ 1,05 × 0,69 × 0,08 при hв - 0,5 м 9 Укрепление водоотводных сооружений бетонными плитами ра. мером 0,85 × 0,49 × 0,08 при hв - 0,5 м 9 Укрепление водоотводных сооружений бетонными плитами размером 0,85 × 0,49 × 0,08 при hв - 0,6 м 12 Укрепление водоотводных сооружений монолитным бетоном 13 Укрепление водоотводных сооружений торкрет - бетоном 14 Определение длины и бысоты укрепления в местах изменения движения потока 15 Быстроток с трапецеидларным сечением из сборных бетонных плит 16 Поперечные сечения быстротока с трапецеидларным сечением из бетонных плит 17 Сборный быстроток из железобетонных телескопических лотков 16 сборный железобетонный быстроток с прямочгольным сечением 17 схемы соединений элементов быстротока 18 Монолитный бетонный быстроток с трапецеидларным сечением 18	23
9 10 11 12 13 14 15 15 16 17 18 18 19 18 19 19 10 10 10 11 12 13 14 15 15 16 16 17 17 18 18 18 18 19 19 19 19 19 19	1
РА. МЕРОМ 0,85 × 0,49 × 0,08 ПРИ № - 0.3 М УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ № - 0,6 М И УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ И УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ ОПРЕДЕЛЕНИЕ ДЛИНЫ И ОЫСОТЫ УКРЕПЛЕНИЯ В МЕСТАХ ИЗМЕНЕНИЯ ДВИЖЕНИЯ ПОТОКА БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ ИЗ БЕТОННЫХ ПЛИТ СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ ТО СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛАЛЬНЫМ СЕЧЕНИЕМ ТО МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛАЛЬНЫМ СЕЧЕНИЕМ ТО МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛЛАЛЬНЫМ СЕЧЕНИЕМ	24
11 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ БЕТОННЫМИ ПЛИТАМИ РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ № - 0,6 М 10 12 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 12 13 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 12 14 ОПРЕДЕЛЕНИЕ ДЛИНЫ И ВЫСОТЫ УКРЕПЛЕНИЯ В МЕСТАХ ИЗМЕНЕНИЯ ДВИЖЕНИЯ ПОТОКА 13 15 БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ 14 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 15 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 16 18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 17 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 20 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 19	
РАЗМЕРОМ 0,85 × 0,49 × 0,08 ПРИ № - 0.6 М 12 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 13 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 14 ОПРЕДЕЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 15 БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЯ В МЕСТАХ ИЗМЕНЕНИЯ 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 19	25
12 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ МОНОЛИТНЫМ БЕТОНОМ 13 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ - БЕТОНОМ 14 ОПРЕДЕЛЕНИЕ ДЛИНЫ И ОБІСОТЫ УКРЕПЛЕНИЯ В МЕСТАХ ИЗМЕНЕНИЯ ДВИЖЕНИЯ ПОТОКА 15 БЫСТРОТОК С ТРАПЕЦЕИДЛАЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДЛАЬНЫМ СЕЧЕНИЕМ ИЗ БЕТОННЫХ ПЛИТ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДЛАЬНЫМ СЕЧЕНИЕМ 19	1
13 УКРЕПЛЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ ТОРКРЕТ-БЕТОНОМ 14 ОПРЕДЕЛЕНИЕ ДЛИНЫ И ВЫСОТЫ УКРЕПЛЕНИЯ В МЕСТАХ ИЗМЕНЕНИЯ 15 БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 20 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 19	26
44 ОПРЕДЕЛЕНИЕ ДЛИНЫ И ВЫСОТЫ УКРЕПЛЕНИЯ В МЕСТАХ ИЗМЕНЕНИЯ ДВИЖЕНИЯ ПОТОКА 15 БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ ИЗ БЕТОННЫХ ПЛИТ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 20 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 19	27
ДВИЖЕНИЯ ПОТОКА 15 БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ 14 16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 18 СБОРНЫЙ ЖЕЛЕЗОБЕТИННЫЙ БЫСТРОТОК С ПРЯМОЧГОЛЬНЫМ СЕЧЕНИЕМ 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 19	28
15 БЫСТРОТОК С ТРАПЕЦЕИДААЬНЫМ СЕЧЕНИЕМ ИЗ СБОРНЫХ БЕТОННЫХ ПЛИТ 14 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ ИЗ БЕТОННЫХ ПЛИТ 15 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 16 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОЧГОЛЬНЫМ СЕЧЕНИЕМ 17 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДЛАЛЬНЫМ СЕЧЕНИЕМ 19	1
16 ПОПЕРЕЧНЫЕ СЕЧЕНИЯ БЫСТРОТОКА С ТРАПЕЦЕИЛАЛЬНЫМ СЕЧЕНИЕМ ИЗ БЕТОННЫХ ПАИТ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 16 18 СБОРНЫЙ ЖЕЛЕЗОБЕТИННЫЙ БЫСТРОТОК С ПРЯМОЧГОЛЬНЫМ СЕЧЕНИЕМ 17 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 20 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛАЛЬНЫМ СЕЧЕНИЕМ 19	29
ИЗ БЕТОННЫХ ПАИТ 17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 16 18 СБОРНЫЙ ЖЕЛЕЗОБЕТИНЫЙ БЫСТРОТОК С ПРЯМОУГОЛЬНЫМ СЕЧЕНИЕМ 17 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 20 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИПАЛЬНЫМ СЕЧЕНИЕМ 19	30
17 СБОРНЫЙ БЫСТРОТОК ИЗ ЖЕЛЕЗОБЕТОННЫХ ТЕЛЕСКОПИЧЕСКИХ ЛОТКОВ 16 СБОРНЫЙ ЖЕЛЕЗОБЕТИНЫЙ БЫСТРОТОК С ПРЯМОЧГОЛЬНЫМ СЕЧЕНИЕМ 17 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКЛЕМ 18 20 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИПЛАЛЬНЫМ СЕЧЕНИЕМ 19	31
18 СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ БЫСТРОТОК С ПРЯМОЧГОЛЬНЫМ СЕЧЕНИЕМ 17 19 СХЕМЫ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ БЫСТРОТОКА 18 20 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИДАЛЬНЫМ СЕЧЕНИЕМ 19	32
20 МОНОЛИТНЫЙ БЕТОННЫЙ БЫСТРОТОК С ТРАПЕЦЕИЛАЛЬНЫМ СЕЧЕНИЕМ 19	33
	34
A 70 F BRURANTULM CETRUBLE ELIPTROTEK P HOYMOYNAKUM FEBSURM I 78	35
22. RAPAMETPHI H OFFEMAL MOHDANTHORD GETCHHORD GETCHTOTOKA. KOHCTPYK-	36
UNA MBA.	57
23 Конструкции гасителей у подошвы быстротока 22	38
24 Одноступенчатый бетонный перепад высотой 0,5 м в водоот-	
ВОДНЫХ СООРУЖЕНИЯХ С ТРАПЕЦЕИДАЛЬНЫМИ СЕЧЕНИЯМИ 23	39
25 ПРИМЕРЫ ВОДООТВОЛА С РАЗДЕЛИТЕЛЬНОЙ ПОЛОСЫ И ПРОЕЗЖЕЙ ЧАСТИ НА ППОПТАХ Т КАТЕГОРИИ 24	40
НА ПОРОТАХ І КАТЕГОРИИ 24 26 СХЕМЫ ОТВОЛА ВОЛЫ С РАЗЛЕЛИТЕЛЬНОЙ ПОЛОСЫ НА ПОРОГАХ І КАТЕГСЭН: 25	40
27 ВОДООТВОДНЫЕ ЭСТРОЙСТВА ВДОЛЬ ПРОЕЗЖЕЙ ЧАСТИ НА ДОРОГАХІ-ШКАТЕГ 26	42
28 СБРОС ВОДЫ ОТКРЫТЫМИ АРТКАМИ С ПРОЕЗЖЕЙ ЧАСТИ ПОРОГІ-ПКАТЕГОРИЙ 27	43
29 CGPOC BOILD OTKPSITSIMU AOTKAMU C NPCESMEN 4ACTH ROPOT II KATEFORNI 28	44

N N N.N	ЗИ НАВОН ЭМИАН	Ñ AHCTO8	н Страниц
30	Волоотволные эстройства на берме	29	45
31	Конструкции гасителей	30	46
32	Биквенные обозначения и гиправлические параметры	31	47
53	PUZDADANYECKNE PACYETH	32 - 35	48-51
34	ГРАССІК ДАЯ ОПРЕДЕЛЕНИЯ КОЗФФИЦИЕТА С ПО ФОРМУЛЕ ПАВЛОВ-		
	870.0	36	52
35	3. AMEHNE NOKASATEAR CTEREHU "S" CKOPOCTHOFO MHOWNTEAR	ļ	
	величин "С² R° и "С VR"	37-40	53-56
36	ТАБАНЦА АННЭРАНЕ АННАБАТ	41	57
37	ГРАФИКИ ДЛЯ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКИХ ГЛУБИН "hk"	42-44	58-60
38	RAD Q-5. ИНИРИАЗВ ЙОНДАЗТАТОМСПОВ RUHЗАЗДЭДПО RAD УНФАД?		
	РУСЕЛ ПРЯ МОУГОЛЬНОГО СЕЧЕНИЯ	45	61
39	ГРАФИК ДАЯ ОГРЕДЕЛЕНИЯ ГЛУБИНЫ В СЖАТОМ СЕЧЕНИИ ПОСЛЕ ПЕРЕ-		
	пада "ћо в русках прямочгольного сечения	46	62
40	ТАБЛИЦА ВЗАИМНЫХ (СОПРЯЖЕННЫХ) ГЛУБИН "На после переплаов		
	MANHAPPA MINHANORUMRAN 2 XARDER 8	47-48	63-64
41	ГРАФИК ДЛЯ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ВОДОБОЙНОЙ СТЕНКИ ПОСЛЕ		
	ПЕРЕПАЦА В РУСАХ С ПРЯМОТИОМНОГО В АДАПАЧАП	49	65
42	ЗНАЧЕНИЕ ФУНКЦИИ $\mathfrak{P}(\mathfrak{T})$ для прямого уклона дна водотока _		
	KRASTAEANON OTONSTPUABANN KUHSHAHE KIGHPUAEAN (O <i)< td=""><td></td><td>66-67</td></i)<>		66-67
43	ГРАФИК ДАЯ ОПРЕДЕЛЕНИЯ ГИДРАВАНЧЕСКОГО ПОКАЗАТЕЛЯ Х В ПРЯ		l
	МОУГОЛЬНИХ ТРАПЕЦЕИДАЛЬНЫХ РУСЛАХ И ТАБЛИЦА ЗНАЧЕНИЙ КОЗФФИЦИЕНТА ЗАТОПЛЕНИЯ ĠП	52	58
44	OUDETEVETY TO B TOUTH ON DATE OF THE OUT OUT OF THE OUT OUT OF THE OUT OUT OF THE OUT OUT OUT OF THE OUT	53	59
45	ЛОПУСКАЕМЫЕ СРЕПНИЕ СКОРОСТИ ТЕЧЕНИЯ ВАЯ РАЗАИЧНЫХ	32	"
"	CENTURE CLETCHE CHOLOGIA LEJEVINY TAY SANKHINK	54 - 55	70-71
46	РАСЧЕТЫ АИВНЕВОЙ КАНАЛИЗАЦИИ	56 - 58	72-74

NNT LTO PAH	СОСКИН ВСОКИН	55	TNP				
н контр	HOBUKOB	W. Lat		RNAATS	AHCT	ANCTOB	
PA CREU	Новиков	4.20		P			
РУК БРИГ	САВИЧ	O.C.	Солержание				
RPOBEPHA	CABHY	Palm	CO103 A DP NP			POEKT	
COCTABUA	MARCOBA	they-	outo 3 gui sir de				

THROBLE RPOEKTHME PEMENNA _BORDOTBORNHE COOPSтения на автомобиа**ьных дврорах общей** сети Союза ССР[®] PABPAGOTAHU B COOTBETCTBUN C BARANNEM FARBIPAHCHPOEKTA. STREPRREHHUM MUNTPANCCTPOEM 16 MAPTA 1983 C. H. B. соответствии с пааном тилового проектирования, этверх-AEHHDIM NOCTAHOBAEHNEM FOCCTPOR CCCP OT 10 ЯНВАРЯ 1983 r. N L.

TURORNE ODDEKTHUE DEWEHNA OPHMEHANT OF OPPO-ЕКТИРОВАНИИ И СТРОИТЕЛЬСТВЕ АВТОМОБИЛЬНЫХ ДОРОГ.

SANHUE THROBUE RPOEKTHUE PEWEHUR SAMEHRIOT PASAEA BOLOOTBOA C NPDESMEN VACTN THROBOTO AABGOMA "ДОРОЖНЫЕ ОЛЕЖДЫ АВТОМОБИАЬНЫХ ДОРОГ ОБЩЕЙ СЕТИ CO103A CCP CEPHH 503-0-11.

Типовые проектные решения разработаны с чче-ТОМ ДЕЙСТВУЮЩИХ НОРМАТИВНЫХ ДОКУМЕНТОВ. МЕТОДИЧЕС-КИХ УКАЗАНИЙ И РЕКОМЕНДАЦИЙ.

ВЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ ВОДО-ОТВОДНЫХ СООРУЖЕНИЙ. ПРЕДСТАВЛЕННЫЕ В ТИПОВЫХ ПРОЕКТных решениях, приняты в соответствии с типовыми СТРОИТЕЛЬНЫМИ КОНСТРУКЦИЯМИ "ИЗПЕЛИЯ СБОРНЫЕ ЖЕЛЕ-ЗОБЕТОННЫЕ ВОПОСТВОЛНЫХ СООРУЖЕНИЙ НА АВТОМОБИЛЬНЫХ ADPOTAX " CEPUN 3.503.1-66.

КОНСТРУКЦИИ ДОЖДЕ ПРИЕМНОГО КОЛОДЦА ВЫПОЛНЕНЫ по типовому проекту "Канализационные колодцы" выпуск XI, АЛЬБОМ 2 ДОЖДЕВЫЕ КОЛОДЦЫ ЛИВНЕВОЙ КАНА-ANSARUM" CEPUM 902-9-1 M FOCT 8820-80.

B THROBBIE RPOEKTHBE PEWEHUR BOWAN HANGDAEE ПРОГРЕССИВНЫЕ И ЗКОНОМИЧНЫЕ КОНСТРУКЦИИ ВОДООТВОДНЫХ SCTPONCTB. HAWEDWIE NPUMEHEHNE NPU CTPONTEALCTBE ABTO-MOGUADHUX DOPOR KPOME TOFO YCOBEPWEHCTBOBAHU METO-АМ ГИВРАВАИЧЕСКИХ РАСЧЕТОВ ВОВООТВОВНЫХ СООРУЖЕНИЙ.

В основу гидрологических обоснований типовых ПРОЕКТНЫХ РЕШЕНИЙ ПОЛОЖЕНЫ ТЕОРЕТИЧЕСКИЕ РАЗРАБОТКИ СОЮЗДОРПРОЕКТА ВО СОЗДАНИЮ НОВОЙ СХЕМЫ ОРГАнизации водротвода с проезжей части автомобиль-HWX BOPDE, A TAKKE METORUKU PACHETOB MAKCUMAND HOLO TOXTEBOLO CLOKY C WYYPIX BOTOCEDHPIX UOBELX-НОСТЕЙ. МЕТОЛЫ ГИДРОЛОГИЧЕСКИХ ОБОСНОВАНИЙ ТИПОвых решений основаны на современных наччных ПОЛОЖЕНИЯХ ГИДРОЛОГИИ И ГИДРАВЛИКИ, ПОЛУЧИВШИХ *NPAKTU 4 ECKOE NO ATBEPKAEHUE NPU CTPOUTEA 6 CTBE ABTO-*МОБИЛЬНЫХ ДОРОГ.

РАЗРАБОТКА ПРОЕКТА ПРОИЗВОДИЛАСЬ С ШИРОКИМ применением ЗВМ на основе решений аагоритмов. используемых в САПР - АД по РАЗДЕЛУ ДОРОЖНОГО BORCOTEDRA.

В РАЗРАБОТКЕ ТИПОВЫХ ПРОЕКТНЫХ РЕШЕНИЙ принимали участие: д.т.н. Перевозников б.ф. K. T.H. **BPACAABCKUÚ** B. N. K. T. H. KOHCTAHTUHOR н м 1011 NETPOB H.A.

FU fi HAM. OTA	COCKUH OCOKUH	Q		TNP			
H KOHTP. PAK. SPAT	Новиков	4. 1.	95		СТАДИЯ Р	AUCT	AUCTOE
RPDBEPHA COCTABHA	COKDAGBA	Carry West-	ВЕЖ ИЕ	ДАННЫЕ	СОН	016	DUDOEK.

NOZHIICE W RATA

RUHBKOLON BUMBO I

- 11. ДАЯ ОБЕСПЕЧЕНИЯ УСТОЙЧИВОСТИ ЗЕМАЯНОГО ПОЛОТНА ОТ ВОЗДЕЙСТВИЯ ROBEPXHOCHЫX BOO HA ABTOMOGNAHHЫХ ADPOFAX RPERYCMATPUBART PASAN4-HHE BORDOTBORHHE COOPYKEHMA.
- 1.2. ПО НАЗНАЧЕНИЮ, КОНСТРУКТИВНЫМ ОСОБЕННОСТЯМ И УСАОВИЯМ ЭКСПАУА-ТАЦИИ РАЗАИЧАЮТ СЛЕДУЮЩИЕ РАЗНОВИЛНОСТИ КОНСТРУКТИВНЫХ СХЕМ ОРГА-HUJALINN ROBEPXHOCTHOFO BORDOTBORA: C MECTHOCTN, RPNAEFAHDELEN K 3EM-ARHOMY DOADTHY ADPORA A HEROCPERCTBEHHO OT SEMARHORO ROADTHA: C NOBEPAHOCTU ABTOMOBUAHHIX ROPOT B HACHIRAX N B BHEMKAX; C NOBEPXHOCTU CHESAOB TPAHCHOPTHЫХ PASBASOK, MOCTOB W NYTENPOBOAOB; £ ПОВЕРХНОСТЕЙ, ОГРАНИЧЕННЫХ РЕГУАЯЦИОННЫМИ И БЕРЕГОУКРЕПИТЕЛЬНЫМИ сооружениями и т. п.
- 1.3. ПРИ ПРОЕКТИРОВАНИИ ВОДООТВОДНЫХ СООРУЖЕНИЙ НЕЗАВИСИМО ОТ ROSTRHAURIUS IGHMAND AROSTOODS OTOHTOOHEXCHAURIUA WALLAND OTOHTOOTOODS САЕЛУЮШИЕ РАБОТЫ:
- РАЗРАБОТКА ОБЩЕЙ СХЕМЫ ПОВЕРХНОСТНОГО ВОДООТВОДА;
- ВЫБОР И НАЗНАЧЕНИЕ ОСНОВНЫХ ЗАЕМЕНТОВ И КОНСТРУКЦИЙ ВОДООТводных сооружений:
- РАЗМЕЩЕНИЕ ВОДООТВОДНЫХ СООРУЖЕНИЙ В ПЛАНЕ, ПРОДОЛЬНОМ И поперечном сечениях;
- ORPEDENEHNE TPAHNU BODOCEOPOB N NX OCHOBHUX XAPAKTEPUCTHK;
- ONPEREAEHNE PACHETHЫХ PACKDROB BORЫ N OFFEMOR CTOKA;
- Выбор и назначение типов укреплений водоотводных сооружений.
- 1.4. Содротводные сооружения должны иметь:
- NONEPENHOE CENEHNE, DOCTATONHOE DAR NOONYCKA PACHETHORO PACKODA BORN;
- ПРОДОЛЬНЫЙ УКЛОН И СКОРОСТИ ТЕЧЕНИЯ ВОДЫ, ИСКЛЮЧАЮЩИЕ ВОЗМОЖ-HOCT'S JANANBAHNA WAN PAJMBIBA OTBORALLIA PUCEA;
- СВОБОДНЫЙ ВЫПУСК ВОДЫ ЗА ИХ ПРЕДЕЛАМИ, ИСКЛЮЧАЮЩИЙ РАЗВИТИЕ эрознонных процессов и других нарушений окружающей среды.
- 1.5. Укрепление или гипроизоляция водоотводных сооружений преду-**СМАТРИВАЕТСЯ В САЧЧАЯХ, КОГДА РАЗМЫВ ИАИ ИНФИЛЬТРАЦИЯ ПОВЕРХНОСТНЫХ** BOR MOTEST HAPEWITH SCTONENBOCTH SEMARHOTO HONOTHA WETO SAEMEHTOB.
- 1.6. TPM TOBEKTHOOBAHHM BOROOTBORHSIX COOPYMEHHM & PANOHAX PACTORICTPAHE-

нения вечномерзаых грунтов и в сейсмических районах следует руковод-СТВОВАТЬСЯ СПЕЦИАЛЬНЫМИ УКАЗАНИЯМИ.

I OTBOA NOBEPXHOCTHЫХ BOA OT ЗЕМЛЯНОГО NONOTHA ABTO-MORNVPHON TODOLN.

2.1. OTBOA MOBEPSHOCTHЫХ BOA CAERYET MPERSCMATPUBATE:

ОТ НАСЫПЕЙ — ВОДООТВОДНЫМИ КАНАВАМИ (НАГОРНЫМИ, ПРОДОЛЬНЫМИ И ПОПЕРЕЧНЫМИ), КЮВЕТАМИ ИЛИ РЕЗЕРВАМИ;

ОТ ОТКОСОВ ВЫЕМОК И ПРИЛЕГАЮЩИХ К НИМ СКЛОНОВ — КАНАВАМИ (НАГОРНЫМИ И ЗАБАНКЕТНЫМИ);

НЕПОСРЕДСТВЕННО ИЗ ВЫЕМОК — КЮВЕТАМИ;

DT OPNAETAHOWEN K SEMARHOMY NOAOTHY MECTHOCTH - BOROOTBOR-НЫМИ И НАГОРНЫМИ КАНАВАМИ.

ПОВЕРХНОСТНЫЕ ВОДЫ ОТВОЛЯТ В ПОНИЖЕННЫЕ МЕСТА РЕЛЬЕФА, В ТОМ ЧИСЛЕ и к водопролускным сооружениям. С нагорной стороны земляного полотна должен быть сплошной продольный водоотвод на протяжении от кажрого BODOPASDENA DO MECT, FAE BOSMOWEH OTBOD BODW & CTOPOHY OT SEMARHOFO ROADTHA DOPOCH.

2.2. МИНИМАЛЬНЫЕ ПАРАМЕТРЫ ВОЛООТВОДНЫХ СООРУЖЕНИЙ СЛЕДУЕТ НАЗНАЧАТЬ HA OCHOBAHUN PURPABANYECKUX PACYETOB, HO HE MEHEE HOPM, RIPHBEREHHMX 81% (2.4) ПРОДОЛЬНЫЙ ЧКАОН НАГОРНЫХ, ВОДООТВОДНЫХ, ЗАБАНКЕТНЫХ КАНАВ И КЮВЕТОВ ДСЕЧЕ KAETCH YMEHDWATH AD 3% NO YCAOBURM PEABEDA MECTHOCTH A HA SOADTAN BLES 2.3. BODOOTBORHUE COOPYMEHUR PASMEWAHIT, KAK TPABUAO, B ROADCE OTBORA АВТОМОБИЛЬНЫХ ДОРОГ. ЗА ИСКАЮЧЕНИЕМ НАГОРНЫХ И ДРУГИХ КАНАВ

מעז	СОСКИН	Com		TNP				-
RTO PAH	Осокин	EVIZI						•
H KOHTP	Новиков	1. 301-			CTAQUA	AHCT	WALLE OF	7
ra chell.	Новиков	R. Xul.	OBMUF	RAHHUE	P			
PYK BPUT.		Dely]	# ATTITULE		·····	J	٠,
	MARCOBA	May-	1		Союз	MODE	POEKT	1
COCTABW	САВИЧ	Pals	L					1

TABANUA 2.1.

Водоотводные сооружения	ШИРИНА ДНА, М	ГАЧБИНА ВОДЫ, М	крупностые песчаные крупнооб- комочные	<u> </u>		ПРОДОДЬ- НЫЙ УКАВН ДНА.	BOSBAWE-BOBB-BOBB-BOBB-BOBB-BOBB-BOBB-BOBB-BO
НАГОРНЫЕ И 98- ДООТВОДНЫЕ КА- НАВЫ ЗАБАНКЕТНЫЕ КА- НАВЫ	0.6 0.4	0,6 8,4	1 : 1,5 1 : 1,5	1:1.5 1:2		s	0,2 —
КАНАВЫ НА 60- ЛОТАХ: I ТИПА, II ТИПА КЮВЕТЫ:	0.8 2	0.8 1	-	1 1	1:1 1:1,5	3	- -
ТРЕЧГОА ЬНЫ Е ТРАПЕ ЦЕИДААЬ -	 0.4	0,4 0,4	1:1 1:1	1: 1,5 1:1,5	-	\$ 5	0,2 0,2

2.4 ТРАССУ ВОДООТВОДНЫХ СООРУЖЕНИЙ СЛЕПУЕТ РАСПОЛАГАТЬ С УЧЕТОМ НЕОБХОДИМОСТИ СБОРА ОТВОДА И СБРОСА ПОВЕРХНОСТНЫХ ВОД, ПРИТЕКАЮЩИХ К ДОРОГЕ, А ТАКЖЕ ОБЕСПЕЧЕНИЯ НАИМЕНЬШЕЙ ДЛИНЫ ЭТИХ СООРУЖЕНИЙ И СТРОИТЕЛЬНЫХ ЗАТРАТ. ПРЯМОЛИНЕЙНЫЕ УЧАСТКИ НА ПОВОРОТАХ ТРАССЫ РЕКОМЕНДУЕТСЯ СОПРЯГАТЬ ПЛАВНЫМИ КРИВЫМИ С РАДИУСАМИ НЕ МЕНЕЕ 10 М, А НА
УЧАСТКАХ ПОДХОДА К ПЕРЕПАДАМ, БЫСТРОТОКАМ, КОЛОЦИАМ—НЕ МЕНЕЕ 20 М.
НА УЧАСТКАХ ПРИМЫКАНИЯ ВОДООТВОДНЫХ СООРУЖЕНИЙ К СУЩЕСТВУЮЩИМ ВОЛОТОКАМ УГОЛ МЕЖДУ НАПРАВЛЕНИЕМ КАНАВЫ И НАПРАВЛЕНИЕМ ТЕЧЕНИЯ ВОВЫ В ВОДОТОКЕ НЕ ДОЛЖЕН ПРЕВЫШАТЬ 45°.

2.5 НАИВЫГОДНЕЙШИЙ ПРОДОЛЬНЫЙ УКЛОН ВОДООТВОДНЫХ СООРУЖЕНИЙ В ЗАДАННЫХ УСЛОВИЯХ НАХОДЯТ С УЧЕТОМ ОСОБЕННОСТЕЙ РЕЛЬЕФА МЕСТНОСТИ, ХАРАКТЕРА ГРУНТОВ, В КОТОРЫХ БУДЕТ УСТРОЕН ВОДООТВОД И НААМЧИЯ МЕСТНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ ДЛЯ ЕГО УКРЕПЛЕНИЯ. РАСЧЕТНЫЕ УКЛОНЫ ДОЛЖНЫ БЫТЬ ТАКИМИ, ЧТОБЫ СКОРОСТИ ТЕЧЕНИЯ ВОДЫ НЕ ПРЕВЫШАЛИ ДОПУСТИМЫЕ НЕРАЗМЫВАЮЩИЕ СКОРОСТИ ДЛЯ ДАННОГО ГРУНТА ИЛИ ТИПА УКРЕПЛЕНИЯ. ПРОДОЛЬНЫЙ ПРОФИЛЬ ДНА ВОДООТВОДНЫХ СООРУЖЕНИЙ ДОЛЖЕН ОБЕСПЕЧИВАТЬ НЕПРЕРЫВНОЕ НАРАСТАНИЕ СКОРОСТИ ТЕЧЕНИЯ ПОТОКА ВО ИЗБЕЖДНИИ ЗАИЛИВАНИЯ.

Минимальная скорость течения волы по условиям недопущения замамвания этих сооружений — 0.3~M/c (в случае отсутствия укрепления или растительности). Продольный профиль сооружений должен быть увязан с отметнами лотков искусственных сооружений, русел водотоков и других водоприемников, в которые сбрасываются поверхностные воды из водоотводных устройств.

2.6. ДОСТАТОЧНОСТЬ ПОПЕРЕЧНОГО СЕЧЕНИЯ ВОЛООТВОЛНЫХ ЭСТРОЙСТВ САЕ-ДУЕТ ПРОВЕРЯТЬ НА ПРОПУСК РАСЧЕТНЫХ РАСХОДОВ ВОДЫ, ВЕРОЯТНОСТЬ ПРЕВЫШЕНИЯ КОТОРЫХ СЛЕДУЕТ ПРИНИМАТЬ ПО НОРМАМ ТАБА. 2.2.

		тнолици и.е.					
	ВЕРОЯТНОСТЬ ПРЕВЫШЕНИЯ РАСЧЕТНЫХ РАСХОДОВ В % дая						
KATEFOPUS ROPOF	КЮВЕТОВ, НАГОРНЫХ КАНАВ	ВОДООТВОЛНЫХ ПРОДОЛЬНЫ Х И ПОПЕРЕЧНЫХ КАНАВ					
L	ı	4					
II - II	3	6					
IY - Y	5	10					

2.7. В ВЫЕМКАХ КЮВЕТЫ РАЗМЕЩАЮТ С ОБЕИХ СТОРОН ЗЕМАЯНОГО ПОЛОТНА.
ПРИ НЕВОЗМОЖНОСТИ ПРОПЧСКА РАСЧЕТНОГО РАСХОДА ВОДЫ СЕЧЕНИЕ
КЮВЕТА ТРЕБЧЕТСЯ УВЕЛИЧИТЬ ЗА СЧЕТ ЕГО УГЛУБЛЕНИЯ ПРИ СОХРАНЕНИИ
МИНИМАЛЬНОЙ ШИРИНЫ ДНА. ПРОДОЛЬНЫЙ УКЛОН КЮВЕТОВ СЛЕДУЕТ ПРИНИМАТЬ РАВНЫМ УКЛОНУ ЗЕМЛЯНОГО ПОЛОТНА.

RUT LIO PAH	OCOKNH COCKNH	100		TNP			
H. KOHTP	HOBNKOB	N. Sol-			RHEATS	VACL	ANCTOB
LY CUER	HOBNKO8	A. Lut.	0		P		
BAK EDNL		Calo	OPMINE	RAHHHE			
NPOBEPHA	COKOAOBA	Corel			СОЮ	3 AOPT	IPDEKT
COCTABUA	MARCOBA	my-					

2.8. НАГОРНЫЕ КАНАВЫ УСТРАИВАЮТСЯ ДАЯ ПЕРЕХВАТА ВОДЫ, ПОСТУПАЮЩЕЙ C KOCOTOPA N N3 NONAETAHUMETO BOADCEOPHOTO BACCENHA N NOCAEASHOMETO ОТВОЛА ЕЕ К БАИЖАЙШЕМУ ВОДОПРОПУСКНОМУ СООРУЖЕНИЮ ИЛИ В СТОРО-**КИШАБОТ ЛЕМАЯНОГО ПОЛОТНА. ПРИ БОЛЬШОЙ КРУТИЗНЕ СКАОНА И БОЛЬШИХ** OBBEMAX CTOKA, A TAKKE C LEADHO ANKBURALLUN HEDBXDRUMDCTN YCTPOUCT-ВА УКРЕПЛЕНИЙ, НАГОРНЫЕ КАНАВЫ ДОПУСКДЕТСЯ РАССРЕДОТАЧИВАТЬ НА САМОСТОЯТЕЛЬНЫЕ УЧАСТКИ СО СТУПЕНЧАТЫМ РАЗМЕЩЕНИЕМ ОТПЕЛЬНЫХ **ЧЧАСТКОВ НА КОСОГОРЕ. В ЭТОМ СЛУЧАЕ НАЧАЛО УЧАСТКА НАГОРНОЙ КАНА-**BU PACHONAFAEMOTO HUME RPERBIRUMETO, PEKOMEHRYETCH PASMEMATE C HEKOTOPHIM REPEKPHITNEM BHXDAA HA KOCOTOP BHIMEPACROADXEHHOTO YYACT. KA.

РАССТОЯНИЕ МЕЖВУ НИЗОВОЙ БРОВКОЙ НАГОРНОЙ КАНАВЫ И БРОВКОЙ ВЫЕМКИ ПРИ ОТСУТСТВИИ БАССЕЙНА И КАВАЛЬЕРА ДОЛЖНО БЫТЬ НЕ менте 5 м; то же между бровкой канавы и подощвой насыпи (NAN RODOWBON KABAALEPA) - 2 M. PIPU PACROAOMEHUN BLEMKU B AËC-САХ И ЛЕССОВИЯНЫХ ГРУНТАХ БРОВКА НАГОРНОЙ КАНАВЫ ДОЛЖНА ОТСТОЯТЬ ОТ БРОВКИ ВЫЕМКИ НА РАССТОЯНИИ НЕ МЕНЕЕ 10 М.

2.9. РЕЗЕРВЫ, РАСПОЛАГАЕМЫЕ ВДОЛЬ НАСЫПИ, НЕОБХОДИМО ВКЛЮЧАТЬ В ОБЩУЮ СИСТЕМУ ВОДООТВОВНЫХ УСТРОЙСТВ. ЗАМКНУТЫЕ РЕЗЕРВЫ ДОПУС-КАЕТСЯ ПРИМЕНЯТЬ НА УЧАСТКАХ С ДРЕНИРУЮЩИМИ ГРУНТАМИ В РАЙО-HAX C JACHWANBUM KANMATOM N B PANDHAX PACRPOCTPAHEHNA ПОДВИЖНЫХ ЛЕСКОВ, С ОБЯЗАТЕЛЬНОЙ ПРОВЕРКОЙ РЕГУЛИРОВАНИЯ ГОДОВО-ГО СТОКА ПО АНАЛОГИИ С РАСЧЕТАМИ ИСПАРИТЕЛЬНЫХ БАССЕЙНОВ. ПНУ РЕЗЕРВОВ, ВХОЛЯЩИХ В ОБЩУЮ СИСТЕМУ ВОЛООТВОЛА, НЕОБХОЛИМО припать поперечный чклон не менее 20%. При ширине резерва AD 10M ETO OPDEKTHPYIOT DAHDCKATHIM C DODEPEHHIM YKADHOM OT BEMARHORO ROAOTHA . A RPW WUPWHE BOAEE 10M - ABYXCKATHUM . C YKADHOM OT KPAEB PESEPBA K ETO CEPEAUHE. A OPOADABHЫЙ YKADH-HE MEHEE 3%.

2.10. Укрепление водоотводных и нагорных канав осуществляется в SABUCUMOCTU OT CULPOAOCUYECKUX W CPYHTOBЫX YCAOBUW: PACTUTEA6-HUM FPYHTOM C JACEBOM TPAB, CEOPHUMN EETOHHUMN MANTAMN, MOHO-ЛИТНЫМ БЕТОНОМ, АСФАЛЬТОБЕТОНОМ ,ТОРКРЕТ-БЕТОНОМ И ДРУГИМИ ТИПАМИ при соответствующем технико-экономическом обосновании. При пропольных уклонах водоотводных сооружении, вызывающих скорости течения БОЛЬШЕ ДОПУСТИМЫХ ДЛЯ ЗАДАННЫХ ГРУНТОВ И УКАЗАННЫХ ТИПОВ УКРЕПАЕ-HUM, CAEAUET TOPEAUCHATPUBATE BOAOTACRIME UCTPONCTBA - REPERABLI GEICTPO- ТОКИ С ВОВОБОЙНЫМИ КОЛОВЦАМИ СТЕНКАМИ И Т.В. ВРИЕНТИРОВОЧНО ТИПЫ **УКРЕПЛЕНИЙ КАНАВ НАЗНАЧАЮТСЯ В СООТВЕТСТВИИ С ТАБЛ. 2.3.**

TABAUHA 2.3

		ТИПЫ УКРЕПЛЕНИЙ								
ГРУНТЫ	GE3 YKPER-	THE PONCES	ОП ВАСТ ВАЗАС САОНО РАСТИ- ТЕЛЬНОГО ГРУН-	BETOHHUE MATUAN	ГАСЯЩИЕ УСТРОЙСТВА					
		UPOTDYPH	ЫЙ ЧКХОН	. %						
EUNECHAHDE	105	5-10	10 - 20 *	20 - 50	>> 50					
САГУИНИСТРЕ	до 10	10 - 15	15-20*	20-50	» 50					

B OTREADHUX CAYYARX NON NOOROADHUX YKACHAX 20-30% PEKOMEH LYETCR NONME-НЯТЬ УКРЕПЛЕНИЯ ПНА ВОЛООТВОЛНЫХ СООРУЖЕНИЙ СЛОЕМ ЩЕБНЯ ИЛИ ГРАВИЯ ТОЛИИНОЙОІМ; OTKOCH NPN STOM SKPENARIOTCA SACEBOM TPAB NO CADIO PACTINTEABHOFO TPSHTA.

HASHAYEHNE TURA YKPERAEHNA ROKKODO OHOKHOBBIBATECA BAPHAHTHEM ROPDEKTH-РОВАНИЕМ С УЧЕТОМ ТОПОГРАФИЧЕСКИХ, ГЕОЛОГИЧЕСКИХ И ГИДРОЛОГИЧЕСКИХ ДАННЫХ M HA DCHOBAHNM COOTBETCTBYHULLNX PACYETOB.

- 2.11. BUCTPOTOKH MOHOANTHUE W CEOPHUE WEAESOBETOHHUE LEAECOOFPASHW HA KPYTЫX CNYCKAX, B MECTAX BЫХОЛА BODOOTBORHЫX KAHAB 8 08PACH CYXDIDAM M APPINE NOHWEHHHE MECTA. NONEPEYHDE CEYEHNE BUCTPOTOKA MOXET BUTS NPAмочгольным, с шириной дна 061м и трапецеидальным с шириной дна 0.6 и 1м. УСАОВИЯ ПРИМЕНЕНИЯ ТИПОВЫХ КОНСТРУКЦИЙ ПРИВЕДЕНЫ НА СООТВЕТСТВУЮЩИХ ANCTAX HABHAYEHNE APYFUX KOHCTPYKTUBHЫХ PABMEPOB БЫСТРОТОКОВ ТРЕБУЕТ проведения индивидульного проектирования.
- 2.12. FACHTEAN CHEPFUN TREACTABAEHH B BULLE BOADSOÜHHIX KOADALLEB. UCTUROR TEHOK. 2 13. REPERADO SCEPANBART DAS SMEHBILEHUS CKOPOCTY TEVEHUS BOAD B KROBETAS. KAHABAX, PEZEPBAX, NORBORAWAX H OTBORAWAX PYCAAX. MOLAT HAXORIT HOMMEHEние следующие типы таких сооружений:

--- ОДНОСТУПЕНЧАТЫЕ ПЕРЕПАДЫ БЕЗ ГАСИТЕЛЕЙ ЗНЕРГИИ ПРИ ПРОДОЛЬНОМ УКЛОНЕ ТРАССЫ BOADOTBOAA, OFECREUBAIOMEM RONSUEHNE BUCOTH CTUREHN HE BOARE D.SM;

- MHOPOCTYPEHYATHE REPERADI 663 PACHTEREN SHEPPUN, TO ECTS HEKORORESHOPO типа при продольном чклоне трассы водоотвола 50-60%

— MHOГОСТУПЕНЧАТЫЕ ПЕРЕПАДЫ С ГАСИТЕЛЯМИ ЗНЕРГИИ КОЛОДЕЗНОГО ТИПА ПРИ ПРО-ДОЛЬНОМ УКЛОНЕ 100-350‰ и РАСХОДАХ БОЛЕЕ 1 М¾ С.

FUN HAY DIA.	Сискин Осокин	-	_		TRP			
H KOHTP.	НОВИКОВ					Р Р	AUCT	VACTOR
PYK EPHL	САВИЧ СОКОЛОВА	CORP		DEMNE	ЛАННЫЕ	COI	оздор	POPERT

M. OTBOA BOALL C ROBEPSHOCTH SEMARHOLD ROADTHA.

З.1. ВТВОЯ ВОЯЫ С ПОВЕРХНОСТИ ЯСОГІ ТТ КАТЕГОРИЙ ВСЕСВЕНРАВОВ ВОЯНОЯ ПОНОВНОННОМ ИОСТАНОВОЧНОЙ ПОЛОЖЕННЫМИ ЗА УХРЕПИТЕЛЬНОЙ И ОСТАНОВОЧНОЙ ПОЛОЖЕННЫМИ, В ЗОРОГАХ ТТ КАТЕГОРИЙ ВОДОСТВОЕМ И НАСЫПИ — ПОПЕРХНОСТИ НАСЫПЕЙ ПРИНЯТО ОБЕСВЕЧВАТЬ РАВИОМЕРНЫМ СТЕКАНИЕМ ВОЯМ С ПРОЕЗЖЕЙ ЧАСТИ НА ОБРИНОСТИ.

3.2 ОСНОВНЫЕ ЭЛЕМЕНТЫ ПОВЕРХНОСТНОГО ВОЛООТВОЛА: ПРОДОЛЬНЫЕ ЛОТКИ, ЧЕТРАИ-ВЛЕМЫЕ ВДОЛЬ КРОМКИ ПРОЕЗЖЕЙ ЧАСТИ; ПОПЕРЕЧНЫЕ ЛОТКИ, ЧЕТРАИВЛЕМЫЕ НА ОТ-КОСАХ НАСЫПЕЙ; СОПРЯГАЮЩИЕ ЛОТКИ, РАСПОЛАГАЮЩИЕСЯ НА ОБОЧИНЕ В МЕСТАХ СБРОСА ИЗ ПРОПОЛЬНОГО В ПОПЕРЕЧНЫЕ ЛОТКИ: ВТВОДЯЩИЕ И ГАСЯЩИЕ ЧЕТРОЙСТВА В ПОДОШВЫ НАСЫПЕЙ ДЛЯ ПРЕПОХРАНЕНИЯ ЕЕ ОТ РАЗМЫВА.

3.3. ПРОДОЛЬНЫЕ ЛОТКИ С ПОПЕРЕЧНЫМИ СБРОСАМИ ВОДЫ К ПОДОШВЕ НАСЫЛИ ЭСТРАИВАЮТСЯ НА ЭЧАСТКАХ АВТОМОБИЛЬНЫХ ДОРОГ С НАСЫЛЯМИ ВЫСОТОЙ БОЛЕЕ Ц м; ПРОДОЛЬНЫМИ УКЛОНАМИ БОЛЕЕ 30% И В МЕСТАХ ВОГНУТЫХ ХРИВЫХ.

ПРИ ПРОЛОЛЬНОМ ЧКЛОНЕ 30°≈ И БОЛЕЕ ПРОДОЛЬНЫЕ И ПОПЕРЕЧНЫЕ **ЛОТКИ** НЕОБХОДИМО ЧСТРАИВАТЬ ВО ВСЕХ СЛУЧАЯХ.

3.4. При устройстве виражей на дорогах I-III категорий продольные и полеречные котки устраивают только со стороны внутренней обочины. При высоких насыпях с бермами водосбросные откосные лотки можно применять комбинированного типа с сочетанием телескопических с лотками из монолитного бетона, либо с лотком из типовых бетонных плит.

3.5. Для сброса воды с разделительной полосы шириной 13.5 (12.5) на дорогах I категории применяются дождеприемные колодцы, расположенные по оси дороги. На участках дорог с разделительной полосой \$(6)м дождеприемные колодцы устраивают только на виражах

ТАЯ ВЫВОЛА ВОЛЫ ИЗ ДОЖДЕПРИЕМНЫХ КОЛОЯЦЕВ И В ТОМ ЧИСЛЕ ПРИ ЧСТРОЙ-СТВЕ ПРОДОЛЬНОГО КОЛЛЕКТОРА ИСПОЛЬЗУЮТСЯ АСБОЦЕМЕНТНЫЕ ГРУБЫ ЯНАМЕТРОМ ОЗМ И БОЛЕЕ. В СЛУЧАЕ НАЛИЧИЯ ПРОПОЛЬНОГО УКЛОНА НА РАЗВЕЛИТЕЛЬНОЙ ПОЛОСЕ, РАВНОГО 20-30, на ней устраивается укрепленный лоток из бетонных плит при встречных уклонах с 18ух сторон от кололца, а при односторонних— с верховой стороны. Если продольный уклон менее 20, то лоток из бетонных плит устраивлеется при встречных уклонах на расстоянии не более 25м в обе стороны эт кололца, а при односторонних уклонах— на 25м с верховой стороны

В ВЫЕМКАХ НА КОСОГОРНЫХ ЧЧАСТКАХ ВОДЧ ИЗ ДОЖДЕПРИЕМНЫХ КОЛОДЦЕВ МОЖНО ВТВОЛИТЬ ПОПЕРЕЧНЫМИ ВЫПУСКАМИ В НИЗОВЧЮ СТОРОНУ.

3.6. PACCEBRURA METERS RUBERPHEMHWMM ROBBERLAMIN HA PACHEANTEACHDIN TOAOCE MUPUHON (Z.S.M. ADDOC TRATEFORMS OFFERRANDES IN TAGA 3.1. 3.2

ТАБЛИЦА 31.

AUBHEBЫЙ	ПРОДОЛЬНЫЙ УКЛОН ДОРОГИ ІКАТЕГОРИИ . 🎾								
PAÚOH (CTP. 9)	iO	20	30	40					
(117.3)	RUHROTSSAG	MEXIS CEPOCA	PHARH NON	NN BUPAKEP,M					
1	240	140	90	70					
2	310	170	110	9D					
3	210	140	80	60					
4	470	250	150	100					

TABAUHA 3 2.

АИВНЕВЫЙ	ПРОДОЛЬ	H biń ykadh zopi	NN I KATECOPHH	Продольный чклон пороги І категории 🏏									
PANDH	10	2.0	30	40									
(CTP.9)	РАССТОЯНИЯ МІ	жач сбросами	при отсугствии	виражей, м									
1	380	220	130	95									
2	490	270	170	115									
3	330	180	120	80									
4	710	400	250	180									

3.7. ПРИ УСТРОЙСТВЕ ДОЖДЕПРИЕМНЫХ КОЛОДЦЕВ НА ОБОЧИНЕ ВЗАМЕН ПОПЕРЕЧНЫХ ВОДОСБРОСНЫХ ЛОТКОВ РАССТОЯНИЕ МЕЖДУ КОЛОДЦАМИ ОПРЕДЕЛЯЕТСЯ ПО ТАБА. З З МЕТОДИКА ОПРЕДЕЛЕНИЯ РАССТОЯНИЙ МЕЖДУ КОЛОДЦАМИ ПРЕДСТАВЛЕНА НА ЛИСТАХ 5758

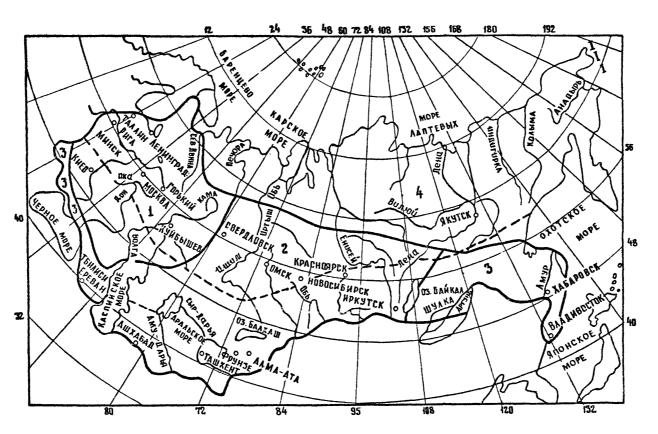
rua	СОСКИН	James	\exists		TNP				
ATO PAR	OCOKNH	€9/							'
H XOHTP	HOBNKOB	V. Jala				CTAQUA	TOUR	ANCTOS	
TA CHELL	новиков	12.27.	\neg			P			
PYK BPUF	CABNA	alio	\neg	DEMME	RAHHME				
NPOREPHA	HARCOBA	cher		g s up n L	A Printing	Сою	3 A D PN;	DOEKT	•
COCTABUA	COKOAOBA	cour							نــ

3.8. PACCTORHUR MEMRY ROREPEYHIMM TEAECKORHYECKHMU AOTKAMU DAR CEPOCA ROSEPXHOCTHIX BOX ORPEZEARIOTCH RO TAGA. 3.3

ТАБАНЦА 3.3.

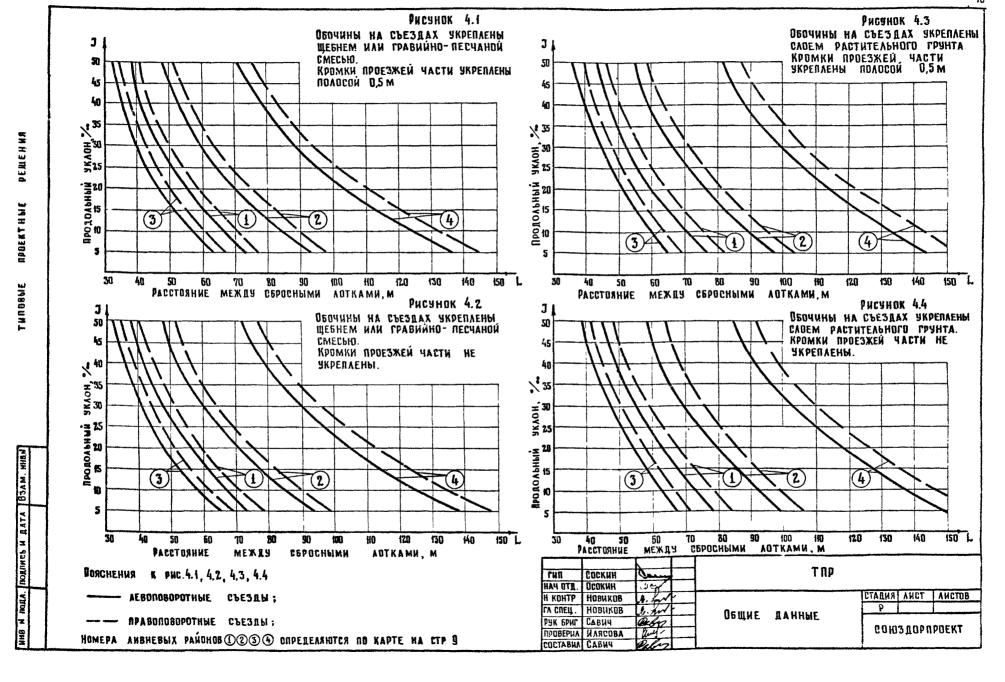
ЛИВНЕ ВЫЙ РАНОН	БАОКИ	ANCYO UDYOC	КАТЕГОРИЯ ДОРОГИ, НААИЧИЕ ЧКРЕПЛЕНИЯ							AGHE I	
			и виража	3	5	10	20	38	40	50	60
1	2	3	4	5	6	7	8	9	10	14	12
		4	I C OCTAHOBOHHOÙ I O NO NO NO NO N	40	45	55	45	40	35	30	25
			I SE3 OCTAHOBOMHOM	45	55	65	55	50	40	35	30
		6	NOADCON I NOSONON	30	35	45	35	30	25	20	15
1	5-1		I SE3 OCTAHOBONHOW	35	40	50	40	35	30	25	20
		8	I C OCTAHOBOUHOU NOAOCON	25	30	35	30	25	20	15	15
		0	I ROADCH	30	35	48	3 5	30	25	20	20
			IL C OCTAHOROUHOU	95	120	150	125	105	95	85	75
		2	I без остановочной полосы	125	160	165	140	125	110	100	90
			II с виражом	55	70	85	70	60	\$5	50	45
	5-2	2	II 6E3 BUPAKA	130	160	205	165	140	125	115	100
		۲	Ш С ВИРАЖОМ	60	75	95	75	65	60	55	50
		£	T C OCTAHOBOVHOW	45	60	70	60	50	45	40	35
		4	NOHPOBOHATOO C36 I	55	70	80	70	60	\$5	50	45
	!	6	T C OCTAHOBOHHON	35	45	55	45	40	35	30	25
2	5-1		I CONDUCTATION CES	40	50	60	55	45	40	35	30
		8	I C OCTAHOBOHHON	30	40	45	35	30	25	20	15
		°	I DOOCH HOBOTANON I	35	45	50	40	3 5	30	25	20
	1		NO DADON I	125	160	180	155	140	120	110	95
		2	I SE3 OCTAHOBOMHON	145	190	235	185	175	160	140	130
			II C BUPAKOM	70	85	105	90	75	65	60	55
1	Б-2	,	Ш БЕЗ ВИРАЖА	160	205	260	200	170	40	130	120
	0-2	2	III C BUPANOM	80	100	120	100	85	75	70	60

1	Ž	3		4	5	6	7	8	9 1	10	11	12
		4	I	NOHPOBOHATOR 2	35	45	50	40	35	20	25	20
		4	I	NOHPOBOHATOO C38	48	50	60	50	45	40	35	30
3	6-1	6	I	OCTAHOBOYHON 3	25	30	40	35	50	25	20	15
•	•		I	NOHPOBOHATOO ESS	30	35	45	40	35	30	25	23
		8	I	NOHPOBOHATOO O	20	25	35	30	25	20	15	10
			I	SE3 DCTAHD804HON NUADCЫ	2,5	30	40	35	30	25	20	IJ
			П	NOHPOBOHATOO 3	80	105	125	105	90	80	70	65
		2	I	без остановочной полосы	95	120	140	115	100	90	80	70
			I	С ВИРАЖОМ	45	60	70	55	50	45	40	35
			II	БЕЗ ВИРАЖА	110	130	160	140	120	105	95	85
	5-2	2	Ш	с виражом	55	65	80	65	55	50	45	40
		4	I	NOHPOBOHATOO 2	75	85	110	90	75	70	60	55
		4	I	NONDEN TO A COMPAND CO	95	110	130	H0	95	80	75	65
			I	NOHPOBOHATOD 3	55	70	85	OF	03	55	45	40
_		6	I	6E3 OCTAHOBOHHOÑ NOAOCH	70	85	100	80	70	65	60	50
4	5-1	8	I	C OCTAHOBOUHOÙ	50	50	70	SS	50	45	40	35
		8	I	BE3 OCTAHOBOUHON	55	55	75	55	55	50	45	40
			I	C OCTAHOBOHHOM	200	225	255	245	230	180	175	150
		2	I	ирнираочной полосы	225	270	305	275	240	195	185	150
			I	с виражом	110	125	45	135	120	105	95	85
	6-2	2	M	SE3 BUPAMA	235	280	345	320	285	22.0	720	180
	9	6	II	с виражом	120	145	170	40	130	#15	105	95


пояснения:

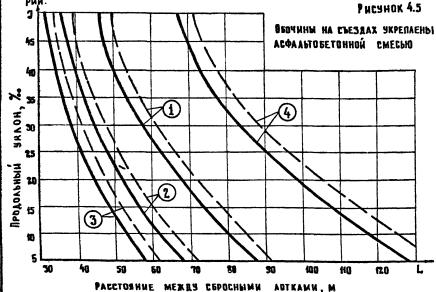
- 1 HOMEPA AUBHEBUX PANOHOB ORPEREARIOTCA RO KAPTE HA CTP 9
- 2. B LEHTPE BOTHYTHX KRUBHIX HUMHO SCHARABANBATE ABA CHAPEHHHIX
- поперечных лотка. В блоки б-1 и б-2 представлены на стр 43 и 44.

			 _		AND PARTY MANAGEMENT OF THE PROPERTY OF THE PR	ж. жынга
เหม	СОСКИН —	سيع		TNP		
ATO PAH	DEDKNH	Um/	 	····	-	
н контр	HOBU KOB	16.60			TONA ANDTO	
LY CLEAT	HOBNKOB	14.20			P	-
PAK EDAL	CABHY	ales	DEMNE	JAHHЫE	201022200000	cur
TO DE PWA	M ANCOBA	that			СОЮЗДОРПРО	ENI
	COKOADBA	COR			<u> </u>	-


RAPTA

AMBHEBЫХ PAUGHOB TEPPMTOPUM CCCP RAN PACHETA ROBEPXHOCTHORO BOLOOTBORA

HHB. H ROBA | ROBRUCE H RATA | 63AM. HHB.N


PUN ATO PAH	ОСОКИН СОСКИН	Sarry			ТПР			
H. KOHTP.	HOBUKOB	16.500				RNEATO	AHCT	ANCTOB
TA CREU.	НОВИКОВ	4. Soul				P		
РУК.БРИГ.	CABUY	Cabro	OPMNE	AAHHHE				
NPOBEPUA	COKDADBA	Core				COMO	LOPR	DOFKT
ECCTABUA	CABUY	Ret				""		r OLN I

IN BOADDTBOA HA REPECEMENURX N DEN MAKAHURX.

4.1 RPN NPDEKTUPOBAHUN BORODTBORA DA REPECEVEHNAR M DPHMIMANINA TPEBSETCA PURPOROFUYEKOE OSOCHOBANNE M PACMETIN RO CAERSHOWNIM EXEMAN BOROOTBORA C ROBEPRHOCTH CEESROB; C SAMKHYTHX BOROCEOPHMX RAUWALEÑ MEMBS CEESRAMN; RDN YCTPOÚCTBE REPECEVEHNÚ U RPUMBIKAHUÑ, PACROAOXEHHIX B COPORCKUX SCAOBHNX U BEANSH SACTPOEHHIX TEPPUTOPUÑ, A TAKWE B BIJEMKÁX; B SCAOBHNX RABORKOBOTO RORTORAEHHNA.

4.2. ПРИ ПРОЕКТИРОВАНИИ ВОДОСТВОЛА С ПОВЕРХНОСТИ СЪЕЗДОВ РАССТОЯНИЕ МЕЖДУ ПОПЕРЕЧНЫМИ ВОДОСБРОСНЫМИ АОТКАМИ ОПРЕДЕЛЯЮТ С УЧЕТОМ ШИРИНЫ ПРОЕЗЖЕЙ ЧАСТИ И ОБОЧИН СЪЕЗДОВ, ПРОДОЛЬНЫХ УКЛОНОВ И ВИДОВ УКРЕПЛЕНИЯ ВБОЧИН ПО ГРАФИКАМ НА РИС. 4.1, 4.2, 4.3, 4.4, 4.5 для дорог Т-ТЕ КАТЕГОРИЙ.

NOR CHEHUR:

AEBONOBOPOTHUE CLESAU;

—— правоповоротные съезды; номера ливневых районов ФФФ В на рис. 4, 5. определяются пр карте на стр. 9.

- 4.3. BORDOTBOR C SAMKHYTMX BOLDCGPOCHЫХ ПАВЩАЯЕЙ МЕЖДУ СЪЕЗВАМИ ВОЗМОЖЕН В трех случаях:
- -OLA GTONKABAN, ARKIN BE BETTETBENGAL RIGHTMANDER ARKARER ARCHORD ARKARD BETTORHUM, BOLDOTBOR DEEC-BETTORHUM, BOLDOTBOR RICHARD BETTETBENGAL BETTORHUM, BOLDOTBOR DEEC-CATAR MICHAEL BOLDOTROLD BETTA BETT
- RNHAHAQKOD W KANMAIGE B RNHAWNED NOERBEAQ BODESGO BODEOSO OTOHHAD LOS OTOHHADOO COCTOAHAR NAME WAS CAESAGUE OTOHHADOO COCTOAHAR NAME WAS CAESAGUE
- З. ПРИ НЕОБХОДИМОСТИ СРЕЗКИ ГРУНТА В ПРЕДЕЛАХ ПЛОЩАВЕЙ МЕЖВУ СЪЕЗВА-МИ, ЗАПРОЕКТИРОВАННЫМИ В ВЫЕМКАХ, ВОД ООТВОД ОБЕСПЕЧИВЛЕТСЯ ПУТЕМ УСТРОЙСТВА СООТВЕТСТВУЮЩЕЙ ВЕРТИКАЛЬНОЙ ПЛАНИРОВКИ.
- 4.4. ВОДООТВОД ПРИ УСТРОЙСТВЕ ПЕРЕСЕЧЕНИЙ И ПРИМЫКАНИЙ В ВЫЕМКАХ, В УСЛОВИЯХ ПАВОДКОВОГО ПОДТОПЛЕНИЯ СЪЕЗДОВ СЛЕДУЕТ ПРОЕКТИРОВАТЬ ИНДИВИЛУАЛЬНО.

B DODOTEDA INN YCTPOÚCTBE REPECEYENNA NI NIMMEKANNÍ, PACROACKEHHELS B PRISKE CONTRACTOR NI BEANSM SACTPOEHHELS TEPPHTOPNÚ YCTPANBAETCR B YBRISKE COLTEMU TOPORCKOTO BOROTEORA. NPH HEOFISBAMMOCTH NOBEPXHOCTHY BORY BUITSCKART ROXLERPHEMHEMNI KOADRAMAN YEPES CUCTEMY SARPOEKTNPOBAHHELS BOROCTOKOB.

У ВОДООТВОД В УСОВИЯХ ПОДТОПЛЯЕМЫХ НАСЫЛЕЙ И РЕГУЛЯЦИННЫХ СООРУЖЕНИЙ

- 5.1. BODOOTBOA C RPOETXEN ASTAN ROTTOR AREA RAISINEN OCCUPECT BANKT RUTEM BTBOA BOAM HA UPERAREMBIN OTKOC GES SCHOOL ASTAN C SCHOOL OT KOHKPETHEX SCARBEN.
- 5.2. ПРИ ПРОЕКТИРОВАНИИ РЕГУАЯЦИОННЫХ ДАМБ ЗНАЧИТЕЛЬНОГО ПРОТЯЖЕНИЯ, ПРИМЫКАЮЩИХ К НЕЗАТОПЛЕННЫМ БЕРЕГАМ И ПРЕПОХРАНЯЮЩИХ ОТ РАЗМЫВА БЕРЕГОВУЮ АИНИЮ, ВОЗНИКАЕТ НЕОБХОДИМОСТЬ СБРОСА ПОВЕРХНОСТНЫХ ВОД ЗДОЛЬ ПОДОШВЫ НАСЫПИ С ПОМОЩЬЮ ЭКРЕПЛЕННОГО ВОДООТВОДНОГО ЛОТКА.
- 5.3. В МЕСТАХ ПОНИЖЕНИЙ ПРОВОЛЬНОГО ПРОФИЛЯ ДОРОГИ НА КОСОГОРНЫХ ЭЧАСТКАХ, А ТАКЖЕ В МЕСТАХ ВОЗМОЖНОГО ПЕРЕРАСПРЕДЕЛЕНИЯ ПОВЕРХНОСТНОГО СТОКА СТ ОДНОГО

LMU	COCKNH	Comm		TNP			
HAY. OTE.	Осокин	1					
H. KOHTP.	новиков	10.20	•		RUDATO	AUCT	AUCTOB
PA. CREU.	HOBUKOB	w.Lul			P		
РУК. БРИГ	PHBAT	Patr		DEMINE VY AHPIE			
RPOBEPHA	MARCOBA	lues			COR	03 A OP	NPOEKT
COCTABU	COKOAOSA	Coxil-					

BORDORDORSCKHOTO COOPSEHUR K APSTOMS HEOGXORUMO RPERSCMATPUBATE STEETHIE RAMEN OFBAADBAHKS. YOU OTMIKAHKS HX OT ROPOCK ROAMER SUT HE BOASE 90"

5.4. OTROCHME AOTKU BAS CEPOCA ROBEPSHOCTHMS BOS C ROUMEHHMS HACMREN HE PEKOMEHRYETCH PASMEWATH B MECTAX ROBBINEHHHX CKOPOCTEN RAROIKD-BUX BOA.

Y BORDOTBOR NPH 3PO3HOHHMX NPOLLECCAX HA CKADHAX

- **Б.1.** ВОДООТВОДНЫЕ ПРОТИВОЗРОЗИОННЫЕ СООРУЖЕНИЯ: ВОДОЗАПЕРЖИВАЮ-MME BAAN-TEPPACH, BAAN-CTEHKN, KAHASH-BAAN MUPOKO UCROADSYHOT-СЯ ПАЯ БОРЬБЫ С ОВРАГООБРАЗОВАНИЕМ.
- B.2. IAS OPFAHUSOBAHHOFO CEPOCA BOAH YEPES BEPWUHH OBPAFOB MCROAK-ЗУЮТ БЫСТРОТОКИ, ТРУБЫ, ПЕРЕПАДЫ И Т.Д. ВЫБОР ТИПА СООРУЖЕНИЯ ЗАВИСИТ ОТ ГАЧБИНЫ ОВРАГА, МЕСТА ПЕРЕСЕЧЕНИЯ ОВРАГА ДОРОГОЙ ИАИ ВОДОЗАДЕРЖИ-BAKKUM BAACM, TPHTCKA TOBEPXHOCTHЫX BOX N OCCEHHOCTEN ETO ECTECT-BEHHOTO WAN MCKYCCTBEHHOTO PETYANPOBAHNA HA BOROCEOPE, KANNTAABHOC-ТИ ПРОЕКТИРУЕМЫХ СООРУЖЕНИЙ И ДРУГИХ ФАКТОРОВ.

ДАЯ РАСПРЕДЕЛЕННЯ ПОВЕРХНОСТНОГО СТОКА ПРИМЕНЯЮТ, ТАК НАЗЫВАЕ**мые,** распыантели стока - земляные валы небольшой высоты (0,5-1,5m). THE COOPEREHUR PASMEMANT B BHILE RPETPAR VEPES 30-100 M HA MEAKHX АОЖБИНКАХ С УЧЕТОМ КОНКРЕТНЫХ УСАОВИЙ И РАССРЕДОТОЧЕНИЯ ПОВЕРХ-HOCTHORD CTOKA.

6.3. В ЗАВИСИМОСТИ ОТ РАСПОЛОЖЕНИЯ АВТОМОБИЛЬНОЙ ДОРОГИ ОТНОСИ-ТЕЛЬНО ОПОЛЗНЕВОГО СКЛОНА ВОЛООТВОЛНЫЕ МЕРОПРИЯТИЯ ДОЛЖНЫ ОБЕСПЕЧИВАТЬ ПЕРЕХВАТ И ОТВОД ПОВЕРХНОСТНЫХ ВОЛ. ФОРМИРУЮЩИХ-СА НА ПОВЕРХНОСТИ ОПОАЗНЯ, С ОТВОДОМ ЗА ЕГО ПРЕДЕЛЫ. ПОВЕРХНОСТНЫЙ СТОК С ПРИЛЕГАЮЩИХ К ОПОЛЭНЮ СКЛОНОВ ОТВОЛЯТ СИСТЕМОЙ НАГОРНЫХ КАНАВ. УСТРАИВАЕМЫХ НА НЕПОДВИЖНОЙ ЧАСТИ CKABHA.

HA CKACHAX, FRE UMENTER SECCTOUNDIE EMKOCTH HAN JABOAQUENHDIE HUJKHU. возникает необходимость вывода и перехвата воды из них а инога ЗАСЫПКА ИАИ ПЛАНИРОВКА СКАОНОВ.

6.4. В ЦЕЛЯХ ПРЕДОТВРАЩЕНИЯ ФИЛЬТРАЦИИ ВОДЫ В ТЕЛО ОПОЛЗНЯ НЕОБІЛЬНИМО ПРЕДУСМАТРИВАТЬ УКРЕПЛЕНИЕ ВОДООТВОДНЫХ УСТРОЙСТВ, ПРИ АЮБОЙ ВЕДИЧИНЕ EKOPOCTH NOTOKA.

BORS HS BODDOTBORHUX COOPYWEHHN HA DROASHEBOM CKACHE CAFRYET OTBO-ANTE B AOFA N BOROTOKN, YRAAEHHEE OT OROATHEBOFO CKADHA, A TAKWE B BOLO-OTBORHUE COOPEMENTS ABTOMOBILABHUS HAN MEAESHUS ABPRE

VII OCHOBHUE NOAOKEHUR NO FURPOAOFHUECKUM PACUETAM.

Т.І. ПРИ ПРОЕКТИРОВАНИИ ВОДООТВОДНЫХ СООРУЖЕНИЙ РАЗМЕРЫ ИХ ПОПЕРЕЧНЫХ CEMEHUM UCTAHABANBARTCA NO PACMETHOMY PACKORY BORGI PACMETHOM PACKOR воды определяется в соответствии с основными положениями. Указаний по РАСЧЕТУ ДОЖДЕВЫХ РАСХОДОВ" СОЮЗДОРПРОЕКТ, М., 1973.

МАКСИМАЛЬНЫЙ ПРИТОК ПОЖДЕВЫХ ВОЛ РАСЧЕТНОЙ ВП ТАБА. 7.1 РЕКОМЕНзистся определять по формилам:

Bp = 16.7 aplp FPKp;

OP = Q YAC KET;

dp = do Se :

 $\delta e = 1 - \gamma \beta \eta$;

THE CLP-PACYETHAN WHITEHCUBHOCTH OCARKOB, COOTBETCTBYHOWAR JARAHHON BR дая максимального расхода волы, мм/мин; Ср-расчетный коэффициент CKAOHOBOTO CTOKA; F-BOROCEOPHAR NAOMARE, KM2; Y-KO3PPHUMEHT PERYKUHH **МАКСИМАЛЬНОГО ДОЖДЕВОГО СТОКА В ЗАВИСИМОСТИ ОТ РАЗМЕРОВ ВОДОСБОРНОЙ** площави (таба. 7.2.); Кф-козффициент ччиты влющий форму волосбора (TAGA. 7.3.); IL YAC - MAKCHMAABHAR HACBBAR UNTEHCUBHOCTS ROWER (TAGA. 7.8) RAR SARAHHOTO AUBHEBOTO

run	COCKNH	James			TNP				
HAY.OTA.	DCDKNH	(V.							
H KOHTP	HOBUKOB	U. Su	\				RNBATS	ANCT	AMCTOB
LY CUER	Браславский			0511115	BAHHME		P		
РУК.БРИГ	CABU4	Palm		02 M NE	MAHHOL				
RPOBEPHA	ARCORAN	luig-				- 1	COH	PROPI	IPOEKT
COCTABHA	COKOAOBA	Core							

инв. и пода. Подпись и дата взам. инв.и

РАЙОНА, ММ/МИН; KtJ-коэффициент редукции часовой интенсивности осадков в зависимости от времени формирования максимальных расходов на малых водосборах (таба. 7.9.); L_0 -коэффициент склонового стока при полном насыщении лочв водой (таба. 7.4и.7.5.); δ_0 -коэффициент, учитывающий естественную аккумуляцию дохлевого стока на поверхности водосборов в зависимости от различной залесенности и почво-грунтов и определяемый при сплошной залесенности или однородных почво-грунтах по всему водосбору на малых водотоках; γ -коэффициент, учитывающий различную проницаемость почво-грунтов на склонах водосборов в условиях формирований расчетных дождевых максимумов (таба.77); β -коэффициент, учитывающий состояние почво-грунтов к началу формирования расчетного плаводка (таба.05) R-поправочный коэффициент на редукцию проницаемости почво-грунтов с увеличением площали водосб о ров, равный 0.9 для районов мв-10, а для остальных - 1,0

тип сооружений	КАТЕГОРИЯ ДОРОГИ	B∏, %
Водоотволные соорчжения с поверхности мостов и дорог	I, II Общей сети. IV , Y	1 2 3
ВОДООТВОДНЫЕ КАНАВЫ, ОБЕСПЕЧИВАЮЩИЕ ОТВОД ВОДЫ НЕПОСРЕДСТВЕННО ОТ ЗЕМАЯНОГО ПОЛОТНА (КЮВЕТЫ, НАГОРНЫЕ КАНАВЫ, ВОДОСБРОСЫ ИЗ КЮВЕТОВ)	I, II общей сети. IV, IV	2 3 4
ПРОЧИЕ ВОЛООТВОДНЫЕ КАНАВЫ, НЕ ЯВАЯЮЩИЕСЯ ЗАЕМЕНТАМИ ДОРОГ И УСТРАИВАЕМЫЕ ДАЯ ОТВОЛА ВОЛЫ НЕ С ДОРОЖНЫХ СООРУЖЕНИЙ	I. H. Y. Y	4 6 10

ТАБАНЦА 7.2.

F, KM2	Y	F, km²	ዋ	F, KM²	q	F, KM²	Y	F, KM²	q	F, KM²	4
1000,8	0,98	0,05	0,75	0,9	0,52	0,005	0,86	0,3	0,64	3	0,46
0,0005	0.95	0,07	0,72	ſ	0.5	0,01	0.8	0,5	0,6	4	0.43
0.001	0.9	1.0	0,67	2	0,48	0.03	0,78	0.7	0,56	5	0,41

TABANKA 7.3

F. KM2	K03ФФ	тнамум	КФ при	OT H 0 1	NEHNN	f:L,	PABHOM	
r, KM ~	0.1	0,2	8.4	0.6	8,0	1	1.2	1.4
0.1	۲,0	0.85	0.85	0,7		_	_	-
0,2	0,7	0.75	0.9	0,85	0,8	_	-	-
0.4	0.7	0,85	0,9	0.85	8.0		-	-
0,6	-	0.7	0,85	0.85	0,85	0,8	-	
8,0	-	-	0,8	0.9	0,85	0,85	0,8	0.8
i	-	-	0,75	8,0	0.9	0,85	0,8	0.8
1,2	-		8,0	0,85	0,9	0,87	0.85	0.8
1,4	-	_	0,75	0,85	0.87	0.9	0,85	6.0
1,6	_	-	0.7	0,8	0,9	0,87	0,85	0.82
1,8	-	-	-	8,0	0,85	0,9	0,87	0,85
2	_	_	_	0,75	0,85	0.87	0.9	0,85

ТАБАНЦА 7.4.

TUN NOKPUTUR WAN NOBEPXHOCTN	Коэффи	КОЭФФИЦИЕНТ СТОКА 🕹 ПРИ ВП. %.						
СТЕКАНИЯ	i	2	3	10				
АСФАЛЬТОБЕТОН И ЦЕМЕНТОБЕТОН	i	0.9	0,9	8.0				
ЩЕБЕНОЧНЫЕ И ГРАВИЙНЫЕ С ПРОПИТКОЙ Битумом	9,0	8,0	8.0	0.7				
ЩЕБЕНОЧНЫЕ, ГРАВИЙНЫЕ, ГРУНТОВЫЕ С Уплотнением	8,8	0.7	7.0	8,0				

					ТПР				
run	СОСКИН	Quy			1 117				
	ОСОКИН	JU				lant duta	LAURE	L suprago	
H. KOHTP.	НОВИКОВ	N. Les	-			CTALINA	VACI	A NCTOB	
ГА. СПЕЦ.	новиков	2. m		OPITHE	RAHHЫE	P	L		
РЧК БРИГ.		Relyn		33			СОЮЗДОРПРОЕКТ		
RPOBEPNA	И ЛЯ СОВА	luy				COHO	311011	INDEKI	
COCTABUA	COKDADBA	Core							

c

	Engdo			· vound	7 I.A.
РАЙОНЫ	MAAKAN	BN, %	ОПОВОГО ОКВАР	CTOKA L	ПРИ
	0,33	1	2	3	10
ПРИМОРЬЕ	1-0,9	0,9 — 0,8	0.8,-0.7	0.7 - 0.6	0.4 — 0.3
ХАБАРОВСКИЙ КРАЙ, ЧЕРНОМОРСКОЕ ПОБЕРЕЖЬЕ КАВКАЗА, ВОСТОЧНОЕ ЗАКАВКАЗЬЕ, АИВНЕОПАСНЫЕ ПРЕД-			,		
ГОРНЫЕ РАЙОНЫ СРЕДНЕЙ АЗИИ	8,0 - 2,0	7,0 — 8,0	0,7 — 0,56	0.66 — Q.6	0,3
АИВНЕОПАСНЫЕ РАЙОНЫ КАРПАТ, КРЫМА	Q8-Q75	0,75 - 0,7	0,7 — 0 ,6	0,55 — 0,6	0.27
ЗАБАЙКАЛЬЕ, ПРЕДГОРЫ КАРПАТ, ГОРНЫЕ И ПРЕДГОРНЫЕ РАЙОНЫ СРЕДНЕГО ЧРАЛА, ЛЕСОСТЕПНАЯ					
ЗОНА ЕВРОПЕЙСКОЙ ЧАСТИ СССР	0.75-0,65	0,7 — 0,6	0.6-0.55	Q5—0,55	Q.2 5
СТЕПНАЯ ЗОНА ЕВРОПЕЙСКОЙ ЧАСТИ СССР, ЮЖНЫЙ УРАА, ЗАПАДНАЯ СИБИРЬ	0,65 — 0,55	0,550.5	0,5-0,45	0,45-0,4	0,2
ПЭСТЫННЫЕ И ПОАРПУСТЫННЫЕ РАЙОНЫ СРЕДНЕЙ АЗИИ, ЮЖНЫЕ РАЙОНЫ ТЭНЦРЫ	0,55 — 0,5	05-06	04 00	07	9.15
LWAND 13UTLA	0,03 - 0,3	u,3 — u,4	0.4 - 0,3	0.3 0,25	0,15

ТАБЛИЦА 7.6

1собенность стока	коэффициент В при категории почво-грун-								
	I	п	ш	IK.	Y				
СТОК ПО ПРОМЕСЧЭМИМ ЛОЧВО- ГРУНТАМ ИАИ В В ДЕЛЯНОЙ КОРКЕ СОВПАДЕНИЕ ИЗБИТОЧНОГО ОСЕННЕ-	i	1 - 0,9	0,9 - 0,8	0.8-0.7	0,8 - Q2				
ГО ЧВЛАЖНЕНИЯ СО СТОКОМ В ВЕСЕННИЙ ПЕРИОЛ СТОК ПО СЧХИМ ПЫЛЕВАТЫМ ГРУНТАМ (ПЕСКИ, ЛЕССЫ И Т.П.) ПРИ	1	9,9	8,0	0,7	0,7 - 0,65				
ВОЗМОЖНОСТИ ОБРАЗОВАНИЯ ГРУНТ Товой корки, препятствующей Быстрому прониканию войы в Грунт	-	_	-	a,o -8.0	1				
ПРЕВ ВАРИТЕЛЬНОЕ ЭВЛАЖНЕНИЕ ГРУНТОВ К НАЧАЛУ РАСЧЕТНОГО									
ПАВОДКА В РАЙВНАХ МУССОННОГО	1 - 0.9	0.9-0.8	0.8 — 0.6		_				
Влажные почво-грунты в естест, услов,	1.05	1.05 - 1.1	1.1 - 1,15	1,1 -1,15					

WHB. N ROLA ROLANCE W RATA B3AM. WHB.N

Таблица 7.7.

КАТЕГОРИЯ	XAPAKTEPUCTUKA CKADH	ОВ БАССЕЙНОВ	
0480- -грунтов	ПОЧВО-ГРУНТЫ И ПОВЕРХНОСТИ СТЕКАНИЯ	РАСТИТЕЛЬНОСТЬ	R
I	СКАЛЬНЫЕ, МЕРЗЛЫЕ И ПЛОХО ПРОНИЦДЕМЫЕ ГРУНТЫ И ПОВЕРХНОСТИ СТЕКАНИЯ	ЗАДЕРНОВАНЫ ИАИ ОТСУТСТВУ- ЕТ РАСТИТЕЛЬНОСТЬ ГУСТОЙ ЛЕС С КУСТАРНИ- КОМ И ТРАВОЙ	0, 02 0,02-0,04
I	Глины, суглинки	ЗАДЕРНОВАНЫ Густой аес с кустарником и травой	0,04 - 0,09 0,05 - 0,09
	Такыры	отсятствяет	0.06-0.12
ш	БУПЕСЧАНЫЕ И ПЕСЧАНЫЕ ГРУНТЫ ПРИ ЕСТЕСТВЕННОЙ ВААЖНОСТИ	ЗД ДЕР НОВАНЫ Густой аес с кустарником и травой	0.1 - 0.15 0.15 - 0.2
JV.	-СЭХИ ИХЭЭП ИТНЕЧТ ЭИХЕЎ СМЭ ЖАСИДИВИКИ И ПОПОННЫХ РАЙОНАХ ПРИ НЕВВЕТАТОЧНОЙ ВЛАЖНОСТИ	ЗАКРЕПЛЕНЫ НЕ ЗАКРЕПЛЕННЫЕ	0.15-0.2 0.2-0.25
	РЫХЛЫЕ ГРЭНТЫ (ОСЫЯН ИТ.П.)	не за крепленные	0,25-0,35
¥	СКАЛЬНЫЕ ПОРОЛЫ В ГОРНЫХ УСЛОВИЯХ СИЛЬНО ТРЕЩИНОВА- ТЫЕ ПО ПОВЕРХНОСТИ	ЧАСТИЧНО ЗАКРЕПЛЕННЫЕ РАСТИТЕЛЬНОСТЬЮ ИЛИ КУСТАРНИК НЕЗАКРЕПЛЕННЫЕ	0,15-0,2 0,2-0,3
Σſ	Тарфы	УВЛА ЖНЕННЫЕ ОСУЩЕННЫЕ	0.1 - 0.17 $0.15 - 0.25$
VIC	ГРУНТЫ, ЗАГРЯЗНЕННЫЕ ПРОИЗ- ВОДСТВЕННЫМИ ОТХОДАМИ (ГОРЮЧЕСМАЗОЧНЫМИ МАТЕРИА- ЛАМИ, ЦЕМЕНТАМИ, ИЗВЕСТЬЮ)	OTCALCI BAEL	0.04-0.09

run .	Соскин				TRP					
RTO PAH	DCOKNH	leg				RUBATO	AUCT	AUCTOB		
H KOHTP.		1.30	. —		Ванные	P		1		
TA CREU.	HOBNKO8	M. Lud		OFWAE						
РУК БРИГ.		and 7		Compac	คลา	со юзворпроект				
NPOBEPKA	COKDAOBA	Con				1	COMPAGENT			
CHETARUA	PARUU	D. an								

ПРИ ПРОАОЖЕНИИ АВТОМОБИЛЬНОЙ ДОРОГИ В НЕСКОЛЬКИХ АИВНЕВЫХ РАЙОНАХ ИМ В НЕПОСРЕДСТВЕННОЙ БЛИЗОСТИ ОТ ИХ ГРАНИЦ РАСЧЕТНАЯ АИВНЕВАЯ ХАРАКТЕРИСТИ-КА НА КАЖДОМ ЧЧАСТКЕ ТЕРРИТОРИИ ВПРЕДЕЛЯЕТСЯ ВО ФОРМЧАЕ:

Qiac = 0.5 (Qu+ Qn+1);

ГАЕ О'час — ЧАСТМАЯ ИНТЕНСИВНОСТЬ ЧАСОВВГО ДОЖАЯ ДЛЯ ПЕРЕХОДНОГО УЧАСТ-КА ДЛИНОЙ 25 КМ В КАЖДУЮ СТОРОНУ ОТ ГРАНИЦ, ЛИВНЕВОГО РАЙОНА ПО НАПРАВ-ЛЕНИЮ ДОРОГИ;

UN, UN+1-4ACOBME UNTEHCUBHOCTH ADMAN, ONPEREAREMME NO TAGA. 7.8. N KAPTE HA CTP.16 RAN ABUX COCERNUX PANOHOB.

ДАЯ ВОДОСБОРОВ, ПАОЩАДИ КОТОРЫХ НАХОДЯТСЯ В НЕСКОЛЬКИХ АИВНЕВЫХ РАЙНАХ, РАСЧЕТНУЮ ИНТЕНСИВНОСТЬ ДОЖДЯ ОПРЕДЕЛЯЮТ КАК СРЕДНЕВЗВЕШЕННУЮ ПО ПАОЩАДИ. КОЗФФИЦИЕНТ СТОКА \mathbb{L}_P дая грунтовых спланированных с травяной растительностью повірхностей стекания определяют по данным таба. 7.5. и согласно формуле: $\delta e = 1 - \gamma \beta \Pi$.

В РАВНИННОЙ МЕСТНОСТИ РАСЧЕТНЫЙ ЧКАОН ЈПР ГААВНОГО АОГА НА МААЫХ ВОДОСБОРАХ МОЖЕТ БЫТЬ ПРИНЯТ РАВНЫМ ЧКАОНЧ АОГА Ч СООРУЖЕНИЯ. НА ВОДОСБОРАХ ПАОЩАДЬЮ ДО 1 КМ², В КАЧЕСТВЕ РАСЧЕТНОГО ПРИНИМАЕТСЯ ЧКАОН МЕЖДУ ВОДОРАЗДЕЛОМ
И ПОНИЖЕННОЙ ТОЧКОЙ ЖИВОГО СЕЧЕНИЯ В СТВОРЕ СООРУЖЕНИЯ. ПРИ РЕЗКОЙ СМЕНЕ
ЧКАОНОВ ПОВЕРХНОСТИ СТЕКАНИЯ РАСЧЕТНЫЙ ПРОДОЛЬНЫЙ ЧКАОН ОПРЕДЕЛЯЕТСЯ КАК СРЕДНЕВЗВЕШЕННЫЙ ОТ ВОДОРАЗДЕЛА ДО РАСЧЕТНОГО СТВОРА. КОЗФФИЦИЕНТ ФОРМЫ КФ ПРИМЕИЛЮТ ДАЯ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОГО СТОКА НА ВОДОСБОРАХ С ЕСТЕСТВЕННЫМИ
СКЛОНАМИ; ДАЯ МАКСИМАЛЬНЫХ РАСХОДОВ С ПОВЕРХНОСТИ АВТОМОБИЛЬНЫХ ДОРОГКФ-1.
КОЗФФИЦИЕНТ ФОРМЫ МОЖЕТ БЫТЬ ОПРЕДЕЛЕН ПУТЕМ НАТУРНОЙ ОЦЕНКИ. НАПОЛНЕНИЕ РУСЛОВОЙ
СИСТЕМЫ В ЗАМЫКАЮЩЕМ СТВОРЕ ЦЕЛЕСООБРАЗНО ОПРЕДЕЛЯТЬ НА МЕСТЕ ПО МЕТКАМ
ЧРОВНЕЙ ВЫСОКОЙ ВОДЫ И ОПРОСАМ ОЧЕВИДЦЕВ.

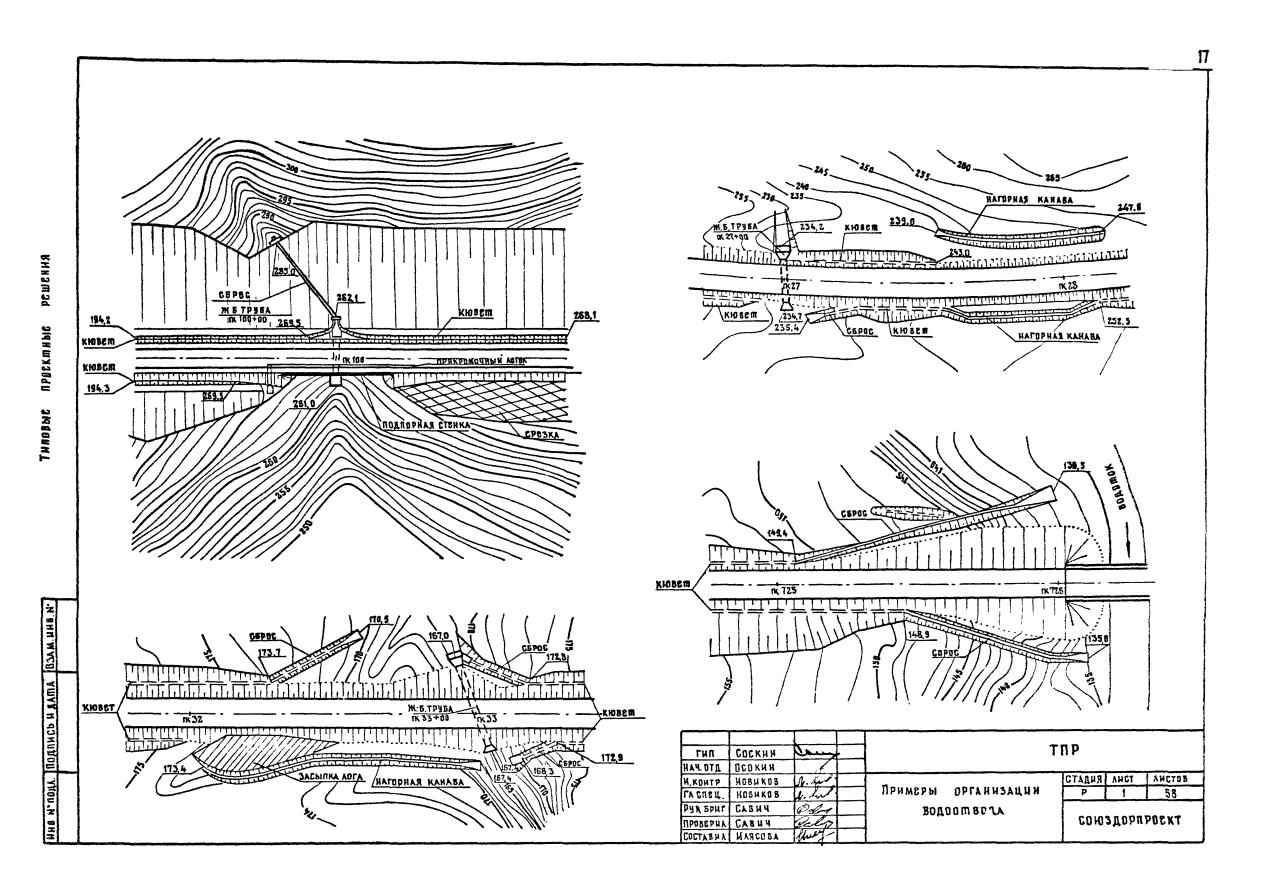
РАСЧЕТЫ КАНАВ, КЮВЕТОВ, БЫСТРОТОКОВ ИТ.Я. ПРИВЕДЕНЫ В СООТВЕТСТВУЮЩИХ ГИДРАВ-АИЧЕСКИХ РАСЧЕТАХ НА АИСТАХ 32,33,34,35

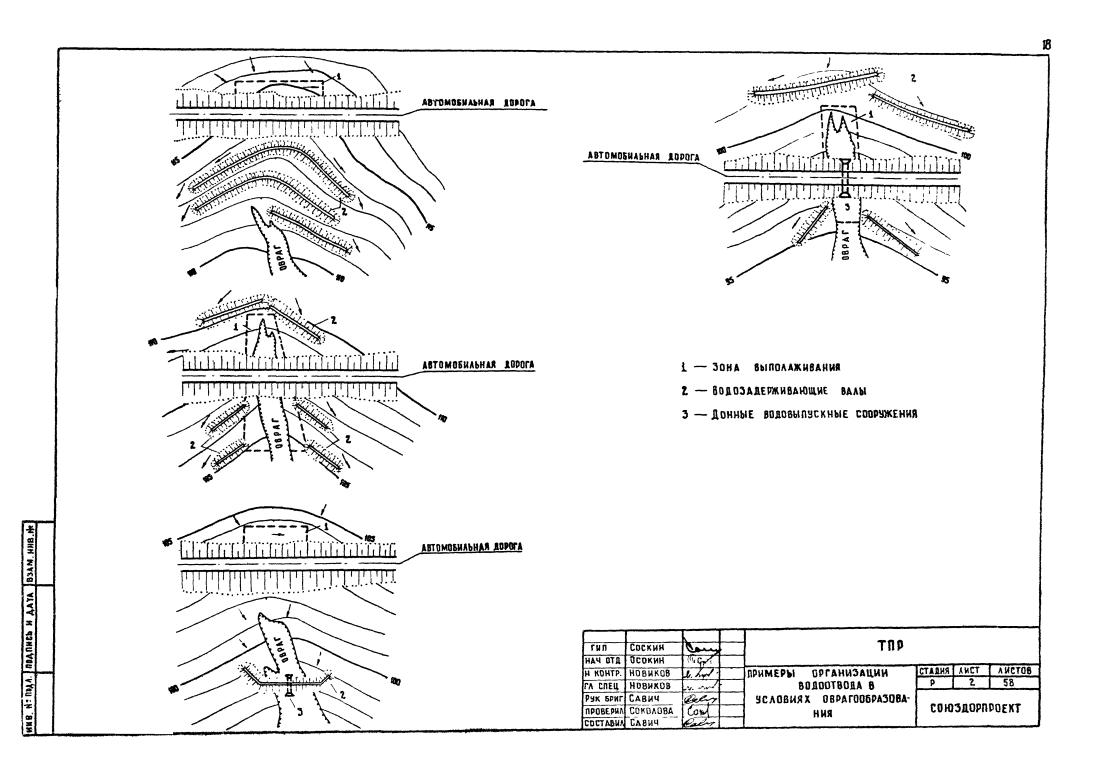
ТАБЛИЦА 7.8.


						TAUNING					
AHOŇA9 M	МАКСИМАЛЬНАЯ ЧАСОВАЯ ИНТЕНСИВНОСТЬ О ЧАС, ММ / МИН, ПРИ ВП, % РАВНОМ										
	10	5	4	3	2	1	0.3				
1	0,22	0.27	0.29	0,32	0.34	0,4	0,49				
2.	0,29	0,36	0.39	0,42	0,45	0.5	0,61				
3	0.29	0,41	0.47	0.52	0,58	8,7	0,95				
4	0,45	0,59	0,64	0.69	0.74	0,9	1.14				
5	0,46	0,62	0,69	0,75	0.82	0.97	1,26				
6	0,49	0,65	0,73	0.81	0.89	1,81	1,46				
7	0.54	0.74	0.82	0,89	0,97	1.15	1.5				
8	0,79	0.98	1.07	1,15	1.24	1,41	1,78				
9	18,0	1,02	1.11	1.2	1,28	1,48	1.8				
10	0,82	1.11	1,23	1,35	1.46	1.74	2,25				

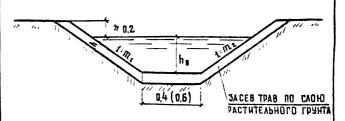
						ΤΤ	АБАНЦА	7.9.			
f,	жезффи	CTO QUEST PEI	eskum r Ka J _{np}		м чклен	AKYOHE CKYOHOBOLO					
KM ²	9,3	1	2	3	4	5	6	7			
0,0001 0,0005 0,001	4.7 3.85 3	5,4 4 3,35	6,3 4,35 3,85	Pańoh n 7,2 4,65 4	7.7 4.95 4.2	8 5.4 4.5	8.3 5.8 4.6	8.4 5.95 4.7			
0,005 0.01	2.47 2.15	2.75 2.3	2.95 2.5	3.25 2.7	3.5 2.9	3,8 3,15	3.9 3,22	3,95 3,33			
PANOHЫ N 2-4											
0,000† 0,0005 0,001 0,005 0,01	4,35 3.5 2.8 2.3 1.95	4,6 3,8 3,2 2,7 2,3	4,9 4,1 3,6 2,9 2,5	5,2 4,3 3,8 3,1 2,7	5,4 4,4 3,9 3,4 2,85	5.6 4.6 4.15 3.6 3.05	5.7 4.8 4.2 3.75 3.15	5.9 4.9 4,3 3.85 3.3			
			PAI	k uhu k	5-7						
0,0001 0.0005 0,001 0,005 0,01	4,2 3,83 3,i 2.6 2,1	4,5 3,93 3,4 2,8 2,3	5 4,25 3,8 3,15 2,65	5,4 4,37 3,95 3,3 2,81	5.6 4.45 4.12 3.55 3.01	5.7 4.7 4.2 3.8 3.18	5,77 4,5 4,3 3,9 3,27	5,85 5 4,4 3,97 3,4			
			PA	N CHU N	8-10						
0,0001 0,0005 0,001 0,005 0,01	3,9 3,4 2,75 2,3 1,9	4.2 3.6 3.07 2.56 2.1	4.5 3.72 3.35 2.84 2.3	4.9 3.9 3.6 3 2.5	5.03 4 3,73 3,2 2,7	5,45 4,18 3,8 3,4 2,85	5,25 4.36 3,9 3,5 3	5.33 4.56 3.95 3.55 3,1			

ПОЯСНЕНИЕ Номера аивневых районов определяются по карте на стр. 16


F N R HA4. OT A.	Осокин Соскин	200	•		TNP					
H. KOHTP.	Новиков	No. Francis				RNIATS	ANCT	AM CTOS		
TA. CHELL	Новиков	Je. Kar				P		1		
РУК. БРИГ.	CABNY	Que -		Dentne	RAHHNE					
NPOBEPHA	CABNA	Pela				COH	COHOSAOPAPOEKT			
KNBATOOS	COKOADBA	Cox								


KAPTA AUBHEBЫХ (1-10) PANOHOB CCCP

WHS. M RODA. ROUGHES W DATA BEAM. WHS.M


	СОСКИН			TNP			
run		1		1117			
ATO PAH	OCOKHH	WY			RUBATO	TOUR	AUCTOB
H. KOHTP	Новиков	U.der.	1		LIAHAN	nre.	ANCIUS
TA. CREU	HOBUKOB	Vilue -			P	<u>L</u>	<u> </u>
РУК БРИГ.	СУВИЛ	Bab	3N FILE OF IT NE	ЗАННЫЕ	nnina	LOPAG	ncvr
ПРОВЕРИЛ	AGOORAN	lives			Lumi	HOLIM	UENI
COCTABUA	COKOAOBA	con					

		парщаль,				06DEM.	M ³		
CXEMЫ	1	NADEL, M ²		ТОЛЩИ	HA CA	OR PACTUTE	VPHOL	о гру	HTA, M
поперечных				h = 0.1			h = 0.15		
СЕЧЕНИЙ	0.4	ДНА, М 0.6	NONPABKA HA Q.1 hs	ШИРИНА 0.4	D.B	HA O.1 ha	ширина 0.4	AHA,M O.6	NORPABKA HA 0.1 hB
-1/2 115	22	24	3,6	2,2	2.4	0,36	3.3	3.6	0.54
-(15 13	28.8	30,8	5,0	2,9	3,1	0,5	4,3	4,6	0,75
-tis in	33,6	35,6	5,9	3,4	3.6	0.59	5	5.3	0,89
1:6	43,4	45,4	7,9	4.3	4.5	0.79	6,5	8.6	1.19
-42 13	34	33	5,5	3,1	3,3	0,55	4,7	5	0,83
1.5	35,8	37.8	6,4	3.6	3.8	0,64	5,4	5,7	0,96
1.5	45,6	47.6	8.4	4.6	4.8	0.84	6,8	7.1	1,25
_13 1th	40,4	42.4	7,3	4	4.2.	0,73	6,1	6,4	1,1
1:6	50,2	52,2	9.3	5	5,2	0,93	7,5	7.8	1,4
-1:4 1:4	45,2	47.2	8,2	4,5	4.7	0,82	6,8	7,1	1,23
1.4 1.6	55	57	10,2	5,5	5,7	1.02	8,3	8,6	1,53

ПРИМЕЧАНИЯ

- 1. ЗАСЕВОМ ТРАВ ПО СЛОЮ РАСТИТЕЛЬНОГО ГРУНТА
 УКРЕПЛЯЮТ ПОВЕРХНОСТЬ КЮВЕТА ПРИ СКОРОСТЯХ ТЕЧЕНИЯ
 ВОДЫ НЕ БОЛЕЕ 0.7 м/с и УКЛОНАХ МЕСТНОСТИ 10-20 %
- 2. ЗАСЕВ ТРАВ ПРОИЗВОДИТСЯ ПО СЛОЮ РАСТИТЕЛЬНО-ГО ГРУНТА ТОЛЩИНОЙ О,1 М НА ПЕСЧАНЫХ ОТКОСАХ В ЮЖНЫХ РАЙОНАХ: НА ОТКОСАХ ИЗ ЖИРНЫХ ГЛИН ТОЛЩИНУ СЛОЯ РАСТИТЕЛЬНОГО ГРУНТА УВЕЛИЧИВА-ЮТ ДО 0,15 М.
- 3. BCE PASMEPH JAHN B METPAX.

THE	СОСКИН	Comme	- TNP	TNP							
HAY. DTA.	ОСОКИН	15.65									
H. KOHTP	Новиков	4.20		RUBATO	AHCT	AHCTOB					
TA CHELL	НОВИКОВ	2. In	Чирепление водоотводных со-	Р	3	58					
PYK EDUT	CABNY	Dely	ПОРУЖЕНИЙ ЗАСЕВОМ ТРАВ ПО	ОРУЖЕНИЙ ЗАСЕВОМ ТРАВ ПО							
проверна	САВИЧ	Bely	САОЮ РАСТИТЕЛЬНОГО ГРУНТА	COH	союз дорпроект						
COCTABHA	COKOAOBA	Corl									

ДА ПОДПИСЬ И ДАТА ВЗАМ. ИНВ.М

SKPENAEHUE OTKOCOB

Cnocos	ПОКАЗАТЕЛИ УКРЕПЛЕНИЯ									
ЭКРЕПЛЕНИЯ ОТКОСОВ	ГЛУБИНА			KOAUHECTBO						
	проникания Корней , см	HUR, CM	дернини, СМ	S=400 CM2	на разрыв	HA CPE3				
ГИДРОПОСЕВ С МУЛЬЧИРО- ВАНИЕМ	417	4 1 5	#	222	#	52				
ЗАСЕВ ТРАВ ПО САОЮ РАСТИТЕЛЬНОГО ГРУНТА	411	418	10	244	13	61				

СОСТАВ СМЕСИ ДАЯ ГИДРОПОСЕВА НА 3 ТОННЫ ВОДЫ

компоненты	EAUH N3M.	количество
О КИЗДАРМЕ КАНМЕТИЙ КОНЦЕНТРАЦИЕЙ БИТУ- МА 50%, ПОПОЛНЕННАЯ З-5% ССБ	٣	0,8
ТОРФО КРОШКА ИАИ ОПИАКИ	T	0.32
Комплексные упобрения	T	0,075
СЕМЕНА МНОГОЛЕТНИХ ТРАВ	٢	0.010

NMIGOTHERT - OPROT SHEARD AND ME OR OF THE CONTROL OF THE CONTROL

	РАСХОД УДОБРЕНИЙ,КТ							
Вил Грунта	АММНАЧ- НАЯ Селитра	СУПЕР- ФОСФАТ	СОАЬ СОАЬ					
РАСТИТЕЛЬНЫЙ	0,3	8,0	0,5					
СМЕСЬ ТОРФА(30%) И СУГЛИНКА (70%)	0.12	0.15	0,1					
смесь торфа(40%) и песка (50%)	0,12	0.32	0,2					
ГАИНИСТЫЙ	0.24	0.32	0,2					

PACXDA COCTABARHOWAX MYABYENOKPHIN'N HA 100 M²

КОМПОНЕНТЫ	EQ. N3M.	КОЛИЧЕСТВО
CHE COL NAVIGABLE COLOR	Kľ	40
СОЛОМА (НАРУБЛЕННАЯ ПЛИНОЙ 3-4 СМ)	Kr	20
RN34AUME RAHMUTUT	Kľ	0,1
BORA	Kr	0,5
NATEKC (CYXOE BEWECTBO)	KΓ	4
Упобрения (смесь азотных Фосфорных, калийных)	Kr	5-8

РЕКОМЕНЦУЕМОЕ КОЛИЧЕСТВО УДОБРЕНИЙ ПРИ ЗАСЕВЕ ТРАВ ПО СЛОЮ РАСТИТЕЛЬНОГО ГРУНТА НА 100 М²

На именова ни е	ER. N3M.	KOANYECTBO
Азотные	KL	2
Фасфарные	KC	3
КАЛИЙНЫЕ (ДЛЯ ГИДРОПОСЕВА)	KT KT	2 (6)

ROBARKU WBECTKOBOTO MATEPHANA HA 100 M2

вид почвы	MATEPHAA	JACEB TPAB NO CAOM PAC- TUTEALHOFO FPYHTA	гипропосев		
кислотность рН 4 5	ИЗВЕСТКОВЫЙ ТУФ. Гашеная	20 KF	15 KF		
ЗАСОЛЕННОСТЬ > 5мгэкв Na на 100 г почвы		NO KI	13 KI		

TPEXKOMNOHEHTHЫE CMECH (2.7 Kr - 100 M² ПОВЕРХНОСТИ ОТКОСА)

(17 17 100	MI HODEFAIL	DOTH BINDOM!
ВИД ТРАВЫ	КИНАЖЧЭДОЭ	RNHAPAMNAU
КОРНЕВИЩНЫЕ ЗЛАКОВЫЕ Травы	\$5-55	35—Для тяжелых связных почвогрум 55—Для легких почвогрунтов
РЫХАОКУСТОВЫЕ ЗААКОВЫЕ ТРАВЫ	30-50	50-дая тяжелых связных почвогрумп 30-дая легких почвогрунтов
СТЕРЖНЕКОРНЕВЫЕ БОБОВЫЕ ТРАВЫ	5 - 20	5-10-ДАЯ ЛЕССОВОЙ ЗОНЫ 15-20-ДАЯ СТЕПНОЙ ЗОНЫ
	no	XAPAKTEPY POCTA
низовые	70	
BEPXOBME	30	

ПРИМЕЧАНИЕ.

ДЛЯ УКРЕПЛЕНИЯ ОТКОСОВ РЕКОМЕНЦУЕТСЯ ПРИМЕНЯТЬ БИТУМНЫЕ ЭМУЛЬ-СИИ ПРЯМОГО ТИПА, ОТВЕЧАЮЩИЕ ТРЕБОВАНИЯМ ВСН 115-75.

run	СОСКИН	Com	TNP				
LAH. DTA.	Осокин	1.6					
H. KOHTP.	НОВИКОВ	4 for		RNDATS	AUCT	ANCTOB	
M.CRELL.	HOBNKOB	6. List	AKBEUVEHNIO OLKOCOB LNTbouoce	Р	4	58	
PYK BPUT	CABNY	Palm	вом с мульчированием и				
DPOBEPHA.	САВИЧ	Pelo	SACEBOM TPAB NO CAOHO PAC-	C D HO 3 A O P N P D E K T			
COCTABUA	COKOAOBA	Cox	THEAPHOLD LARHE	1			

-	МАБЛИЦА ДЛЯ ПОДБОРА	видового состава	H HOPM BUCEBA	CEMAN WHOLOVEWHIX	ПРАВ ПРИ	AKEUVEHAN OWKOCOB
	•		B PASAUHH	ых природных зонах	•	

シラス革	<i>-</i>	Один	АРНЫЕ Н	OPMH	BNCEBA	CEMAI	I KA	ACCA	B TPAN	MAX H	10 M	2 YKPE	NAREL	volo (OMKOC	A NPH	KBAWA	SHE EL	0 1:1,	5		
WWC T	P X T		XAOKY			COBPIE	MPABI				1			BHE MP				EPHNEK		E) MP/		
EUA NOYBU (PAC- MUMEANOFO FPH MA),HAHOCUMOÙ HA SKPENASEMBE OMKOCN	POR FEYHMOS, CAATAKOWHX OMKOCHI	FBKA AS-		HUMPORO.		NAPEÚ 613- KOPHEBU- WEBBIÚ	11.7	PAHEPAC NACTEBULL HEIÚ	BOAOCHEU. CHEUPCKHÚ	MUNYAK (OBCSHHUUA) 50P03AYANAS		ОВСЯНИЦА КРАСНАЯ	Metrak (auto- Bom, Goathriù Griochastan W)		ROSEBULA BE LAS RAN BEUK HOSEHNA S	Клевер Красный	AKOUEPHA	3caApujem	Аядренец Рогапни	Клевер Белый	KAEBEP POSOBBIÚ	Донник
1	1	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	A. AAR HEYEPHOSEMHON MOLOCHI																					
POYZOVACIIME	Ганар, Суганнок	14(95)	33(22)			33(18)	(26.5)		(29)		60 (42)	48 (36)	(19.5)			(1)	9 (6.5)		12(9)	(6.5)		
	SECOK,	_	33(22)			48(30)	(26.5)		(29)		72 (54)	60(42)	(26)	(54)			11 (9)		17(12)	(9)		
MOPP	CALVAHOK LYMHY	11 (8.5)	275(20)			24(18)	(20)	(26.5)	(21.5)		54(39)	42(27)	(13)			9(7)	7.5(5.5)		9.5(7)	(5)	(6.5)	
H	TECOK, CYTECH	14 (9.5)	33(22)			30(18)	(26.5)	(26.5)	(16.8)		60 (42)	54 (39)	(19.5)			(H)	9 (6.5)		14.5(11)	(6.5)		
	D. AAR AECOCMERHOÙ 30HH																					
RAPAD RAHDAA	CALVAHOK		44(275)			30(18)	40(26.5)		58(435)		60(42)	60(42)	(26)	(42,6)		(8,5)	8(6)	100(70)	10 (7,5)			8 (6)
11	LCOK, CYTECH		66 (49.5)		(25)	48(30)	53(40)		72,5 (58)		72 (54)	72(48)	(18,5)	(54)		-	11 (8)	132(88)	17(12)			11 (8)
ЧЕРНОЗЕМ ВЫЩЕЛАЧЕННЫЙ	ГЛИНД, СУГЛИНОК		44 (27.5)	(25)	-	36(24)	40(26,5)		58(43,5)		54 (39.8)	48(36)		48(36)			7,5(5,5)	110(77)			-	7(5.5)
11	RECOK,		66(49.5)		31(25)	48 (36)	53(40)		72 5(58)		60(42)	60(42)		54(39)				132(88)	_	_	1	10 (7.5)
		В. Для	C C TE	лной	30H	bl								······································	·	<u> </u>						
ЧЕРНОЗЕМ	TANHA, CYTANHOK	-	Γ-	37.5(25)	(25)	36(24)	(40)		58(43.5)		61(48)	(42)		48(36)			9(6.5)	88(71.5)				7 (5.5)
	RECOK,			(25)	37.5(25)	48(36)			72.5(58)		78 (60)	(48)		54(39)			11(8)	110(77)				10(7.5)
KAWMAHOBHE	CALVAHOK CALVAHOK			37.5(25)	(25)				_	(24)	72(54)			60 (42)			11 (8)	(66)				10(7,5)
— II ——	DECOK,			(31)	37.5 (25)				_	(30)	84(60)			72(48)			13(10)	(88)	_			12(11,5)
		Г. Для	ПОЛ	auacu	ынных	и пэ	СШРИН	IDIX 3	ЮН								<u> </u>		لحبسب	احب سبب	<u></u>	-3-7
СЕРОЗЕМЫ	LYNHA"			100(75)						60(48)		60(44)		55(40)			(11)	110	_			15(11)
"	NECOK, CHNECK		_	(75)	100(75)	(75)				72(54)		72(48)		60(45)			(13)	140				17 (13)
УОКАШШАНОВЫЕ ВЗРЫЕ И СВЕМ-	TANHA, CYFANHOK	_		67,5(62,5)	(62,5)					72(54)		48(36)		80(50)			(13)	120	_			15 (11)
11	LECOK,			(75)	100(75)					84(60)		60(44)		85(55)			(15,5)	145	_			17(13)
		ПРИЛ	HAPEN	9		· · · · · · · · · · · · · · · · · · ·											<u> </u>	•	لحسبسيا			لننسد

1. Природные зоны приняты применительно к областям, краям и республикам СССР.

2. НОРМЫ ДАНЫ ДЛЯ ОПКОСОВ ЮННОЙ ЭКСПОЗИЦИИ; ДЛЯ СЕВЕРНОЙ- МОННО УМЕНЬШИПЬ НОРМЫ НА 20%. 3. Цифры в сковках соответствуют норме высева семян, если в смеси высевается не один,

А ДВА И БОЛЕЕ ВИДОВ ПРАВ ДАННОГО ПИПА.

4. ДЛЯ СЕМЯН I КЛАССА НОРМУ СЛЕДУЕТ УМЕНЬШИТЬ НА 10%, А ДЛЯ СЕМЯН III КЛАССА-УВЕЛИЧИТЬ НА 20-25%. СЕМЕНА НИНЕ II КЛАССА ДЛЯ УКРЕПИТЕЛЬНЫХ РАБОТ НЕ ДОПУСКАЮТСЯ.

5. ДЛЯ ГОРНЫХ РАЙОНОВ НЕОБХОДИМО УЧИТЫВАТЬ ВЕРТИКАЛЬНУЮ ЗОНДЛЬНОСТЬ: У ПОДНОНЬЯ ГОР НА ЮГЕ ТРИНИМАТЬ НОРМЫ ДЛЯ СПЕПНОЙ И ПОЛУПУСТИННОЙ ЗОН; ВИШЕ-ДЛЯ ЛЕСОСТЕПНОЙ; ЕЩЕ ВИШЕ-ДЛЯ НЕЧЕРНОЗЕМНОЙ ПОЛОСИ.

LNU	Соскин	Com		m np								
	Осокин	1 Ge										
H, KOHMP.	Новиков	n. Sul.		ПАБЛИЦА ДЛЯ ПОДБОРА ВИДОВО-	СШАДИЯ	YACM	AHCTIOS					
TA. CREU,	Новиков	4. Lut.	1	TO COCMABA H HOPM BUCEBA CE-	P	5	58					
Рук Бриг	CABHY	Raley		MAH WHOLOYEWHAY WAS USH		_ <u>`</u>						
POBEPHA	CABUY	Perts	 	УКРЕПЛЕНИИ ОПКОСОВ В РАЗ-	COLO	2 I 🔿 D.E	POEKE					
COCMABHY	COKONOBA	COR		ANTHOE TRUPOLHER SONAX.	COIC	эдОМ	POEKIII					

ПРИРОДНЫЕ ЗОНЫ СССР

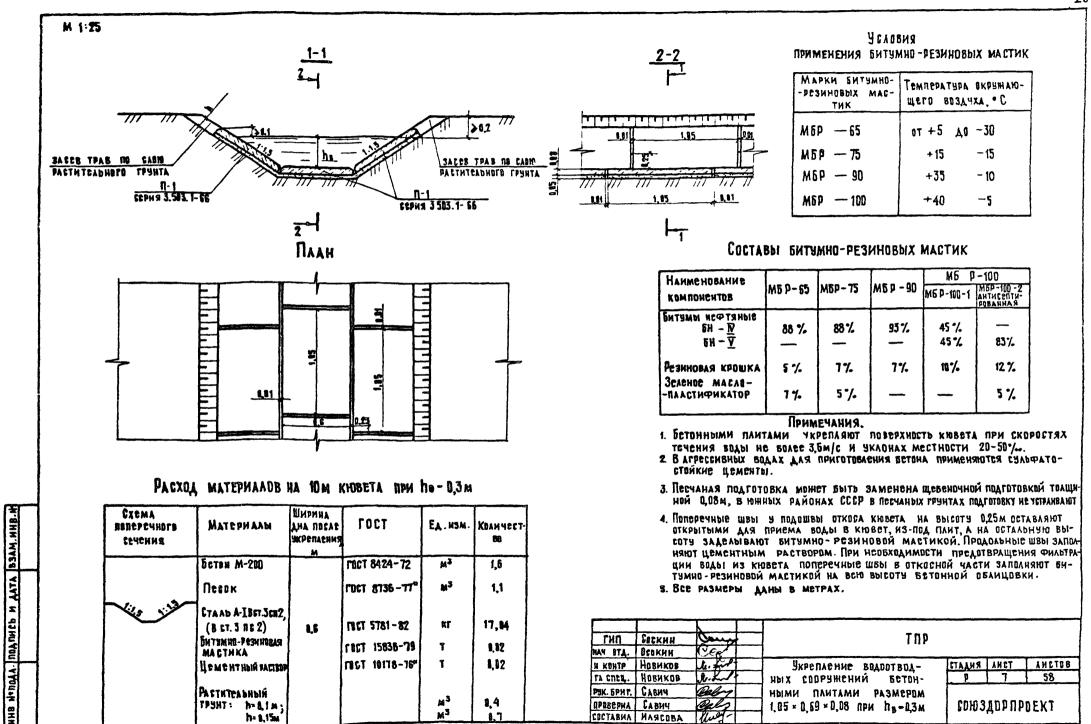
K D A Ú.	Природ-	K D A Ú.	природ-	КРАЙ,	Прироп-	КРАЙ,	NPUPOA-
BBAACT DE CHUBANKA	HAIE SOHN	,	HME 30HM	'	HPIE 20HPI	OBAACTH, PECHYBANKA	ние зони
т РСФСР		НОВГОРОДСКАЯ	A	ВОЛЫНСКАЯ	A. 6	HOTO-OCETHICKAR ABT. OBA	A
KPAR	1	НОВОСИБИРСКАЯ И ОМСКАЯ		ВОРОШИЛОВГРАДСКАЯ	8	Y APMAHCKAR CCP	Ω
ААТАЙСКИЙ (ВТ.Ч. ГОРНО-	 	OPEH BYPCKAR	B B	AHERPORETPOBEKAR	B	<u>VI АЗЕРБАЙДЖАНСКАЯ ССР</u>	Ω
AATAUCKAA ABT. OGA.)	6.A	OPAOBCKAR	A, B	DOHELIKAR	В	VII ANTOBCKAR CCP	A
КРАСНОДАРСКИЙ (ВТ.Ч.	U, A	ПЕНЗЕНСКАЯ	5. B	Житомирская	A 6	VIII AATBUÜCKAA CCP	A
ALBITENCKAN ABT. OBA.)	6. A	REPMCKAR (B T. 4. KOMM-	1	3AKAPRATCKA9		TX 3CTOHCKAR CCP	À
КРАСНОЯРСКИЙ (ВТ.Ч.	+ " "	ПЕРМЯЦКИЙ НАЦ. ОКРУГ)	A. 5	ЗАПОРОЖСКАЯ	B	X MOADABCKAR CCP	Б. В
XAKACCKAR ABT. OFA.)	А. Б. В	ПСКОВСКАЯ	A	ИВАНО-ФРАНКОВСКАЯ	Б. Д	XT Y36EKCKAR CCP. KAPA-	
Приморский	A. S	POCTOBEKAN	B	KHEBCKAA	A. B	KAANAKCKAA ACCP	r
Ставропольский (в т.ч	1	PASAHCKAR	А. Б	Кировоградская	5. B	XII KABAXCKAR CCP	
KAPAHAEBO-HEPKECCKAR ABTOL	В. П	CAPATOBCKAR	5	KPHIMCKAR	В. Д	AAMA-ATUHCKAA	Б. Д
ХАБАРОВСКИЙ (ВТЧ		CAXAANHCKAR	A, A	Abbobckan	A. 5. A	Актюбинская	Γ
EBPENCKAR ABT DEA.)	А. Б	СВЕРДАОВСКАЯ	A. A	НИКОЛЛЕВСКАЯ И ОПЕССКАЯ	8	ВОСТОЧНО-КАЗАХСТАНСКАЯ	Б. Д
ОБЛАСТИ		CMOAEHCKAR	À	ПОЛТАВСКАЯ	Б. В	ГУРЬЕВСКАЯ	Γ
AMUPCKAR	A. 5	TAMBOBCKAR	Б	РОВЕНСКАЯ	A. 6	Джамбульская	r, a
АРХАНГЕЛЬСКАЯ	À	ТОМСКАЯ. ТУЛЬСКАЯ	A. b	CTAHUCAABCKAA	Б. Д	Карагандинская	Г. Д
ACTPAXAHCKAS	В. Г	Тюменская	А. Б	СУМСКАЯ	A. 6	КЗЫЛ - ОРДИНСКАЯ	5
БЕЛГОРОДСКАЯ	В	У АЬЯНОВСКАЯ	Б, В	ТЕРНОПОЛЬСКАЯ	5. A	KOKYETABCKAA	В
БРАНСКАЯ И ВЛАДИМИРСКАЯ	A. 6	ЧЕЛЯБИНСКАЯ	A. 5	ХАРЬКОВСКАЯ	6, B	Кустанайская	8
ВОЛГОГРАДСКАЯ	В	ЧИТИНСКАЯ (В Т. Ч. БУРЯТ	-	ХМЕЛЬНИЦКАЯ И ЧЕРКАССКАЯ	Б	NABADAAPCKAA	В
ВОЛОГОДСКАЯ	A	СКИЙ НАЦ. ОКРУГ	A. b. B	XEPCOHCKAЯ	В	CEBEPO- KABAXCTAHCKAR	ſ
ВОРОНЕЖСКАЯ	5. B	ЯРОСЛАВСКАЯ	A	ЧЕРНИГОВСКАЯ	А. Б	СЕМИПАЛАТИНСКАЯ	В. Д
ГОРЬКОВСКАЯ	A. b	ACCP		ЧЕРНОВИЦКАЯ	Б. Д	ТАЛДЫ - КУРГАНСКАЯ	В
UBAHOBCKAR	À	БАШКИРСКАЯ	A.B.r	III DENDPYCCKAR CCP		УРАЛЬСКАЯ	B
NPKYTCKAR	A, 5. B	БУРЯТСКАЯ	8.1	BCE DENACTH	A	HEVNHOLD VICKOX	8
Калининградская и		ПАГЕСТАНСКАЯ И КАБАР-	l	₩ Грузинская СССР	В. Д	Чимкентская	8
KAAUHUHCKAA	A	ДИНО- БАЛКАРСКАЯ	11	ABXABCKAR ACCP	Ω	XIII KUPLUZCKAA CCP	1
KANYKEKAA	A. 8	KAAMBIUKAA	В. Г	Алжарская АССР	Д	XIV TARWUKCKAR CCP	1
KAMHATCKAR (BT 4.		КАРЕЛЬСКАЯ, КОМИ И МАРИЙСКА	À			XV TYPKMEHCKAR CCP	Г
КАРЯКСКИЙ НАЦИОНАЛЬНЫЙОКР	A, A	МОРДОВСКАЯ	A. 6				
KEMEPOBCKAR	5, B	CEBEPO- OCETHHCKAN	A				
КИРОВСКАЯ И КОСТРОМСКАЯ	Å	TATAPCKAR	Å, 5, B				
КЧЙБЫВШЕВСКАЯ	6.8	ТУВИНСКАЯ	A. b	A - HEVEPHOSEM	on RAH	ADCA	
KAPLAHCKAA	6. B	Уд муртская	б. в	.5" - AECOCTERNA		·· · · · · ·	
Кирская	6	ЧЕЧЕНО-ИНГУШСКАЯ	a		30HA		
ЛЕНИНГРАДСКАЯ	A	ЧЭВАШСКАЯ	Á	"Г"— покупустын	I M RAH	пустынная звны	
1.10 - 11 11 1 1	1 -	H C					

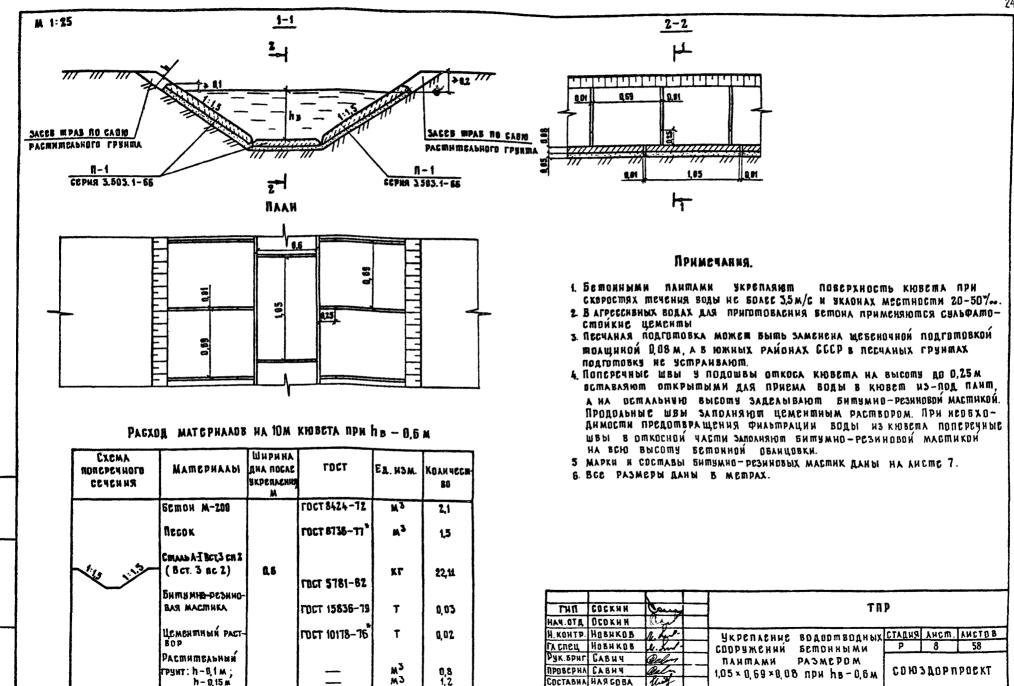
A. 5

RESTORAS

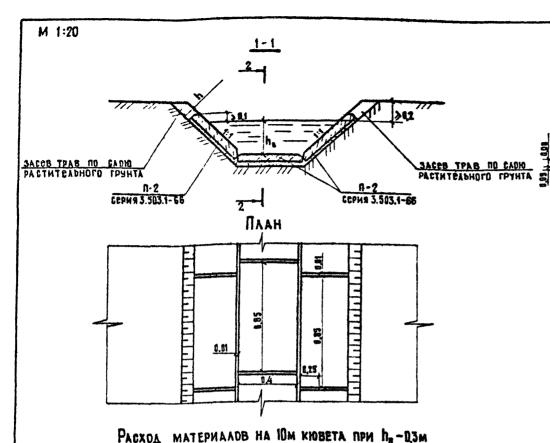
ВИННИЦКАЯ

II YKPAUHCKAR CCCP


мнес канныточи и канныточиской — "П. "Д. Канчол — "Д.


NPOBEPHA		Cent	CCCP		C010:	3 A O P	NPOEKT
ГЛ. СПЕЦ. РУК. БРИГ		10.00	NPUPOAHUE	Зоны	P	6	58
H. KOHTP.	HOBNKOB	4.60			RUBATS	TONA	ANCTOB
	OCOKHH	Cer				_	
FUR	Соскин	Com	1	TNP)		

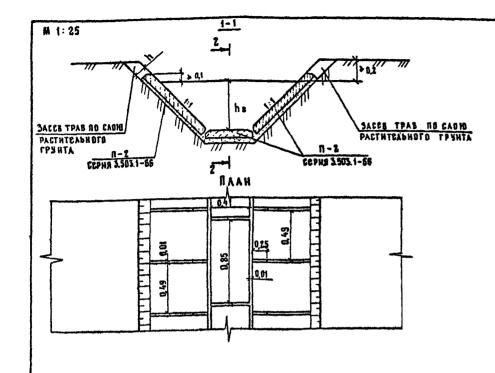
ANNEUKAN


MATABAHCKAR

MOCKOBCKAR MYPMAHCKAA

инв. и подл. Прппись и длям взлм инв.

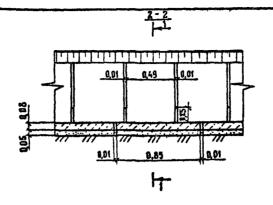
Схамд Попречного Виня рез	Матернааы	Аничиш Дна посае Якичелования, М	roct	Ед . изм.	Количест- 80
	Бетон М 200		FDCT 8424-72	M'3	1,1
	Песок		FOCT 8736-77*	M S	0,8
~ <i>></i> /	Сталь А-Т Вст.3 сп 2 (В ст. 3 пс 2)	0,4	FDCT 5781-82	ĸŗ	18,49
	Битчмно-резиновая Мастика		FOCT 15836-79	Ť	0,02
	Цементный раствор		100T 10178 -76*	Т	0,02
	Paethteadhdin (mi,d - h : theqt			M ³	0,4


инв. Мепадл. | подпись и дата | взам. инв. М÷

0.01

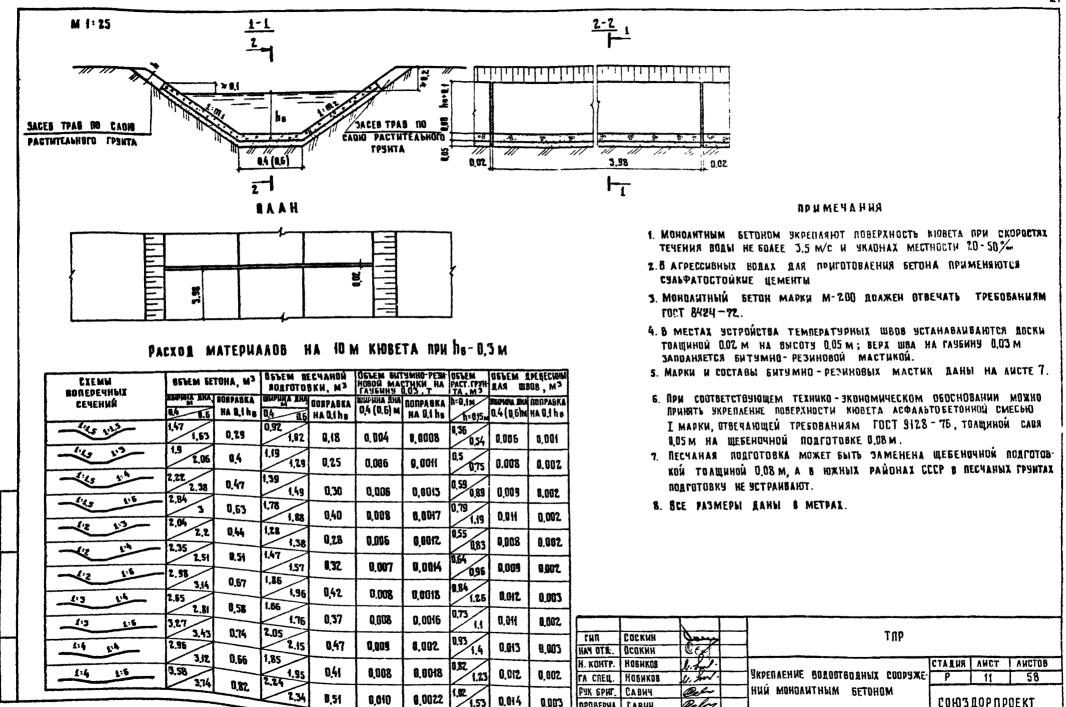
Примечания

- 1. Бетонными плитами укрепляют поверхность кювета при скоростях TEYCHUR BOADI HE BOACE 3,5M/C M YKADHAX MCCTHOCTH 20-50%.
- ОТАФАЛУ ВОДАХ ДАЯ ПРИГОТОВЛЕНИЯ БЕТОНА ПРИМЕНЯЮТСЯ СУЛЬФАТОстойкие цементы.
- з Песчаная полготовка монет быть заменена щебеночной полготовкой толшиней QOBM. A B IDHHAIX PANDHAX CCCP B RECYAHAIX TPUNTAX ROAFOTOBKY HE YETPANBAHOT.
- 4. Поперечные швы у подошвы откоса кювета на высоту до 0.25м оставляют ОТКРЫТЫМИ ДЛЯ ПРИВМА ВОДЫ В КЮВЕТ ИЗ-ПОД ПЛИТ, А НА ОСТАЛЬНУЮ высоту заделывают битумир-резиновой мастикой. Продолоные швы заполняют цементным раствором. При необходимости предотвращения фильтрации воды ИЗ КЮВЕТА ПОПЕРЕЧИМЕ ШВЫ В ОТКОСНОЙ ЧАСТИ ЗАПОЛНЯЮТ БИТУМНО-РЕЗИНОВОЙ МАСТИКОЙ НА ВСЮ ВЫСОТУ БЕТОННОЙ РБЛИЦОВКИ.
- S. MAPKH H COCTABBI SHTYMHO-PESHHOBBIX MACTHE JAHDI HA ANCTE 7.
- & BOE PASMEPHI AAHH B METPAX.


LNU	Соекин	Journal	TI TNP			
HAY. DTA.	Всокин	15.00	7			
H. KOHTP.	Новиков	14. 201.	Укрепление водоот-	RHAATS	AHCT	ANETOE
Гл. спец.	HOBUKOB	1.3.1.	Водных сооружений бетонными	P	3	58
рук Бриг.	CABMY	Och	ПЛИТАМИ РАЗМЕРОМ	1		
проверил	CABNY	Reby	0.85 × 0.49 × 0.08 при h _в - 0.3 м	C0103.	ΑΟΡΠΡ	OEKT
COCTABUA	MARCOBA	Mult	בן ע,סטייט,דסייט,עס וודא נופ ע,טיי	Ι.	• •	

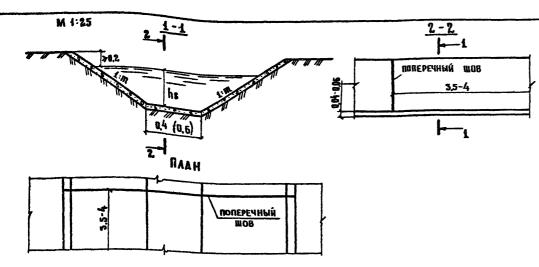
PACKOR MATEPHANDS HA 10 M KHOBETA MPN hs - 0,6 M

АМ ЭХ Э ОТОНРЭЧ ЭПОП В КИНЭРЭЭ	MATCPHAADI	и ири на Вна посае Вирапасије М		EA. HJM.	Koauчeet- Bo
	Бетон М-200		FOCT 8424 -72	W ₂	L,T
	Песок		rdct 8736-77°	W ₂	1,2
W. JY	CTAND ATBOX3 cm2 (BCX3 nc 2)	Q.4	roct 5781 -82	Kſ	29
	-ОНИСЭЧ-ОНЖЕТИЙ АХИПОЛМ RAB		FBCT 15836-79	7	0,04
	Цементный расты		FDCT 10178-76	7	8,92
	Растительный грэнт: h - 0,1 м h - 0,15 м			W2 W2	Q.6 0,8


Bur. W. fiolia fioliage is arma boan unb.n

APHMERAHUS.

- 1. Бетониыми плитами экрепляют поверхность кювета при скоростях течения волы не болев 3,5 м/с и эклонах местности 20-50%.
- 2. В АГРЕССИВНЫХ ВОДАХ ДАЯ ПРИТОВВЕНИЯ БЕМОНА ПРИМЕНЯНОМСЯ СУАБОРОСТОЙКИЕ ЦЕМЕНИМЫ.
- СССУ,О НОНКШЛОМ НОЯВОМОТДОЙ НОЧРОНЕВЫ В БИТЬ В НОЖНЫ В НОЖНОТ В НОВ В НОЖНЫХ РАЙОНАХ СЕЧАНЫХ СРУНИКАХ ПОДГОМОВКО НЕ УЗМЕНЬКА ПОДГОМОВКА НЕ УЗМЕНЬКА НЕ УЗМ
- 4. Поперечные швы и подошвы откоса кювета на высоту до 0,25м оставляют открытыми для приема воды в кювет из-под пант, а на остальную высоту заделывают битумно резиновой мастикой. Продольные швы заполняют цементным раствором. При необходимости предотвращения фильтрации воды из кювета полеречные швы в откосной части заполняют битумно-резиновой мастикой на всю высоту бетонной облицовки.
- 5. МАРКИ И СОСТАВЫ БИТУМНО-РЕЗИНОВЫХ МАСТИК ДАНЫ НА ЛИСТЕ 7.
- 6. Все размеры даны в метрах.


rxn	Cockun	Jun.	7 N P									
ATO PAH	ОСВКИН	(15 pg										
H. KOHTP	Новиков	14.1.1	Укрепасние водоотводных	TOHA RHUATO	AP: 3.							
FACREU.	HOBUKOS	M. Lul.	SAPETIACHNO BODDUNGHIMA	P 10	700							
Pyk bpur	CABH4	Odlo										
ПРОВЕРНА	CABHY	Pelo	Плитами размером	союздоря	BOEVT							
COCTABNA	HARCOBA	Must	 0,85 × 0,49 × 0,08 при нв −ДБМ	WO TO OTHER	IPUGNI							

проверна Савич

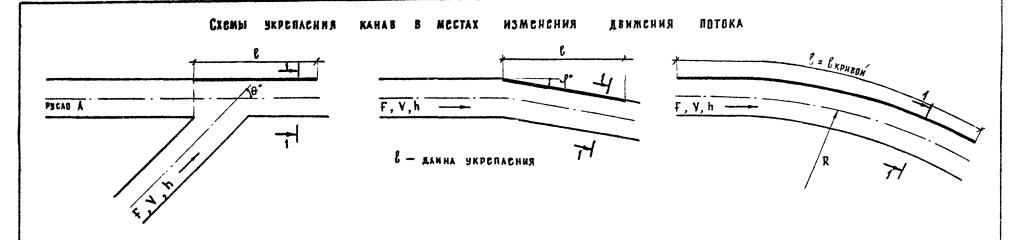
ABOORAN ANBATOOD

Must-

PACKOR MATERNAADB HA 10 M KIOBETA NPH No- 0.3 M

	ВАВ ЩАДЬ, M ²			BEDEM TOPKPET - BETOHA, M ³								
Схемы поперечных				ТОЛЩИНА СЛОЯ ОДИМ			ТОАЩИНА САОЯ М20,0			ROAD AHUMAOT M 80,0		
СЕЧЕНИЙ	ширина яна поправка		ширина она поправка				MADAAHINI	ширина пна I		RORPABKA		
	0,4	0,6	HA D,1 hs	0,4	0.6	HA U, ih B	04	0.6	HA O.1hB	0,4	0.6	HA 0.1 ha
- 180 EN	15,2	17,2	2.2	0,61	0,69	0,09	0,76	0.86	11.D	8,91	£03	0,13
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	18.2	20,2	2,8	0,73	0.81	0,11	0,91	1,01	0.14	1,09	1,21	0,17
- (15 11.15	22	24	3,6	880	0,96	0.14	1,1	1.2	0,18	1,32	1,44	0,22

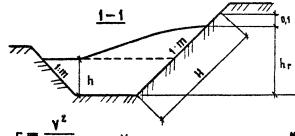
MMB. H MESS DESCRILES M BATA BOAM. WHB.N


Основные показатели

н а и менование	ЕД. ИЗМ.	Количество
Прочность на сжатие	KTC/CM2 (MIIA)	120 (12)-150(15)
Прочность на растяжение при изгибе	KTC/CM2 (MRA)	15 (1,5)-20(2)
СПЕЦVЕНИЕ СО СКАЧРНОЙ ЦОБОТОЙ	KTC/CM2 (MRA)	≫5 (0.5)
морозостойкость	MP3	go 450
ВОДОНЕПРОНИЦАЕ МОСТЬ ПРИ ТО АЩИНЕ 0,05 М	-	8-5

RPHMEYAHUS

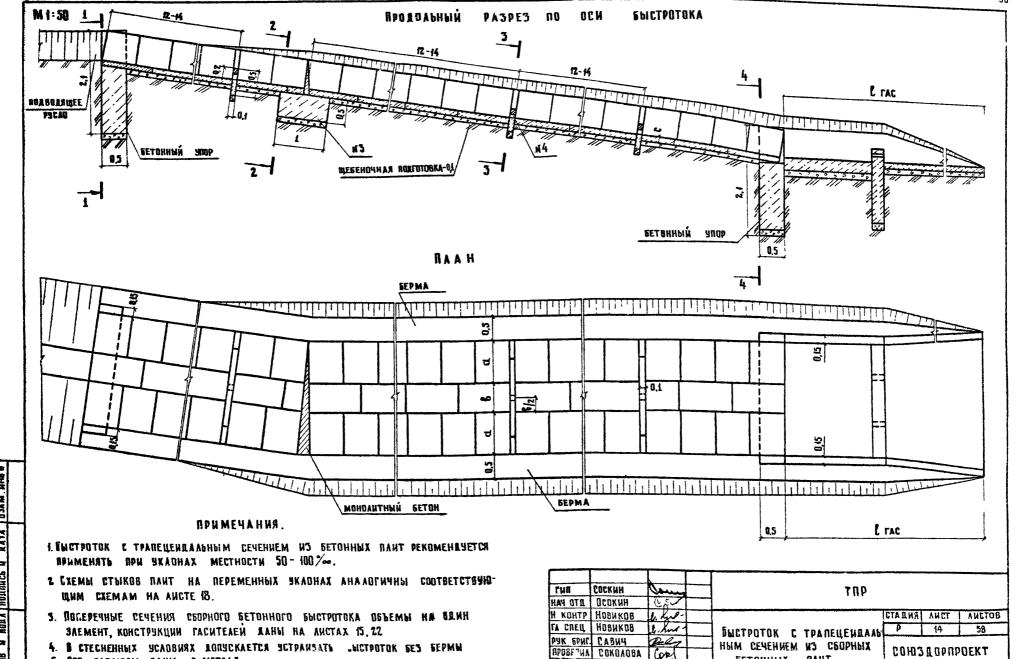
- 4. TOPKPET-BETOH DPHMEHRETCR AAR YKPENAEHUR DOBEPXHOCTH OTKOCOB и дна водоотводных сооружений в благоприятных грунтовых и KAUMATUHECKUX YCAOBURX NPU CKOPOCTU TEHEHUR BODЫ HE BOARE 3.5 M/C W MACHAX MECTHOCTH 20-50 %.
- 2. PPMEHENUE TOPKPET-BETOHA B PANOHAX PACTIPOCTPAHENUR TIMAEBA-THIX W AECCOBNAHHIX CYTANHKOB OFBDAHEHHINX WAN C NOBLIWEHHOÙ ВЛАЖНОСТЬЮ ПЗЧИНИСТЫХ, ЗАСОЛЕННЫХ И МАЛОЧЕТОЙЧИВЫХ ГРУНГОВ, НА ОПОЛЗНЕВЫХ ЧЧАСТКАХ, А ТАКЖЕ В ЧСЛОВИЯХ СЧРОВОГО КЛИМАТА N APPECCUBHON CPERS NO OTHOMENNO K BETOHY HE RORYCKAETCR.
- 3. МАТЕРИАЛЫ ТОРКРЕТ- БЕТОНА ДОЛЖНЫ УДОВЛЕТВОРЯТЬ ТРЕБОВАниям приведенным в таблице "Основные показатели".
- 4. РЕКОМЕНДУЕМЫЙ СОСТАВ ТОРКРЕТ- БЕТОНА: ЦЕМЕНТ ЗАПОЛНИ-TEAL 1:5-1:7; СОДЕРЖАНИЕ ЩЕБНЯ В ЗАПОЛНИТЕЛЕ 20-25%; PACKOR WEMEHTA HA 1 M3 CYXON CMECH TON BOROWEMENTHOM OTHOWEHUN 0.35-0.40 COCTABARET 300-450KF. AAR WILPHU-GETO-HA BOLOUEMENTHOE DTHOWEHUE COCTABARET 0.45-0,5 (C SYETOM BAAKHOCTH JANDAHUTEAEN .
- 5. AAR USTOTOBAEHUR TOPKPET-BETOHA RPUMEHRETCR LEMEHT МАРКИ НЕ НИЖЕ М-400, УДОВЛЕТВОРЯЮЩИЙ ТРЕБОВАНИЯМ FOCT 10 178 - 76* 3 ANDAHNTEAN, BXDQAWUE B COCTAB CUXIX CMESEN (ПЕСОК, ЩЕБЕНЬ, ГРАВИЙ), ДОЖНЫ ОТВЕЧАТЬ ТРЕБОВАНИЯМ FOCT 8735-77*, FOCT 8267-82, FOCT 8268-82. B KAYECTBE ADSABAK ПРИМЕНЯЮТСЯ ОЭС (СМЕСЬ БОКСИТА С СОДОЙ И ИЗВЕСТЬЮ). ВСЕ размеры даны в метрах


	D.	DLE P	AJIM	EPOI HANDI D METPAL.			
LNU		Qu.,		TNP			
HA4. GTR. H. KOHTP.	новиков	Cal.		Укрепление	RNEATS	AUCT	AUCTOB
PAK. SPUT.	CABUY	Rales		ВОДООТВОДНЫХ СООРЧЖЕНИИ ТОРКРЕТ- БЕТОНОМ	P	12	58
DETABUA		Core			וטטן	10 K C 1	PROEKT

примыка	АНКВЦАТ В ЫДОВ	£*=	. 4	f _z :	- 9	Fz=	16
ния 6 ,	РУСЛЕ Н,м	hr,m E,m		hr, m	e, m	hr,m	в, м
20°	0,3	0,72	1,1	1	1,62	1,3	2,25
	0 ,6	1,44	2,8	2	3,24	2,6	45
30*	0,3	0,97	1,0	1,42	1,5	1,91	2,1
30	0,6	1,94	2,3	2,84	3	3,82	4,2
4.0	0,3	1,22	0,9	1,84	2,4		
40	0,6	2,44	2,0	3,68	3,2		

ПОВОРОТА	Парину Войрів	Fz≃	4 F _z =9			f _z	- 16	F2= 25	
۷,°	PYCAC h, m	hг,м	e, m	hr, m	B, M	hг,и	e, 14	hr. M	E,M
3*	8,3	0,34	2,33	0,36	3,7	0,39	4,94	0,42	6,15
3	0,6	0,68	4,65	8,73	7,43	0,79	9,87	0.85	12,3
6*	0,3	0,39	2,07	0,46	3,26	0,52	4,28	0,6	5,1
	0,6	0,19	4,13	0,92	6,53	1,05	8,57	1,2	18,2
10*	0,3	0,48	1,6	0,6	2,75	0,73	3,54	0,86	4,13
10	0,6	0,96	3,21	1,2	5,48	1, 45	7,07	1,72	8, 25
•	0,3	0,59	1,26	۵,79	2,18	1	2,76	1,23	3,15
15°	0,6	1,19	2,52	1,58	4,35	2	5,46	_	8,3
20*	0,3	0,72	1,15	1	1,75	1.3	2,18	1,62	2,46
	0,6	1,45	2,10	2	3,51		4,37		4,94

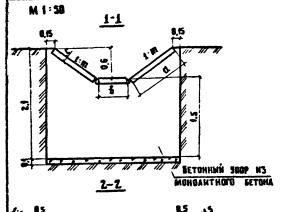
РАДИ УС ПОВОРОМА	Гачвина В Індов		hr	, M	
R, M	PYCAE h,	f _z = 4	f _z = 9	F _z = 16	F ₇ = 25
10	0,3	0, 42	0,57	8,78	1,05
, U	0,6	1,08	1,68	2,52	
•0	9.3	0, 36	Q 43	0,54	0,67
20	8,6	0,84	1,14	1, 56	2,1
	0,3	0,33	0,37	0, 42	Q 49
40	0,6	0,72	0,87	1,08	1,35
60	0,3	0,32	0,35	0 ,38	0,42
00	Q6	88,0	0,78	0,92	1,1
400	Д.З				
100	8,6	0,65	0,71	5,8	0,9

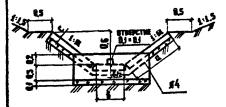


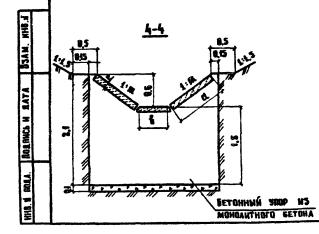
У — скорость воды в расле, Ус; h — ГЛИБИНА ВОДЫ В РИСАВ, М; hr-величина набега воды, м.

M-HOAA, HORTHED W RAMA BEAM WHEN'

$H = \sqrt{(h_r + 0.1)^2 + (h_r + 0.1)^2} \cdot m^2$	ואו	Соскин	der.		ТПР		
	ATO PAH	ОСОКИН	7.5				
	H.KOHTP.	НОВИКОВ	4. 1.1.		RHILATO	VNCW	VACUO
Н — высота чкрепления, м	га спъц.	HOBHKOB	1. Sol	Определение длины и высоты	р	13	58
·	Рук брит	САВИЧ	Delig !	УКРЕПЛЕНИЯ В МЕСПАХ ИЗМЕНЕ-			
	ПРОВЕРИЛ	HASCOBA	weg-	ния движения потока.	союздорпроскт		
	COCTABUA	САВИЧ	Oals				

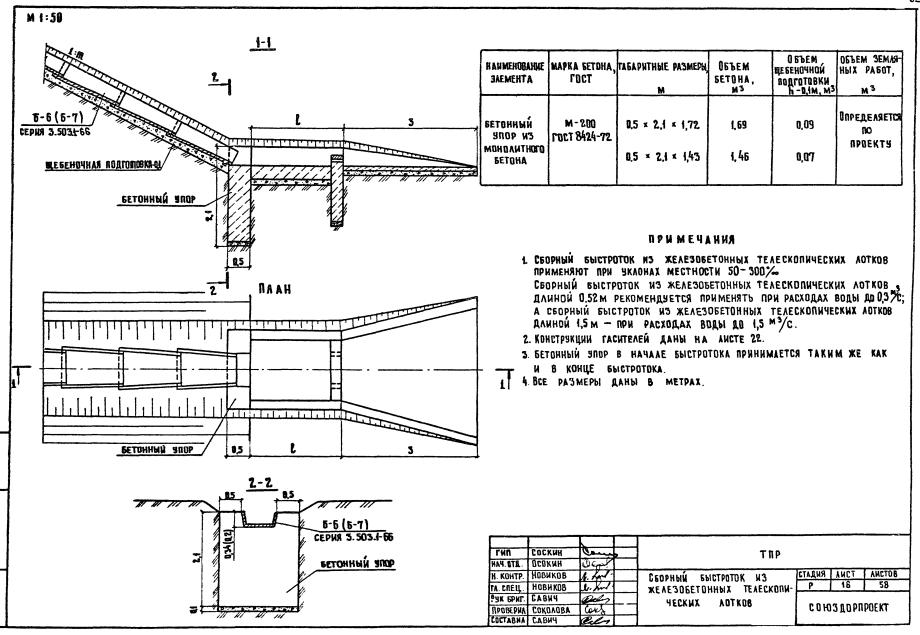



COCTACHA CABNY

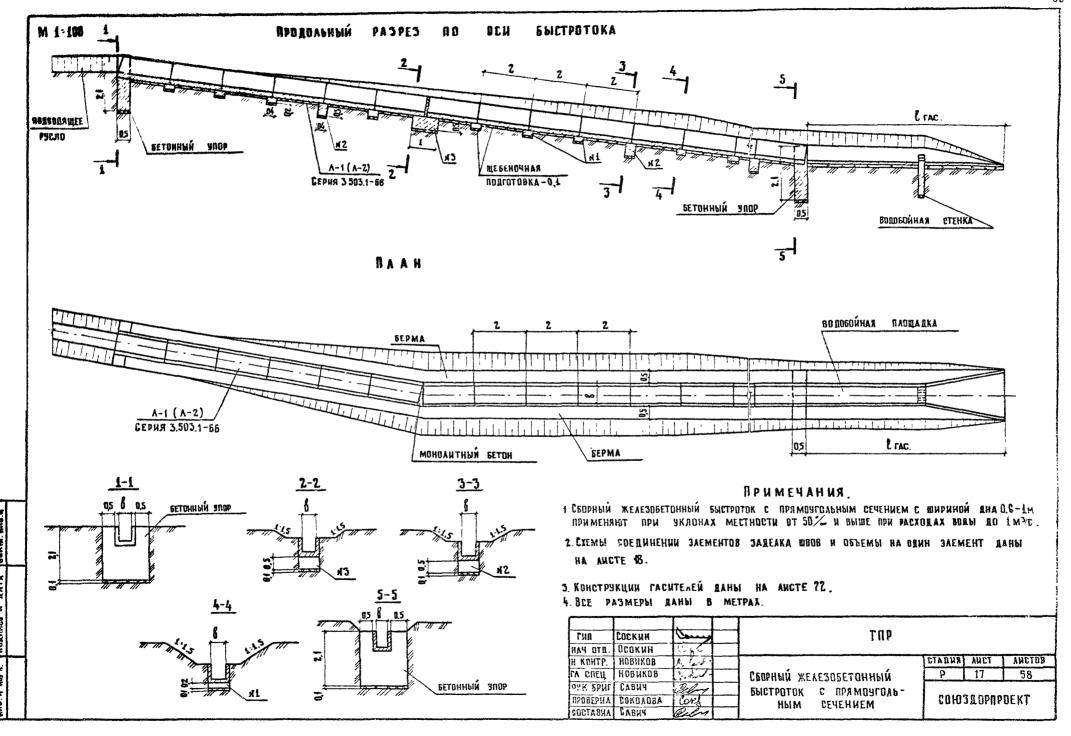

5. ВСЕ РАЗМЕРЫ ДАНЫ В МЕТРАХ.

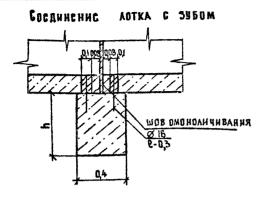
БЕТОННЫХ ПАИТ

HANMEHOBAHRE	Марка Бетона,	м НОЗМЕЛЯ ЗИНТИЧАВАЛ				ной подготовки		ABU RASTUHADDAE MSGOOD CM				-рамас масто Хідн	
3AEMEHT08	гост					p-04W W3		поперечных вы дну		NO DIKOCH HUM			PASOT.
		6 = 0,4	6 = 0,6	B=0,4	в = 0,Б	B=0,4	6 = 0,6	B=0,4	8=0,6	11-0,85	d-1,05	łм	W ₂
АТИАП КАННОТЭЭ НОТЭЭ ЙЫНТИАОНОМ	M - 200	0,49 = 0,08 = 0,85	0.69 * 0.08 * 1.05	0,032	0.057	0,04	0,07		_	_	-	-	ТЭКЛЭДЭОПО
345 N 3	FOCT 8424 - 72	1 × 0,5 × 0,51	·	0.25	0,36	0,05	0.07	-	_	_		_	no
396 Я 4 БЕТОННЫЙ 300 Р		0.1 = 0.5 = 1.1 0.5 = 2.1 = 2.2	0.1 * 0.5 * 1.6	1,9	0,079 2.65	0,01	0.02	-	_	_	_		NPOEKTY
воперечный шов	-	_	_	_	_	_	_	0,0004	0,0006	0,0007	800Q	_	
BOW MICHAADAOA	_	-	-	_	_	-	_	_	-	-	-	8000,0	
вон ранической новек дан	_	0.56 × 2.	0.72 = 2	_	_	_	_	_	_	0,005	0,006	_	-

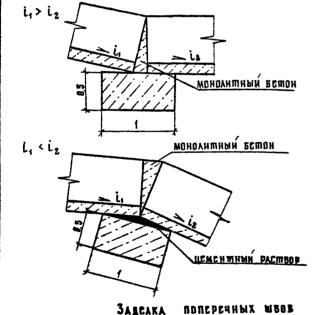

OCHOBHME RAPAMETPH NOREPEHHORO CEHEHNA.

NOREPEYHOE OYEPTAHNE	SAADKEHHE OTKOCA	PASM	M. T		
O ILY I AIME	1:0	α	6	С	
трапеце и в а а ь-	1:1,5	1, 05	0,69	80,0	
HOE	1:1	8.85	0,49	80,0	


RPHMEHAHHA:

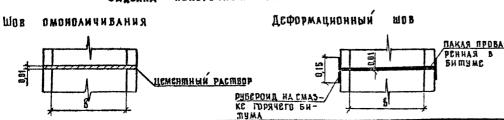

- 1. ПРОДОЛЬНЫЕ ШВЫ И ПОПЕРЕЧНЫЙ НАД БЕТОННЫМ УПОРОМ С ПТВЕРСТИЕМ ЭАПОЛНЯЮТСЯ ЦЕМЕНТНЫМ РАСТВОРОМ, А ПОПЕРЕЧНЫЕ БИТУМНО-РЕЭИНОВОЙ МАСТИКОЙ ПОСЛЕ ЧКАЛЯКИ.
- 2. МАРКИ И СОСТАВЫ БИТУМНО-РЕЗИНОВЫХ МАСТИК ВАНЫ НА АИСТЕ 7.
- 3. BCE PASMEPHI AAHH B METPAX.

run	СОСКИН	Corre	TOP			
HA4. OTE.	ОСОКИН	(800)	-			
H. KOHTP.	HOBUKOB	le hard.	Поперечные сечения быстро-	RMRATS	AUCT	AHCTOB
TA. CHELL	Новиков	le de	ТОКА С ТРАПЕЦЕИДАЛЬНЫМ	P	15	58
РУК. БРИГ.	САВИЧ	Ben	СЕЧЕНИЕМ ИЗ БЕТОННЫХ			
ПРОВЕРИА	COKOAOBA	Cox	NAUT TAUT	союз	BAOPN	POEKT
COCTABHA	CABNY	0,60	****	l		



инв. и подл. подпись и дата взам. инв.

Попсречный шов на переменных Ханолиг



инв н.пода подпись и даша 1834м иня н-

Наи менование вотном зае	Марка Бешо- на,	Габаритные размеры, м				объем цебеноч ной подготовки h-0,1м, м ³			ид	MSEAD Xiehramse Modaq
	roct	B = 0, 6	B = 1	8=0,6	B=1	B=06	B=1	MBA,	0,68), M ²	ж3
AOMOK CBOPHUN	M - 200	1,9 9 ×488× 0,68	1,99 × 1,28 × 9,68	0,31	0,38	8,01	0, 02	_	_	ONPEREAS-
345 N 1 346 N 2	FOCT8424 - 72		0,4 × 0,2 × 1,16		Ì .	0,03	0,05	_	_	ROMB OR
348 N 2		1 × 0,5×0,76			0,23 0,58	0,03	0,05 0,12	_		a PD CK MA
pewokhpin, audd		0,5×2,1×1,88	0,5×2.1 × 2,28	1,7	1,98	0,09	0,11		_	
попсречный шов				_	_	_	_	0,002	0,2	

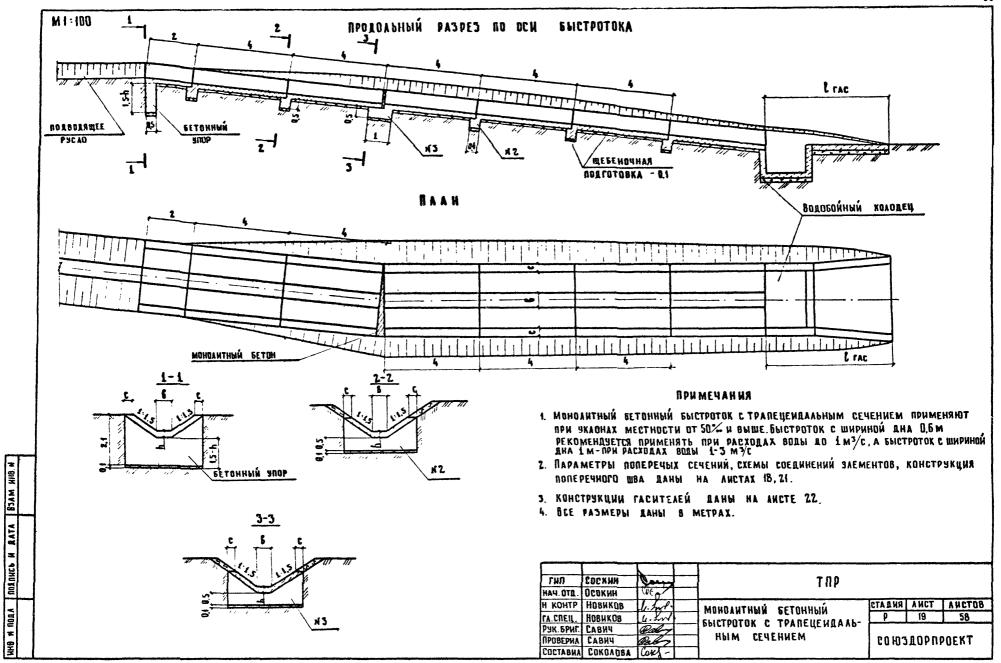
RHHAPSMHAI

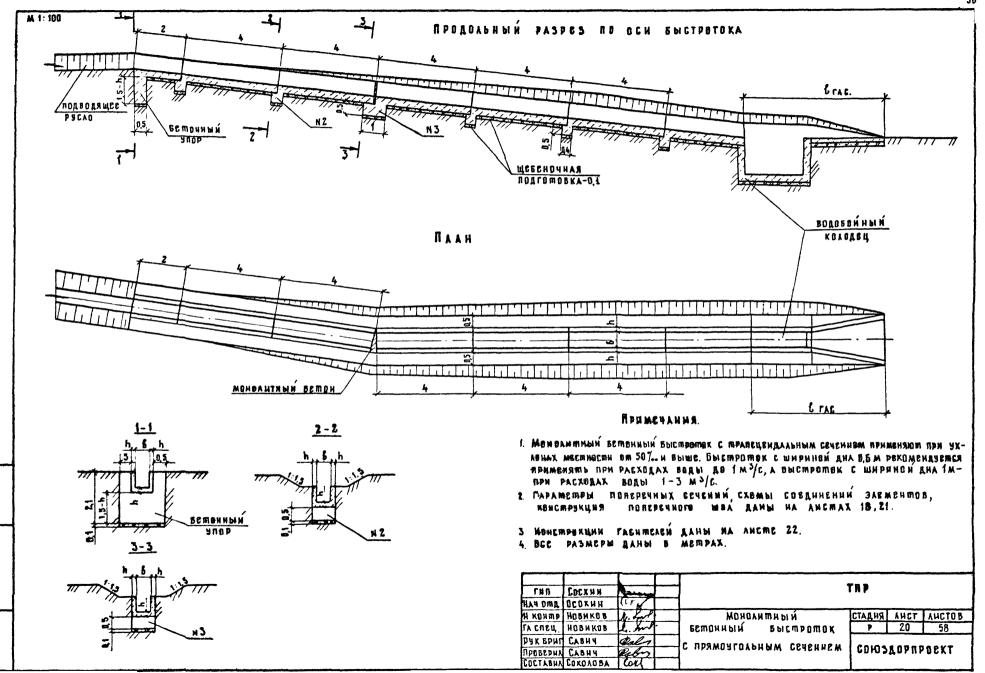
- КОМЮКНАВЛАЕ И М. А. СЕЧЭР КОМОВИКАСТОР ВЫ ВЫ ЭМПИСТ В НОКЛАП ПАКАСТО ЭМНИСТВИ Э МОМЕТИ В ЭМНИСТВИТЕ В НОСТОИТЕ В НОСТОИТ
- 2. ВСС РАЗМЕРЫ ДАНЫ В МВМРАХ, ДИАМЕМРЫ АРМАМУРЫ— В ЖИЛАИ— МЕТРАХ

FUND COCKUH

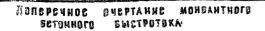
HAY OTH DCOKUH

H KOHTP HOBUKOB C. CXEM W COEMUHEHUN


P 18 58

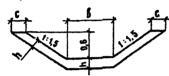

PUK SPUT CABUY

NPOBSPHA MARGOBA WAT


DAEMEH MOB B WCMPO MOKOB

COM 3 L O D P DOCKT

ннв. М-пода (подпись и дапа) взам инв. М



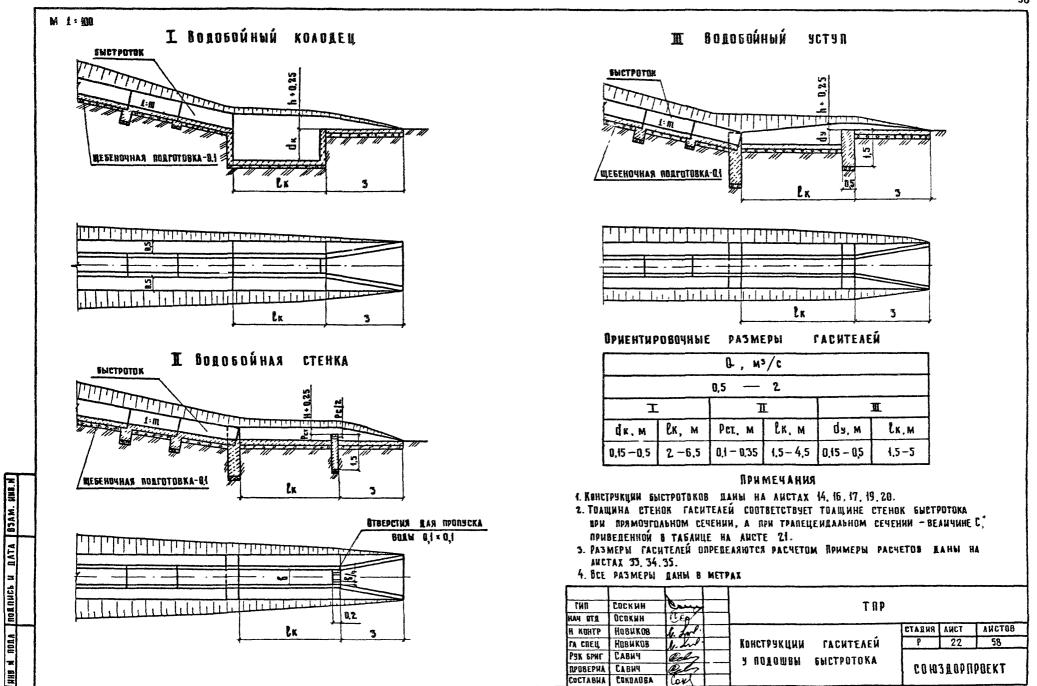
I Прямечтольное

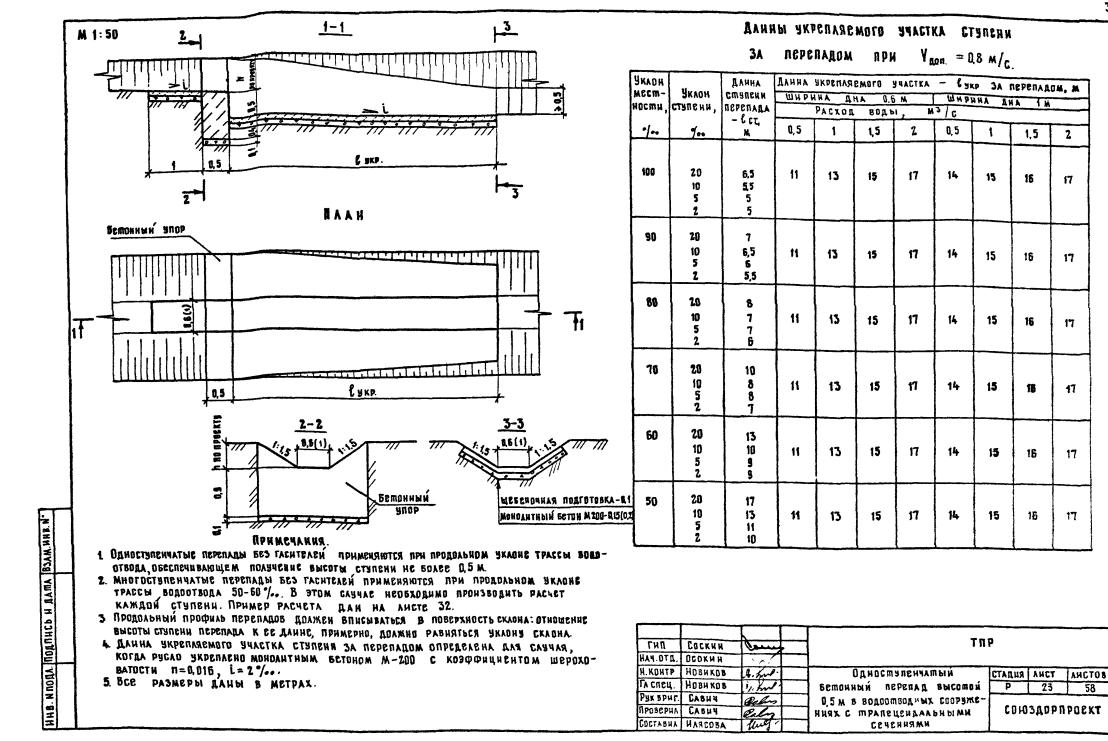
П. Трапецендальное

HHE N" HOGA HOGHHED MARINA BSAM, MHEN"

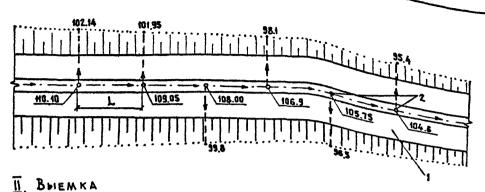
Uau ae uo raune	OHA,	ГАБАР	итные	PASMEP	ol, M	0538	M 60	TORA	, M3	объе подг	ы щ е Хвоте	58404 0-6 N	ROH ! M3	BABPA Hay	3.285	PCH-	<u></u>	MOESS.	Semerably
Наи менование	567 CT		-	no	переч	304			0 48	pr,	NH	£		4.5	- 291	PCUC	- <u>u</u>	TEGAS	M 3
ATHOMORE S	MAPKA	6=0.6	e . ,	8 05				·	<u> </u>	2 0 5		10				3	1		I
	3	D=0,0	8=1	8 = 0,6	B = 1	b=0,6	6=1	D=0,6	0 = 1	5=48	5=1	0=00	D=1	D=86	8 = 1	6-อร	8-1	5-86 5-1	3=8,6 8=1
MOHOKHTHЫЙ AOTOK	-42	0,9×0,75×4	1,4 × 0,8 × 4	0,6×0,75×4		1	ŧ			1	į	1	1 :			 -	ļ		
355 NZ		0,4× 0,5 ×Q9	4×45×14	Q4×1.25×2,96	0,4×1.3×3,52	0, 18	9,28	0,95	1,11	0,04	0.06	8,12	0.14		i	<u> </u>	1	On CSA	ei ae m ca
346 H3	FOCT	1 × 0,5×0,9	1×8,5 ×1,4	1 × 1,25 × 2,96	1 × 1.3 × 3,52	0,45	8,7	2,37	2,17	0,09	0,14	03	0,35					, ,	l Q
Встонный Зпор	M-200	Q5×2,1×1,9	Q5×21×24	0,5×21×2,96	0,5×2,1×3,52	1,66	1,96	244	2,79	0,1	0,12	0, 15	0,18	_	_	-	-	прое	KTY
Поперечный Шов	_					-	-	_	-	-	-	_	_	901	8,81	9.01	4014		

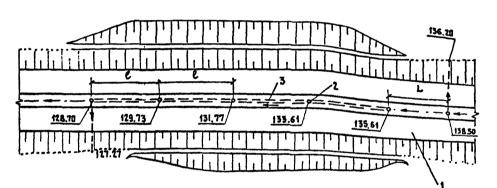
ПАРАМЕТРЫ ПОПЕРЕЧНЫХ БЕЧЕНИЙ МОНОЛИТНОГО БЕТОННОГО БЫСТРОТОКА


	DU. D.			The second livery with		
попервинов	BAAOME-	Гачби-	ШИРИНА Д	HA, M	C,	M
SHATTAPO	HHE 97-	HA,	B= 0, 6	8=1		
טממאיזשרט	KOCA		ТОЛЩИНА	, м	B = 0,6	6=1
		M	h	h		
ленакот вомк ч п		0,6	0,15	9, 2		_
трапецеи дааь- Ное	1:1,5	0, 6	0,15	0, Z	9,28	9, 36

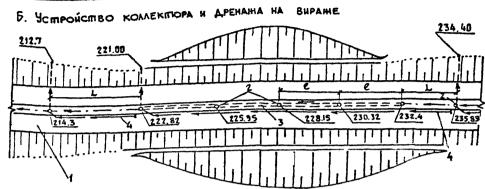

. КинарзмичП

- 1. Конструкция шва на переменных уклонах дана на листе 18.
- 2. BCC PASMEPH AAHH & MEMPAX.


констракция ш	IBA
,	902 Р уберона в 2 савя
BHTUMHAN MAGTHEA	HOCKA MA PESPS, EPOBAPEH-
PHEEPONE B 2 CAOS	125
	<u> </u>


ГИП	COCKHH	Jany	 Tn	P		
HAY OTA	ОСОКИН	Oger		-		
H. KOHTP.	Новиков	4. dar	 ПАРАМЕТРЫ И ОБЪЕМЫ МОНО-	СТАДИЯ		AHCTOB
Пл.спец.	Новиков	le Lus	 ANTHORO BETCHHORO BUCTPO-	P	21	58
PYK. SPHT.	САВИЧ	Cale	 ТОКА КОНСТРУКЦИЯ ШВА.	C0109		**************
Проверил	CABHY	Dalor!		COM	MARI	POCKT
COCTABHA	CCKOAQBA	Cory		l		

Расстояния менду водоприемными смотровыми колодидами при ширине разделительной полосы 13,5 (12.5) м


I. В зависимости от продольного II. В коллекторе уклона дороги.

	Q409 []	урный	якион Фо	POTH?
ДОРОГИ НАЛИЧИЕ	10	20	30	40
ВИРАНА	PAG	COMOS	L BUHF	, M
I нет	350	200	150	100
I ECMP	250	150	100	50

A. YCMPOHCMBO KOALEKMOPA

I. HACHITA

Диаметр асбо- цементных труб, м	Расстояние, м С
0,3	50 - 55
0,4-0,6	50-60
0,7-1	60 - 70
до 1,5	75-85

В. Устройство коллектора и дренана при отсутствии вирана

175,47

176,35

176,39

176,39

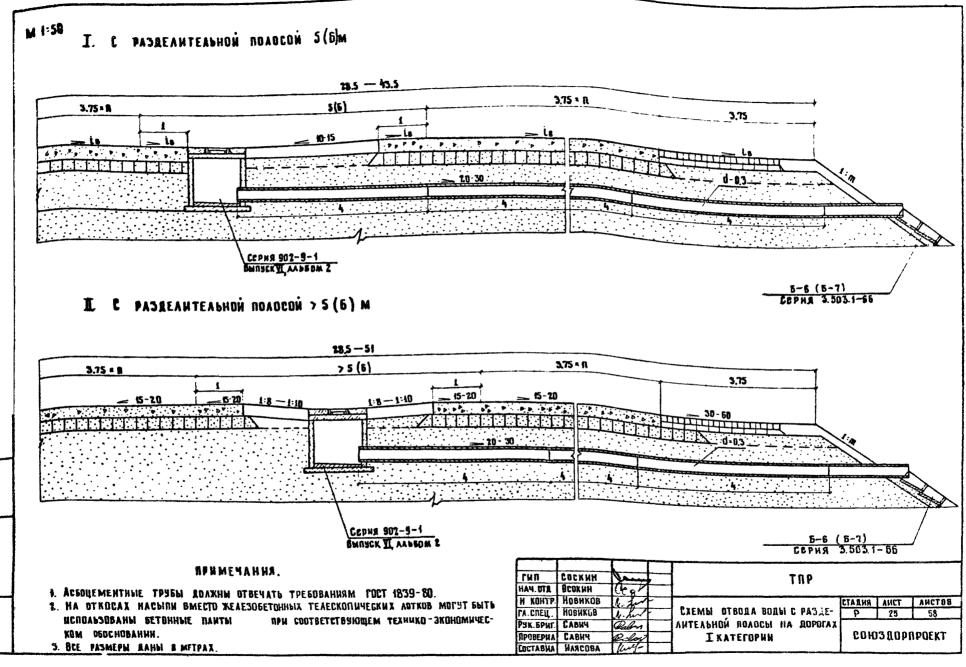
176,8

176,49

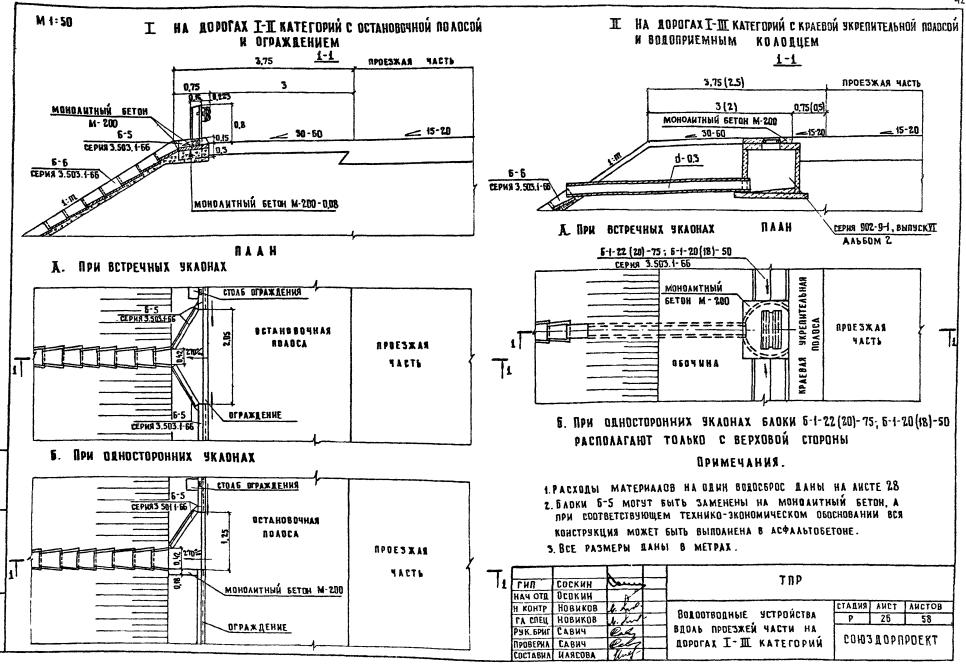
MORCHERUS.

1. - ABIROMOSHAHARI AOPOFA

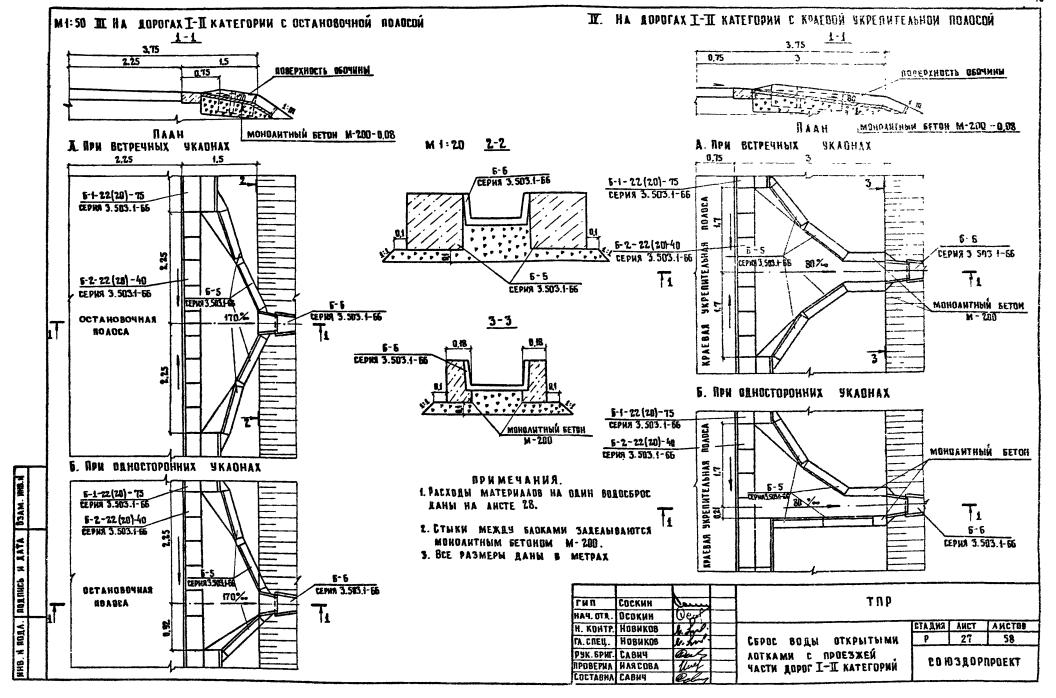
2.- Водоприемный колодец


3. - KOALEKTIOP

4. - APEHAH


SPHMEYAHUE.

1. Расстояние "L" для променчточных значений продольных эклонов принимается по интерполяции.


гип	Соскин	Com	TNP			
дпо.нан	OCOKNH	CHE				
	HOBUKOB	M. Las	Примеры водоотвода с раз-	СПАДНЯ	Aucm	Aucmo8
ГА,СПЕЦ.	HOBUKOB	1.50%	ДЕЛИМЕЛЬНОЙ ПОЛОСЫ И ПРО-	Ρ	24	58
Рук, Бриг.	CABUY	Och	ESHEH YACHU HA AOPOTAK			
POBEPWA		Pets	I KAMETOPHH	COXO	LOPRI	POEKM
COCMABUN	COKONOBA	Cott	_		**	

HB. H RULA. BOATHEL M LATA | BSAM. HHB M

инв и пола подпись й дата взам инв и

0575 M

шебенв4-

ной пол

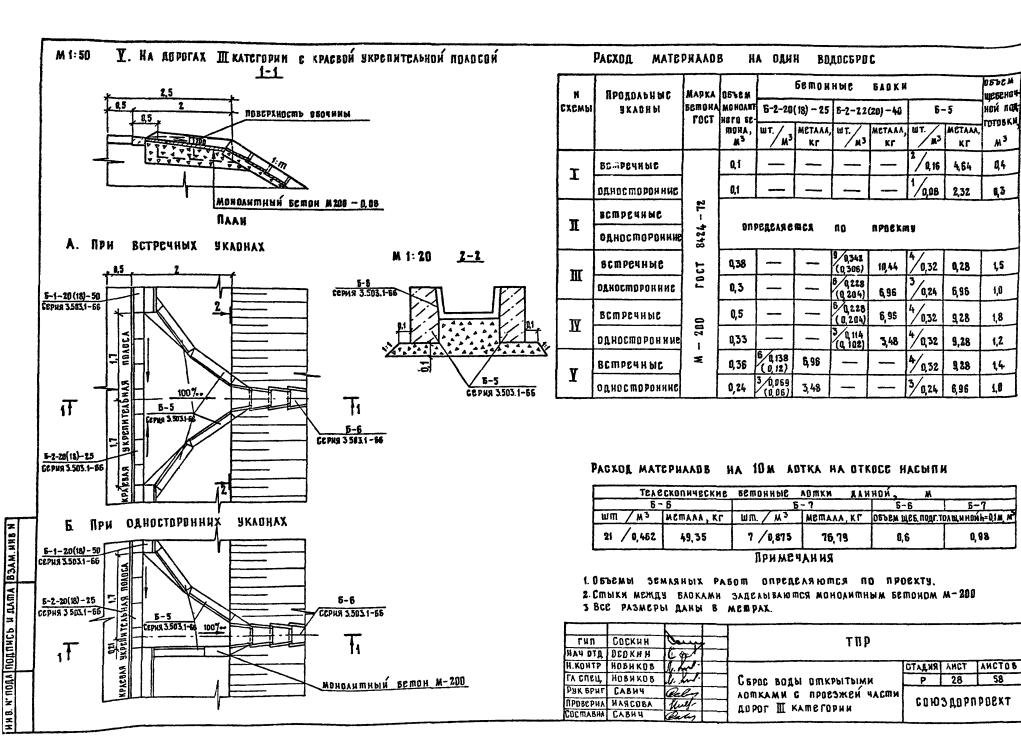
TOTOSKA

0,4

9,3

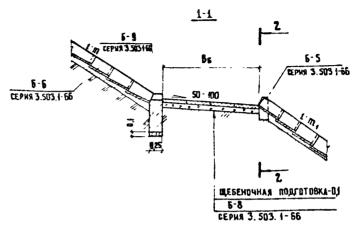
1,5

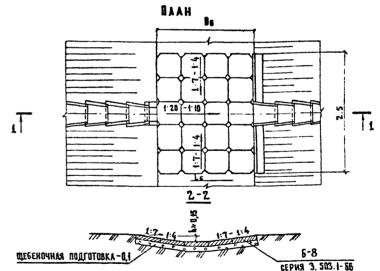
1,0

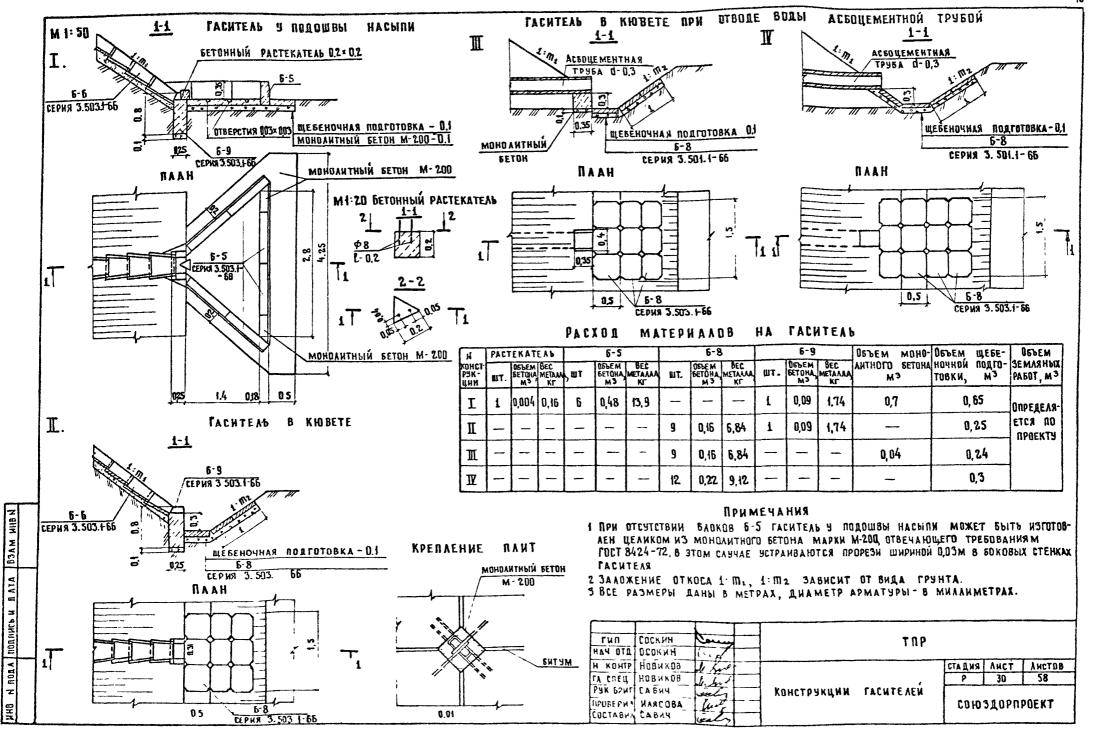

1.8

1,4

1.0


0,98


58


- 1. Ширина бермы , въ , ширина чкрепления _В » , объемы работ определяются по проекту. Заложение откоса 1: m , $1: m_q$, зависит от вида грунта.
- 2. БЕТОННЫЕ ПАИТЫ Б-8 МОГУТ БЫТЬ ЗАМЕНЕНЫ НА МОНОАНТНЫЙ БЕТОН, ТОАЩИНА КОТОРОГО ОПРЕДЕЛЯЕТСЯ ПРОЕКТОМ И ЗАВИСИТ ОТ ИНТЕНСИВНОСТИ И СОСТАВА ДВИЖЕНИЯ. 3. ВСЕ РАЗМЕРЫ ДАНЫ В МЕТРАХ.

II. ПРИ **В**ВИЖЕНИИ ТРАНСПОРТА.

LNU	Соскин	Jours	□ TNP				
ATO PAH	DCDKNH	U DW	7 '"'				
H. KOHTP.	HOBEKOB	4. ford.		СТАДИЯ	ANCT	ANCTOR	
TA. CREE	HOBHKOB	le. Level	Водоотводные четройства	P	29	58	
YK BPHT.	САВИЧ	Pelo	HA BEPME				
POBEPHA		Muy-	1 "" ""	СОНО	ЗДОРП	POFKT	
COCTABUA	CABNY	Pals	7	1			

BAKECHHMC

X; K

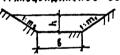
инв. Н • подл подпись и дата взам. Инв Н

Q: мУс — РАСЧЕВНЫЙ РАСХОД;

ВБОЗНАЧЕНИЯ

— площавь мивого сечения;

— смоченный периметр;


 σ_n — коэффициент подтопления; $q=9.81\,\mathrm{m/c^2}$ — ускорение силы тяжести; $V_{\rm i}$ м/с — скорость течения воды.

ТАБАНЦА КВЭФФИЦИЕНМОВ АЭРАЦИИ

i	К дэр
0,1 - 0,2	1,33
9.2 - Q4	433 - 2
0,4 - 0,6	2 - 3,33

ГИДРАВАНЧЕСКИЕ ПАРАМЕТРЫ

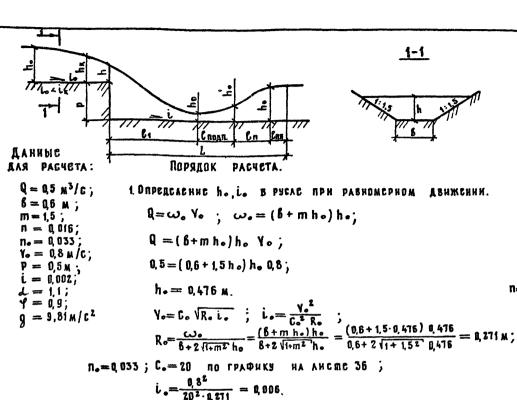
Трапецендальное сечение

$$\omega = (6 + mh)h ;$$

$$\chi = 6 + m'h ;$$

$$R = \frac{\omega}{6 + m'h}$$

$$m = \frac{m_1 + m_2}{2}$$
; $m' = \sqrt{1 + m_1^2} + \sqrt{1 + m_2^2}$;
 $m_1 = m_2$ $m' = 2\sqrt{1 + m^2}$


зинэрээ эвналогеом рап

=

 $\omega = 8 h;$ X = 6 + 2h; $R = \frac{\omega}{6 + 2h}$

THE	СОСКИН	Course		TNP			
ATO.PAH	DCDKHH	Ced					
H. KOHTP.	HOBUKOB	le Las			CTA ANS	VACE	ANCTOB
TA CREU.	HOBHKOB	1. m		Буквенные обозначения	P	31	58
РУК.БРИГ		Poly		и гидраванческие			
ПРОВЕРНА	COKOADBA	Carel		**	1 союз	TOPI	POEKT
		120	1	ПАРАМЕМРЫ.			

2 ORPERSABHE hk

 $h_K = 0.33 M$ no spathky ha aheme 43.

з Определение н

$$h = 0.7 \, h \, K = 0.7 \cdot 0.33 = 0.231 \, M$$

4 Определение У в сечении над четиом

$$V = \frac{Q}{\omega} = \frac{0.5}{(0.6 + 1.5 \cdot 0.231) \cdot 0.231} = 2.28 \text{ m/s}$$

5. Определение — не подбором — нан по графику на ансте 53

$$h + \frac{L \chi^2}{2g} + P = h_c + \frac{L Q^2}{2g \chi^2 h_c^2 (B_c + m_e h_e)^2}$$

$$0.231 + \frac{1.1 \cdot 2.28^{2}}{2 \cdot 9.81} + 0.5 = hc + \frac{1.1 \cdot 0.5^{2}}{2 \cdot 9.81 \cdot 0.9^{2} hc^{2} (0.6 + 1.5 hc)^{2}};$$

$$0.368 h^{2} + 1.48 h^{3} + 0.5 h^{4} - 2.25 h^{5} - 0.017 = 0$$

6. Определение
$$h_c$$

$$h_c = \frac{6 h_x^2}{h_x + 5 h_c} = \frac{6 \cdot 0.33^2}{0.33 + 5 \cdot 0.19} = 0.51 \text{ м}$$

$$h_c^* > h_c - прымяк отогнанный$$

7. Определение меньшей сопряженией h.

$$h_o = \frac{6 h \kappa^2}{h \kappa + 5 h_o} ; h_o' = \frac{6 h \kappa^2}{5 h_o} - \frac{h \kappa}{5} ;$$

$$h_o' = \frac{6 \cdot 0.33^2}{5 \cdot 0.476} - \frac{233}{5} = 0.21 \text{ M}$$

в Определение влины кривой подпора вподп.

N=0016 : Ca= 43 NO TPAMIKY HA AHEME 36 ; Ca= 44 NO TPAMIKY HA AHEME 36 ;

$$\omega_{CP} = \frac{\omega_{C} + \omega_{o}'}{2} = \frac{0.168 + 0.192}{2} = 0.18 \text{ M}^{2};$$

$$R_{CP} = \frac{R_{C} + R_{o}'}{2} = \frac{0.131 + 0.142}{2} = 0.157 \text{ M}; \quad i_{CP} = \frac{Q^{2}}{\omega_{CP}^{2}} \cdot \frac{0.3^{2}}{0.18^{2} \cdot 43.5^{2} \cdot 0.157},$$

$$G_{CP} = \frac{C_{C} + C_{o}'}{2} = \frac{43 + 44}{2} = 43.5;$$

$$J_{C} = h_{C} + \frac{4Q^{2}}{2g\omega_{C}^{2}} = 0.19 + \frac{1.1 \cdot 0.5^{2}}{2 \cdot 9.81 \cdot 0.192} = 0.687;$$

$$J_{o} = h_{o}' + \frac{4Q^{2}}{2g\omega_{C}^{2}} = 0.21 + \frac{1.1 \cdot 0.5^{2}}{2 \cdot 9.81 \cdot 0.192} = 0.59;$$

$$C_{DOBD} = \frac{J_{o}' - J_{CP}}{J_{o}'} = \frac{0.59 - 0.687}{0.002 + 0.0296} = 3.49 \text{ M}$$

9 Определение данны прыжка вп

$$ln = 2.5 (0.9 h \cdot + d)$$
; $d = h \cdot - h' = 0.476 - 0.21 = 0.266 M$; $ln = 2.5 (0.9 \cdot 0.476 + 0.266) = 1.738 M$

10 Определение длины участка после прыжка впп.

11 Определение дальности падения струк в 1.

 $\ell_1 = \sqrt{\frac{2P+h}{9}} = 2.28 \sqrt{\frac{2 \cdot 0.5 + 0.251}{3.81}} = 6.807 \text{ M}$

12. Определение длины зчастка водобоя L $L = \ell_1 + \ell_{100}$ $\ell_1 = \ell_1 + \ell_{100}$ $\ell_1 = \ell_1 + \ell_{100}$ $\ell_1 = \ell_1 + \ell_{100}$

LND	CDEKHH	James	TNP			
дто РАН	Осокин	3 8.7	7			
H.KOHTP	НСВИКОВ	1.20	,	RHAATO	AHCT	AHCTOB
ГА СПВЦ	Новиков	1. X.	Пидравлический расчет	P	32	58
РУК.БРИГ	CABUY	Relas	ОДНОСТИПЕНЧАТОГО ПЕРЕПАДА	<u> </u>		
ПРОВЕРНА	COKOADBA	Cox		CO10:	здорп	POEKT
COCTABUA	CABUY	Q-los		j.		

1-1

RAH SMHHAIL PACHETA:

ПОРЯВОК РАСЧЕТА.

і Определение ho, i. в русле при равномерном движении. Q=0.5 m3/c : 6 = 0.6 MQ=W. Vo; W. = (8+mh.) ho; m = 1.5n =0.016 Q = (8+ mh.) h. V.; n. = 8.833 Ya=RBM/C 25 = (26+1,5 h.) h. 0,8; L = 8.1 KA20 = 1,33 g = 9,81 m/c2; Vo = C. VRoio ; Lo = Vo2 ; L= 4M. $R_{\bullet} = \frac{\omega_{\bullet}}{6+2\sqrt{1+m^2}} + \frac{(8+mh_{\bullet})h_{\bullet}}{6+2\sqrt{1+m^2}h_{\bullet}} = \frac{(0.6+1.5\cdot0.476)0.476}{0.8+2\sqrt{1+1.5^2}\cdot0.476} = 0,271 \text{ M};$

n.=0.833; C. = 20 no rpaduky HA Aucme 36 ; $i_0 = \frac{9.8^2}{20.2 \cdot 0.271} = 0.006$

2 Определение вк.

hx == 8,33 NO PPAPUKY HA AUCHE 43.

3. Oppedeachus taybuhi it pashompphoto denschur ha sicoppomoke (nogsopow).

h = 0.17 M; $\omega = (0.6 + 1.5 \cdot 0.17) \cdot 0.17 = 0.145 \text{ M}^2$; $R = \frac{0.145}{0.6 + 2\sqrt{1+15^2 \cdot 0.17}} = 0.12 \text{ M};$ No - N. KASP. - 0.016 . 1.33 - 8,021 ; C = 30,5 NO PPAPUKY HA ANGME 36 ; V = CVRi = 30.5 V0.12-01 = 3.34 M/G; $Q = \omega V = 0.145 \cdot 3.34 = 0.484 \text{ M}^3/C$ $0.5 - 0.484 = 0.016 \text{ m}^3/\text{G}$; 1.6% < 3%

4 впределение плины кривой спада всп

$$h_{K} = 0.33 M$$
 — $h = 0.17 M$

 $\omega_{K} = (0.6 + 1.5 \cdot 0.33) \ 0.33 = 0.361 \ \text{m}^{2} \ ; \ \omega = (0.6 + 1.5 \cdot 0.17) \ 0.17 = 0.145 \ \text{m}^{2} \ ;$

 $R \times = \frac{0.361}{0.6 + 2 \sqrt{1 + 1.5^2} \cdot 0.33} = 0.202 \text{ m} ; R = \frac{0.145}{0.6 + 2 \sqrt{1 + 1.5^2} \cdot 0.12 \text{ m}} = 0.12 \text{ m} ;$

N=0021: Cx = 34 NO FPACHEY HA AHEME 35: C = 29 NO FPACHEY HA AHEME 35:

$$\omega_{\text{CP}} = \frac{\omega_{\text{K}} + \omega}{2} = \frac{0.361 + 0.145}{2} = 0.253 \text{ m}^2;$$

$$Rcp. = \frac{R\kappa + R}{2} = \frac{0.202 + 0.12}{2} = 0.161 \text{ M}; \quad icp. = \frac{Q^2}{\omega_{cp}^2 G^2 \omega_{Rcp}} = \frac{0.5^2}{0.253^2 \cdot 31.5^2 \cdot 0.161}$$

$$Ccp = \frac{C\kappa + C}{2} = \frac{34 + 29}{2} = 31.5; \quad = 0.024;$$

$$\exists \kappa = h \kappa + \frac{1}{2g} \frac{Q^2}{\omega_{\kappa}^2} = 0.33 + \frac{11 \cdot 0.5^2}{2 \cdot 9.81 \cdot 0.361^2} = 0.438;$$

$$3 = h + \frac{Q^2}{2g \omega^2} = 0.17 + \frac{1.1 \cdot 0.5^2}{2 \cdot 9.81 \cdot 0.145^2} = 8.837$$
;

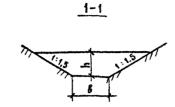
$$l_{cn} = \frac{3 - 3\kappa}{i - i cp.} = \frac{0.837 - 0.438}{0.1 - 0.024} = 5.25 \text{ M}$$

5. Определение глубины воды h₁ в конце быстротока (подбором)

$h_{K} = 0.33 \text{ M}$; $\omega_{K} = 0.361 \text{ M}^{2}$; $R_{K} = 0.202 \text{ M}$; n = 0.021; $C_{K} = 34$; $C_{K} = 34$; $C_{K} = 34$;	$h_1 = 0.18 \text{ m};$ $\omega_1 = (0.6 + 1.5 \cdot 0.18) 0.18 = 0.157 \text{ m}^2;$ $R_1 = \frac{0.157}{0.6 + 2 \sqrt{1 + 1.5^2}} 0.18 = 0.125 \text{ m};$ $n = 0.021; C_1 = 30.5 \text{ fig. fpaduky ha aucte 36};$ $J_1 = h_4 + \frac{LQ^2}{2g \omega_2^2} = 0.18 + \frac{1.1 \cdot 0.5^2}{2 \cdot 9.81 \cdot 8.157^2} = 0.749;$
---	--

$$\omega_{\text{CP}} = \frac{\omega_{\text{K}} + \omega_{1}}{2} = \frac{0.361 + 0.157}{2} = 0.259 \text{ m}^{2};$$

$$R_{\text{CP}} = \frac{R_{\text{K}} + R_{1}}{2} = \frac{0.202 + 0.125}{2} = 0.164 \text{ m};$$


$$G_{\text{CP}} = \frac{G_{\text{K}} + G_{1}}{2} = \frac{34 + 30.5}{2} = 32.25;$$

$$i_{\text{CP}} = \frac{Q^{2}}{\omega_{\text{CP}}^{2} \cdot G_{\text{CP}}^{2} \cdot R_{\text{CP}}} = \frac{0.5^{2}}{0.259^{2} \cdot 32.25^{2} \cdot 0.164} = 0.022;$$

$$\ell cn = \frac{J_1 - J_R}{l - l cp} = \frac{0.749 - 0.458}{0.1 - 0.022} = 3.99 \text{ M} ; \quad \ell = 4 \text{ M} ; \quad 1\%. \ L 3\%.$$

ДЛЯ РАСЧЕМА ГАСЯЩСГО СООРИМЕНИЯ В КОНЦЕ БЫСТРОТОКА ИСХОДНОЙ ГЛУБИНОЙ MBIO = 1 AHUBEAT ROTSRABR

						i
гип	СОСКИН	Com	THP			
HAN OTO	OCOKUH	11 0				
HKOHTP	Новиков	V. 1.5		CTALLIS	AUCT	AUCTOB
га спец	HOBUKOB	B. Jant	Гидраванческий расчет	P	33	58
РУК.БРИТ	САВИЧ	Oslor	коромких быстромоков			
проверил	COKOADBA	Caral	KUPUMKNA UUJOMPUMUNUU	COM3	Anpap	DEKT
COCTABHA	CABHY	Pelin		1	~,~.	

ДАННЫЕ ДАЯ PACHETA:

ROPAROK PAGYCTA.

 $0 = 0.5 \,\mathrm{m}^3/\mathrm{c}$ B = 0.6 M m = 1.5n = 0.016 $n_{\bullet} = 0.053$ V. = 0,8 M/6 L = Q1

KA3P = 1,33 $q = 9.81 \, \text{M}/c^2$

ВБ= 10 M

 $m_1 = 0.5$

6 = 1.05

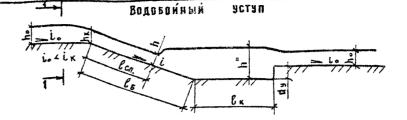
1. Опредвление h., i., hк, h, fcm дано в гидравлическом расчете коротких быстротоков на листе 33

 $l_{5} = 10 \text{ M} > l_{CR} = 5,25 \text{ M}$ ГЛУБИНА ВОДЫ В КОНЦЕ БЫСТРОТОКА РАВНА 1 = 0.17 М

- 2. Определение высоты водобойной стенки Рст. в первом приближении $\frac{q^2}{2g\,6^2\,6^n^2\,m_*^2} + \frac{2\,q^2}{2g\,6^2\,6^2\,h^{*2}};$ δ = 1.05; для первого расчета $\delta n = 1$; $h = \frac{6 h x^2}{h_K + 5 h} = \frac{6 \cdot 0,33^2}{0.33 + 5 \cdot 0,17} = 0,553 M$
- $P_{\text{CT.}} = 105 \cdot 0.553 \sqrt{\frac{0.5^2}{2 \cdot 9.81 \cdot 0.6^2 \cdot 1^2 \cdot 0.5^2}} + \frac{1.1 \cdot 0.5^2}{2 \cdot 9.81 \cdot 0.6^2 \cdot 1.05^2 \cdot 0.553^2} = 0.174 \text{ m}$

Pct. ~ h. = 0.476 M

3. Определение Рст. во втором приближении.

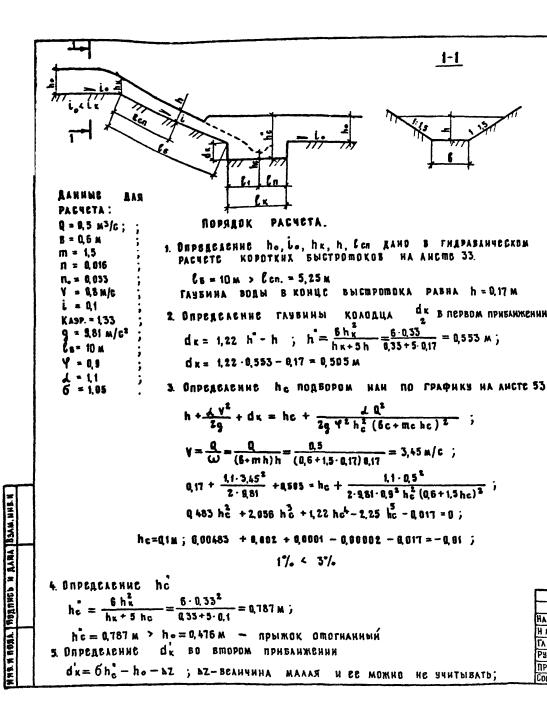

$$H = \sqrt[3]{\frac{Q^2}{298^2 Gn^2 m_s^2}} = \sqrt[3]{\frac{0.5^2}{2 \cdot 9.81 \cdot 0.6^2 \cdot 1^2 \cdot 0.5^2}} = 0.522 \text{ м}$$
;
 $h_n = h_0 - \text{Рст.} = 0.476 - 0.174 = 0.302 \text{ м}$;

 $\frac{h_{\Pi}}{H} = \frac{0.302}{0.522} = 0.579$; $G_{\Pi} = f(\frac{h_{\Pi}}{H})$; $G_{\Pi} = 0.914$ no magauge HA Aucme 52;

$$P_{cr} = 0 h^{2} - \sqrt{\frac{Q^{2}}{2g 6^{2} 6_{n}^{2} m_{i}^{2}}} + \frac{2 Q^{2}}{2g 8^{2} \cdot 6^{2} \cdot h^{1/2}};$$

$$P_{cr} = 1,85 \cdot 0,553 - \sqrt{\frac{0.5^{2}}{2 \cdot 9.81 \cdot 0.5^{2} \cdot 0.914^{2} \cdot 8.5^{2}}} + \frac{1,1 \cdot 0.5^{2}}{2 \cdot 9.81 \cdot 0.6^{2} \cdot 1,05^{2} \cdot 0.555^{2}} = 0,143 \text{ M}$$

4. Определение p"ст. в третьем привлижении: $\frac{Q^2}{2g \, 6^2 \, 6n^{12} \, m_1^2} = \sqrt[3]{\frac{0.5^2}{2 \cdot 9.81 \cdot 0.6^2 \cdot 0.314^2 \cdot 0.5^2}} = 0,553 \, \text{м};$ $h_n = h_0 - PcT = 0.476 - 0.143 = 0.333 M$ $\frac{h_n}{H} = \frac{0.333}{0.553} = 0.602$; $6^n = 0.906$ по паблице на ансте 52; Р ст = 0,14м - окончательный результат.



- 5. Определение длины колодца вк перед водобойной стенкой $\ell_{K} = \beta \cdot 2.5 (0.9 h^{*} + \alpha)$; $\alpha = h^{*} - h = 0.553 - 0.17 = 0.383 M; <math>\beta = 0.8$; $\ell_{\kappa} = 0.8 \cdot 2.5 \text{ (p.g. q.553} + 0.383) = 1.76 ~ 1.8 \text{ M}$
- 6. ДЛЯ ЗАВЕРШЕНИЯ РАСЧЕТА НЕОБХОДИМО НАЙТИ hc , hc 3A стенкой и сравнить с ho.

he < h. расчет закончен hc > h. необходимо дальнейшее гашение скорости-- устройство еще одного гасящего устройства

- 7. Определение высомы водобойного уступа dy. dy=6h"-h.- 12; COMBANTHE SH OHMOM SON RAKAM AHHPHASH-IA $dy = 1.05 \cdot 0.553 - 0.476 = 0.105 - 0.11 M$
- 8. Определение длины колодца вк перед водобойным $\ell k = \beta 2.5 (0.9 h'' + \alpha)$; $\alpha = h'' - h = 0.553 - 0.17 = 0.383 M; <math>\beta = 0.8$; 6k = 0.8: 2.5 (0.9.0,553 + 0,383) = 1.76 ~ 1.8 M

ГИП	БВСКИН	ton	TNP			
HAH. DTA.	DCDKHH	The same				
H. KOHTP	Новиков	4.201.		СТАДИЯ	ANGT	AHETOB
ГА. СПВЦ.	Новик о в	16.20	Гидравлический расчет	P	34	58
Рук.Брит.	CABHH	Que,	Высоты водобойной стенки			
Проверил Составил	COKOADBA	Cox	и водобойного устана	союз	дорп	PDEKT

d' = 105 - 0.787 - 0.476 = 0.35M d к и d к отанчаются дряг от друга более, чем на 3%-6. Определение h_{c_1} подбором нам по графику на амете 53 $\frac{1}{h} + \frac{1v^2}{2g} + d_x = h_{c_1} + \frac{2}{2g} \frac{q^2}{h_{c_1}^2} (b_{c_1} + m_{c_1}h_{c_1})^2$ $8.17 + \frac{11 \cdot 3.45^2}{2 \cdot 9.81} + 0.35 = hc1 + \frac{11 \cdot 0.5^2}{2 \cdot 9.81 \cdot 0.9^2 \cdot h_{c1}^2 \cdot (0.6 + 1.5 hc_1)^2};$ 0,427 hc1 + 1,777h3c1 + 0,871 h4 c1 - 2,25 hc1 - 0 017 = 0 . hc1 = 0.15 m ; 0.0096 + 0.006 + 0.004 - 0.0002 - 0.017 = - 0.001; 01% 43% 7. Onpedeachue het. $h_{c1}^{*} = \frac{6 h \kappa^{2}}{h \kappa + 5 h c} = \frac{6 \cdot 0.33^{2}}{0.33 + 5 \cdot 0.15} = 0.605 \text{ M};$ hc. > ho - прыжок отогнанный; в Определение о в претыем приближения $d_{\kappa} = 6 h_{c}$, $-h_{o} = 1.05 \cdot 0.605 - 0.476 = 0.159 - 0.16 M$ de и de отанчаются друг от друга более, чем на 3% 9. Определение hc2 подвором или по графику на листе 53 $h + \frac{LV^2}{2a} + d_K'' = hcz + \frac{LQ^2}{2g \Psi^2 hc_2^2 (8c_2 + mc2 hc2)^2}$ $0.17 + \frac{1.1 \cdot 3.45^{2}}{2 \cdot 9.81} = hc_{3} + \frac{1.1 \cdot 0.5^{2}}{2 \cdot 9.81 \cdot 0.9^{2} \cdot hc_{3}^{2} \cdot (0.6 + 1.5 hc_{2})^{2}}$ 1359 hc2 + 1435 hc2 + 0443 hc2 - 2,25 hc2 - 9,017 = 0; hcz=Q15m : 0.0081+0.0049+0.0002-0.0002-0.017=-0.004; 04% 43% 10. Определение hcz. $hez = \frac{6 h_K^2}{h_K + 5 hez} = \frac{6 \cdot 8 \cdot 35^2}{0.33 + 5 \cdot 0.15} = 0.605 \text{ M}$ 11 ORPERCABNUE do d" = 6 hc2 - h = 1,05 · 0,605 - 0,476 = 0,159 ~ 0,16 M; d = d = 0,16 M 12. Определение длины колодца вк. $\begin{array}{l} \ell_{1} = \ell_{1} + \ell_{1} \; ; \\ \ell_{1} = V \; \sqrt{\frac{2 \, d_{2}^{2} + h}{2}} \; = \; 3.45 \; \cdot \; \sqrt{\frac{2 \, 0.16 + 0.17}{9.81}} \; = \; 0.77 \; \text{M} \; ; \\ \ell_{1} = \beta \; 2.5 \; (0.9 \, h_{c}^{2} + \alpha) \; ; \; \; \alpha = h_{c_{2}}^{2} - h_{c_{2}}^{2} = 0.605 - 0.15 \; = \; 0.455 \; \text{M} \; , \quad \beta = 0.8 \; ; \\ \ell_{1} = 0.8 \cdot 2.5 \; (0.9 \cdot 0.605 + 0.455) = (.999 \; \text{M} \; ; \qquad \ell_{K} = 0.77 + 1.999 = 2.769 \; \sim \; 2.8 \; \text{M} \; . \end{array}$ THP гип Соскин HAY. OTA. DOOKHH CTARUS ANCT ANCTOR КОНТР- НОВИКОВ ГИДРАВАИЧЕСКИЙ РАСЧЕТ ГЛ СПЕЦ. НОВИКОВ

водовойного колодца

СОЮЗДОРПРОЕКТ

PEK SPHT CABHY

ПРОВЕРНА СОКОЛОВА СОСТАВИЛ САВИЧ

инв м-пода подпись и дама взам инв м

Значения показателя степени-9, в формуле акад Лавловского Н.Н. $C=\frac{1}{\pi}R^{9}$, скоростного множителя-C, входящего в формулу $U=C\sqrt{RL}$, величин $C^{2}R$ и $C\sqrt{R}$.

R								Коэч	рфиі	THEH	T	u	I E P O	хов	ATO	СТИ	۰,, ۱	ι"							eckuri R
Гидраваический Радинс R		0,0	12			D,	014			0,	.015			0,	, 017			0	,020			0	,022		гидравличе Радиве
Гидра Рад	y	С	C ² R	CVR	y	С	C2R	C VR	y	С	C2R	CVR	y	С	C2R	CVR	y	C	C2R	CVR	y	C	C ² R	CVR	
0, 02 0, 03 0, 03 0, 05 0, 07 0, 08 0, 09 0, 10	0,143 0,143 8,142 0,142 0,142 0,142 0,142 0,142	47, 68 50, 54 52, 69 54, 42 55, 87 57, 13 58, 11 59, 24 60, 15	45, 41 76, 62 111, 0 148,1 187,3 228,5 270,1 315,8 361,8	8, 74 8, 75 10, 54 12, 17 13, 58 15, 11 16, 44 17, 77 19, 02	0, 154 8, 163 0, 163 0, 163 0, 162 0, 162 0, 162 0, 161	37, F2 40, CT 42, 27 43, 87 45, 22 45, 41 47, 45 48, 39 49, 25	28,31 48,63 71,45 95,24 122,70 150,76 180,13 210,78 242,56	5.32 6.97 8,45 9.81 11.07 12,28 13,42 14,52 15,57	0,174 0,173 0,173 0,172 0,172 0,172 0,171 0,171 0,171	33, 78 36, 31 38, 23 39, 77 41, 09 42, 23 43, 24 44, 15 44, 99	22,82 39,56 58,45 79,19 101,29 124,82 149,58 175,45 292,37	4, 78 6, 29 7, 54 8, 89 10, 06 11, 17 12, 23 13, 25 14, 23	0.193 0.192 0.191 0.191 0.190 0.190 0.189 0.189 0.189	27,67 30,00 31,77 33,21 34,43 35,50 36,45 37,31 38,09	15.32 27,00 40,36 55.13 71,12 88.20 106.26 125.25 145,07	3.91 5.29 6.35 7.42 8.43 9.39 10.31 11,19 12,04	0.219 0.218 0.217 0.217 0.215 0.215 0.215 0.214 0.214	21,21 23,27 24,84 26,13 27,23 28,20 28,07 29,85 30,57	9, 00 16, 24 24, 68 34, 14 44, 50 55, 68 67, 59 80, 19 93, 43	3.00 4.03 4.84 7.66 7.46 8.95 8.95	0,236 0,234 0,233 0,233 0,231 0,231 0,231 0,229	18. 18 19. 97 21. 43 22. 64 23. 67 24. 58 25. 39 26. 81	5, 54 11, 37 18, 37 25, 62 33, 62 42, 29 51, 58 61, 45 71, 86	2, 56 3, 46 4, 23 5, 06 5, 80 6, 50 7, 18 7, 84 8, 48	9,02 1,03 0,94 0,95 5,06 8,07 0,58 6,09 6,10
0,11 0,12 0,13 0,14 0,15 0,17 0,18 0,19 0,20	8,141 0,141 0,141 0,141 0,141 0,141 0,141 0,141	63. 58 61. 75 62. 46 63. 13 63. 76 64. 36 64. 32 65. 45 66. 45	409,0 457,5 507,2 558,0 609,8 662,7 716,5 771,1 826,7 883,1	20, 27 21, 39 22, 52 23, 62 24, 69 25, 74 26, 77 27, 77 28, 75 29, 12	0,161 0,161 0,161 0,161 0,160 0,160 0,160 0,160	50.03 50.77 51,44 52,08 52,68 53,24 53,79 54,30 54,77 55,24	275,32 309,34 344,04 379,72 416,27 453,58 491,81 530,75 570,01 610,38	16,59 17,59 18,55 19,49 20,40 21,30 22,18 23,04 23,87 24,70	0,171 0,170 0,170 0,170 0,169 0,169 0,169 0,169	45.75 46.46 47.12 47.74 48.32 48.87 49.40 49.89 50.37 50.82	230, 24 259, 01 288, 61 319, 04 350, 24 382, 17 414, 19 448, 87 481, 98 516, 55	15, 17 16, 09 16, 99 17, 86 18, 71 19, 55 20, 37 21, 17 21, 95 22, 73	0.188 0.188 0.188 0.187 0.187 0.187 0.187 0.186 0.186	38,81 39,48 40,10 40,69 41,24 41,77 42,26 42,74 43,19 43,62	165,67 187,02 209,00 231,80 255,16 279,12 363,66 328,75 354,38 380,55	15,97 16,71	0,213 0,213 0,212 0,212 0,211 0,211 0,211 0,210 0,210 0,210	31, 23 31, 84 32, 42 32, 96 33, 47 33, 96 34, 42 34, 86 35, 28 35, 68	107,27 121,58 136,64 152,10 168,07 184,50 201,39 218,71 236,45 254,62	11, 36 11, 03 11, 69 12, 33 12, 96 13, 58 14, 19 14, 79 15, 38 15, 96	0.229 0.226 0.228 0.227 0.227 0.226 0.225 0.225 0.225 0.225	27,43 28,02 28,56 29,08 29,56 30,02 30,46 30,88 31,28 31,57	82.78 94.18 106.06 118.36 131.1 144.2 157.8 171.7 185.9 200.6	9, 10 9, 70 10, 30 10, 88 11, 45 12, 01 12, 56 13, 10 13, 64 14, 16	0,11 0,12 0,13 0,14 0,15 0,17 0,17 0,18 0,19 0,20
0,21 0,22 0,23 0,24 0,25 0,27 0,28 0,30	0.141 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	\$6, 17 67, 36 67, 79 68, 20 63, 60 65, 99 69, 36 69, 72 70, 07	936,4 938,3 1057 1116,5 1176,5 1237,5 1289 1361 1423,9 1487	30,60 31,59 32,51 33,41 34,30 35,18 36,89 37,73 38,56	0,159 8,159 8,159 0,159 0,159 0,159 0,159 0,158 0,158	55.69 56.12 56,53 56.92 57.31 57,67 58.04 58.39 58,	\$51.21 692.71 73+,99 777,64 821.06 864.19 909.43 954.53 999.53	25,52 26,32 27,11 27,89 28,65 29,41 30,16 30,90 31,61 32,33	0.163 0.163 0.168 0.168 0.168 0.167 0.167 0.167	51, 26 51, 67 52, 07 52, 46 52, 83 53, 20 53, 55 53, 88 54, 21 54, 53	551.89 587.41 623.69 680,52 697.82 735,71 774.12 812.94 852.23 891.99	23,49 24,24 24,97 25,70 26,42 27,12 27,82 28,51 29,19 29,87	0.185 0.185 0.185 0.185 0.185 0.184 0.184 0.184 0.184	44,03 44,43 44,82 45,19 45,64 45,89 46,22 46,55 46,86 47,16	407.21 434,35 461.97 490,02 518,54 547,46 576,82 606,59 636,17 667,30	20, 18 20, 84 21, 49 22,77 23,40 24, 92 24, 63 25, 23 25, 83	8.289 0.209 0.209 0.208 0.218 0.218 0.207 0.207 0.207 0.205	36,07 36,44 36,80 31,14 37,47 37,80 38,11 38,41 38,71 38,99	273,16 292,09 311,41 531,06 351,07 371,49 392,13 413,15 434,46 456,11	16,53 17,65 17,65 18,19 18,74 19,27 16,80 20,33 20,84 21,36	9,224 9,224 0,223 8,223 8,223 0,222 9,222 0,222 0,221 1,221	32.84 32,39 32,73 33,06 33,38 33,69 35,99 34,28 34,76 34,84	215,5 230,8 246,4 262,4 278.6 295,1 311,9 329,1 346,5 364,1	14, 68 15, 19 15, 70 16, 20 16, 69 17, 18 17, 66 18, 14 18, 61 19,08	8,21 0,22 8,23 0,24 9,25 0,25 0,27 0,28 0,29 0,30
0, 31 0, 32 0, 33 0, 34 0, 35 0, 37 0, 38 0, 39 0, 40	0.440 0.140 0.140 0.140 0.140 0.140 0.139 0.139 0.139	10, 74 71, 06 71, 37 71, 67 71, 67 72, 26 72, 54 72, 54 72, 81 13, 34	1551 1616 1681 1747 1813 1880 1947 2015 2083 2152	39, 39 40, 20 41, 00 41, 19 42, 58 43, 35 44, 12 44, 88 45, 64 46, 39	0,158 0,158 0,158 0,158 0,158 0,158 0,157 0,157 0,157	59, 36 59, 97 60, 25 60, 53 60, 81 61, 98 61, 34 61, 86	1092,3 1138,9 1186,5 1234,3 1282,3 1331,1 1331 1430 1480 1531	33,05 33,75 34,44 35,13 35,81 36,45 37,15 37,15 37,81 38,47 39,12	9,167 0,167 0,166 0,166 0,166 0,166 0,166 0,166 0,166	54,84 55,14 55,43 55,72 55,79 56,26 56,53 56,79 57,29	932,16 972,86 1013,94 1055,40 1097,34 1139,63 1182 1225 1269 1313	30,53 31,19 31,84 32,49 33,13 33,76 34,38 35,01 35,62 36,28	0,183 0,183 0,183 0,183 0,182 0,182 0,182 0,182 0,182 0,182	47,46 47,75 48,83 48,57 48,83 49,08 49,08 49,57 49,81	698.24 729.55 761.19 793.24 825.56 858.27 891.3 924.7 958.3 \$92.3	26,42 27,59 28,16 28,73 29,30 29,85 30,41 30,96 31,50	0, 208 0, 208 0, 206 0, 215 0, 205 0, 205 0, 204 0, 204 0, 204	39, 27 39, 54 39, 81 40, 96 40, 31 40, 56 40, 79 41, 26 41, 48	478,06 500,30 522,82 545,66 568,76 592,11 615,8 6339,7 663,8 688,2	21,86 22,37 22,87 23,36 23,85 24,33 24,81 25,29 25,76 26,23	0,221 0,220 1,220 0,220 0,219 0,219 0,218 0,218 0,218	35,10 35,36 35,62 35,86 36,11 36,34 36,57 36,79 37,01 37,23	382.0 400.2 418.6 437.3 456.3 475.4 494.8 514.4 534.3 \$564.4	19, 54 28, 00 20, 46 20, 91 21, 36 21, 80 22, 68 23, 11 23, 55	9,31 0,32 9,33 9,34 9,35 9,38 9,39 9,40

инв. И. пода. подпись и дата взам инв И.

TNN HAH DTA.	СОСКИН ОСОКИН	رومن	,	ТПР			
H KOHTP	Новиков	Se. for		2	CTALHS	AHET	AMETOB
TA CHELL	Новиков	y. Lund		Значения показателя степени"У",	Р	37	58
рук. Бриг	CABNY	Postol		скоростного множителя "С"			
проверил	CABNY	Datus		величин "С²R" и "С√R"	CO103	здорп	POEKT
COCTABUA	KAPACCBA	94-		· ·			

Значения показателя степени "У в формуле акад Павловского И.Н. $C=\frac{1}{n}R^{3}$ скоростного множителя — C , входящего в формулу $V=C\sqrt{Ri}$, величин $C^{2}R$ и $C\sqrt{R}$

SANYECKHA 19C R							K	0 9 0	рфи	ЦИ	ент	W	еро	x D B	A T D	СТИ	<u>-</u>	"n"							ECKUM. R
HAPABAH	<u> </u>	0, 01		,		0, 0	14			٥,	015			0,	017			0,	020			Q,	022		BAU4E HYC R
		C	C ² R	CVR	y	C	C ² R	CVR	y	C	C ² R	C√R	y	C	C R	C√R	y	C	C 2 R	CYR	y	C	G ² R	CVR	гидравличе Радиче
0,41 0,42 0,44 0,45 0,46 0,47 0,48 0,49	0,139 0,139 0,139 0,139 0,139 0,139 0,139 0,139 0,139 0,139	73,60 73,85 74,10 74,34 74,57 74,79 75,03 75,25 75,47 75,69	2221 2291 2361 2431 2503 2573 2646 2718 2791 2864	47.13 47.86 48,59 49,31 50,02 50,72 51,44 52,14 52,83 53,52	0,157 d,157 0,157 d,157 d,157 d,156 d,156 d,156 d,156 d,156	62, 10 62, 34 62, 57 62, 81 63, 03 63, 26 63, 47 63, 69 63, 83 64, 10	1581 1632 1684 1736 1788 1841 1894 1947 1996 2055	39.76 40.40 41.66 42.28 42.90 43.52 44.12 44.68 45.33	0,165 0,165 0,165 0,165 0,165 0,165 0,165 0,164 0,164	51,53 57,76 57,99 58,22 58,44 58,66 58,67 59,08 59,29 59,49	1357 1401 1446 1491 1537 1583 1629 1676 1723	36,83 37,43 38,03 38,52 39,20 39,78 40,36 40,93 41,50 42,07	0, 181 0, 181 0, 181 0, 181 0, 180 0, 180 0, 180 0, 180 0, 180	50,04 50,27 50,49 50,71 50,92 51,13 51,54 51,54 51,54	1027 1061 1098 1131 1167 1203 1239 1275 1312	32.04 32.58 33.11 33.63 34.68 35.19 35.70 36, 21 36, 72	0, 204 Q 203 Q 203 Q 203 Q 203 Q 202 Q 202 Q 202 Q 202 Q 202 Q 202	41,70 41,91 42,12 42,33 42,53 42,73 42,92 43,11 43,38	712, 9 737, 8 762, 9 788, 3 813, 9 833, 7 865, 8 892, 1 918, 5 945, 3	26,70 27.16 27.62 28,08 28,53 28, 98 29, 42 29, 87 30, 31 30, 74	0,218 0,217 0,217 0,217 0,216 0,216 0,216 0,216 0,215 0,215	37,44 37,65 37,85 38,04 38,45 38,45 38,62 38,98 38,98 38,16	5747 595,2 615,9 636,8 658,0 619,3 780,5 744,5 765,6	23, 97 24, 40 24, 82 25, 23 25, 65 26, 47 26, 88 17, 29 21, 63	0.41 0.42 0.43 0.44 0.45 0.45 0.47 8.45 0.47 8.48 0.49
0.52 0.54 0.56 0.60 0.62 0.64 0.68 0.70	D 139 0 139 0 138 0 138 0 138 0 138 0 138 0 138 0 138 0 138	76, 10 76, 51 76, 90 77, 28 77, 65 78, 00 78, 35 78, 69 79, 01 79, 33	3012 3161 3312 3464 3617 3772 3929 4086 4245 4405	54, 88 56, 22 57, 55 58, 85 60, 14 61, 42 62, 68 63, 92 65, 16 66, 37	0,156 0,156 0,155 0,155 0,155 0,155 0,155 0,154 0,154	64, 51 64, 89 65, 27 65, 63 65, 83 66, 66 66, 98 67, 30 67, 60	22 64 22 74 23 86 24 99 26 00 27 28 28 44 29 61 30 80 31 99	46, 51 47, 68 48, 84 49, 99 50, 99 52, 23 53, 33 54, 42 55, 50 56, 56	0, 164 0, 164 0, 165 0, 163 0, 163 0, 163 0, 163 0, 162 0, 162	59, 89 60, 27 60, 63 60, 99 61, 67 62, 00 62, 31 62, 62 62, 92	1865 1961 2059 2158 2257 2358 2468 2563 2667 2772	43, 18 44, 29 45, 38 46, 45 47, 51 48, 56 49, 60 50, 62 51, 64 52, 64	0,180 0,179 0,179 0,178 0,178 0,178 0,177 0,177	52,31 52,67 53,03 53,70 54,03 54,54 54,64 54,94 55,23	1423 1498 1575 1652 1730 1810 1890 1971 2052 2135	37, 72 38, 71 39, 68 40, 64 41, 60 42, 54 43, 47 44, 39 45, 30 46, 21	0,201 0,201 0,200 0,200 0,200 0,199 0,199 0,198 0,198	43, 84 44, 18 44, 52 44, 84 45, 15 45, 46 45, 76 46, 33 46, 80	999.3 1054 1110 1166 1223 1281 1340 1399 1459 1520	31, 81 32, 47 33, 31 34, 15 34, 98 35, 80 36, 61 37, 41 38, 20 38, 99	0,215 0,214 0,214 0,213 0,213 0,212 0,211 0,211 0,211	39,84 40,47 40,47 41,36 41,36 41,63 41,190 42,11	811, 4 856, 9 903, 1 950, 0 997, 5 1046 1095 1144 1194	28, 48 29, 27 30,05 30,82 31,58 32,34 35,82 34,55 35,28	0,52 0,54 0,56 8,58 0,60 6,62 0,64 0,66 0,68 0,70
0,72 0,75 0,76 0,78 0,80 0,82 0,84 0,86 0,88	0,138 0,138 0,138 0,137 0,137 0,137 0,137 0,137 0,137	79 64 79 95 80, 24 80, 55 80, 81 81, 36 81, 62 81, 62 81, 68 82, 14	4567 4730 4893 5058 5225 5392 5560 5900 6072	67, 58 68, 77 69, 95 71, 12 72, 25 73, 43 74, 57 75, 69 16, 81 77, 92	0, 154 0, 154 0, 154 0, 154 0, 153 0, 153 0, 153 0, 153 0, 153 0, 153	67, 90 68, 19 68, 48 68, 75 69, 02 69, 29 69, 55 69, 80 70, 05	3320 3441 3564 3687 3811 3937 4063 4190 4318 4446	57, 61 58, 66 59, 70 60, 72 61, 73 62, 74 63, 74 64, 73 65, 71 66, 68	0, 162 0, 161 0, 161 0, 161 0, 161 0, 161 0, 160 0, 160 0, 160	63, 21 63, 50 63, 18 64, 05 64, 51 64, 57 64, 83 65, 57 65, 31	2877 2984 3081 3200 3309 3419 3530 3642 3754 3867	53, 64 54, 62 55, 60 56, 57 57, 52 58, 47 59, 41 60, 35 61, 27 62, 19	0,177 0,176 0,176 0,176 0,176 0,175 0,175 0,175 0,175	55,51 55,78 56,05 56,51 56,56 56,56 57,06 57,29 57,53 57,75	2218 2303 2387 2473 2559 2647 2734 2823 2912 3002	47, 10 41, 98 48, 86 49, 73 50, 59 51, 45 52, 29 53, 96 54, 79	0,197 0,197 0,196 0,196 0,195 0,195 0,195 0,195	46, 86 47, 11 47, 67 47, 62 47, 86 48, 10 48, 33 48, 55 48, 17 48, 99	1581 1642 1706 1769 1833 1897 1962 2027 2093 2160	39.77 40.52 41.30 42.06 42.81 43.55 44.29 45.03 45.75 46.47	0.210 0,210 0,209 0,209 0,208 0,208 0,207 0,207 0,207	42, 42, 42, 67, 42, 92, 43, 15, 43, 62, 43, 84, 44, 27, 44, 48	1236 1248 1400 1453 1506 1560 1614 1663 1725 1789	36, 08 36, 71 37, 41 38, 11 38, 81 39, 50 40, 18 40, 86 41, 53 42, 19	0,72 0,74 0,76 0,78 0,86 0,82 0,84 0,86 0,88 0,88
0346 03998 0000 1105 11225 1125 1125 1125	D 137 0,137 0,137 0,137 0,136 0,136 0,136 0,136 0,136	82 58 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	6244 6492 6570 6944 7389 7840 8295 8755 8755	79,02 80,11 81,28 83,33 85,96 88,54 91,57 98,48	0,153 0,152 0,152 0,152 0,152 0,152 0,151 0,151 0,150 0,150	70, 52 70, 76 70, 99 71, 21 71, 43 71, 96 72, 46 72, 95 73, 42 73, 86 74, 30	4576 4706 4837 4969 5102 5437 5776 6120 6469 6820 7177	67, 65 68, 55 70, 49 71, 43 73, 73 76, 00 78, 23 80, 43 82, 58 84, 71	0,160 0,160 0,160 0,159 0,159 0,158 0,158 0,158 0,158	65, 78 66, 01 66, 23 66, 23 66, 67 67, 18 67, 68 68, 16 68, 61 69, 05	3981 4096 4211 4328 4444 4739 5039 5343 5849 6261	63,10 64,00 64,90 65,78 66,67 68,84 70,98 73,09 73,16 77,20	0,174 0,174 0,173 0,173 0,173 0,173 0,174 0,171 0,171	57, 98 58, 19 58, 62 58, 62 58, 62 59, 79 60, 25 60, 51 61, 51	3092 3183 3275 3367 3460 3695 3933 4175 4420 4667 4918	55,61 56,42 57,23 58,03 58,03 58,82 60,79 62,71 64,61 66,48 68,32 70,13	0.195 0.195 0.195 0.195 0.198 0.198 0.188 0.188 0.188	49, 20 49, 41 49, 61 49, 61 50, 50 50, 47 51, 75 51, 76 52, 15 52, 53	227 2294 2363 2451 2500 2675 2847 3032 3215 3400 3587	47, 19 47, 98 48, 50 59, 70 51, 72 53, 35 55, 70 56, 70 58, 38	Q 206 0, 206 0, 205 Q 205 0, 205 0, 204 0, 203 0, 202 0, 201 0, 200 0, 199	44,68 44,88 45,08 45,27 45,91 46,34 46,34 46,75 47,33 47,33	1837 1893 1951 2008 2066 2213 2362 2514 2668 2824 2982	42,86 43,51 44,16 45,81 45,45 47,04 48,60 50,14 51,65 53,81	0,92 0,96 0,98 1,00 1,05 1,18 1,15 1,20 1,25

run	Соскин	Jan		TN	P		
ATO PAH	ОСОКИН	100			-		
HKOHTP	HOBHKOB	13 301	7		RUBATS	AHET	AHETOB
LY CUET	HOBUKOS	1.2.1		Значения показателя степени У,	P	38	58
РУК БРИГ	CABHY	Color		CKOPOCTHORD MHOMHTEAR C.			
NPOBEPHA.	CABHY	Richmy		BEAHUNH C'R"H CVR"	СОЮ	3AOPT	POEKT
COCTABUL	KAPACEBA	91-		20177711 1 7 7 7 10 116	l	-	

Значения показателя степени – V, в формуле акай Павловского Н. Н. $C = \frac{1}{n} R^3$, скоростного множителя — C, входящего в формулу $V = E\sqrt{RL}$, величин C^2R и $C\sqrt{R}$

4							K	039	Фиі	TNGH	IT		шe	POX	0 B A	TO	СТИ	. 1	n •	·					THE S
Радиус-К		0, 025	-			0, 02				0, 0	30			0, 0	35			0,	040			0,	045		Гидравлический
02	y Q 259	C	C2 R	C V R	y		C ² R	C √R	y	С	CZR	CVR	y	C	C2 R	CVR	y	C	G ² R	G√R	y	C	C2R	CVR	HAPABA
0.03 0.04 0.05 0.06 1.07 1.08 1.09	Q 258 Q 257 Q 255 Q 255 Q 254 Q 253 Q 252 Q 251	14,52 16,20 17,52 18,60 19,54 20,37 21,12 21,79 22,42	4, 21 7, 87 12, 27 11, 38 23, 51 29, 05 35, 67 42, 74 50, 25	2,05 2,81 3,50 4,16 4,79 5,39 5,97 6,54 7,99	0,278 0,276 0,275 0,273 0,272 0,271 0,271 0,278 0,269	12, 28 13, 81 15, 82 16, 03 16, 89 17, 66 18, 36 18, 39 13, 58	3,01 5,72 9,02 12,84 17,12 24,84 26,96 32,46 38,32	1,74 2,39 3,08 3,58 4,14 4,67 5,79 5,70 6,19	Q 295 Q 293 Q 293 Q 291 Q 290 Q 280 Q 281 Q 287 Q 286	10, 50 11, 91 13, 62 13, 95 14, 76 15, 48 16, 13 16, 72 17, 27	2,20 4,25 6,78 5,73 13,07 16,77 20,80 25,16 25,81	1,48 2,06 2,60 3,12 3,61 4,89 4,55 5,02 5,46	9, 328 0, 326 0, 325 0, 323 0, 322 0, 320 0, 319 0, 318 6, 317	7.99 5,10 10,05 10,85 11,56 12,19 12,75 13,28 13,77	1,25 2,48 4,04, 5,89 8,01 10,39 13,02 15,88 18,96	112 1,58 2,01 2,43 2,83 3,22 3,51 3,98 4,35	8,359 0,357 8,353 8,353 9,352 8,350 0,349 0,345	6,13 7,15 7,97 8,68 4,38 9,85 10,36 10,83 11,26	8,78 1,53 2,54 3,76 5,18 6,79 8,58 10,55 12,63	8,87 1,24 1,59 1,94 2,28 2,81 2,93 3,25 3,58	Q 388 9 388 9 383 9 381 9 380 9 378 9 376 9 375 9 374	4,88 5.74 6,47 7,19 7,64 8,13 8,55 1,81 9,40	0,48 0 99 1 67 2 51 3,50 4,63 5,90 7,30 8,83	0, 69 0 99 1, 29 1, 58 1, 87 2, 15 2, 43 2, 70 2, 57	000 000 000 000 000
111 112 113 114 115 116 117 118 119 1,20	0,251 0,250 0,250 0,249 0,248 0,248 0,247 0,246 0,246	23,53 24,04 24,52 24,97 25,40 25,81 26,20 26,57 26,93	58, 16 56, 46 75, 12 84, 15 93, 52 103, 2 113, 2 123, 5 134, 2 145, 1	763 815 867 867 10,16 10,64 11,11 11,58 12,84	0.268 0.267 0.266 0.265 0.265 0.264 0.264 0.263 0.262	20,12 20,62 21,10 21,55 21,98 22,38 22,17 23,14 23,49 23,83	44.51 51.04 51.88 65.02 72,44 80,15 88,13 96.37 104,9 113,6	6.67 7.14 7.61 8.06 8.51 8.95 8.39 8.82 10.66	\$,285 9,284 9,283 0,282 0,282 0,281 0,280 0,279 0,279	17, 78 18, 25 18, 70 19, 13 19, 53 19, 92 20, 28 20, 63 28, 97 21, 25	34,76 39,99 45,48 51,22 51,22 63,46 69,93 76,63 83,65 90,68	5,98 5,32 5,74 1,16 7,56 7,97 8,35 8,75 9,14 9,52	Q315 Q315 Q314 Q313 Q312 Q312 Q311 Q310 Q309 Q308	14, 22 14,65 15,05 15,43 15,88 16,14 16,47 16,79 17,10 17,39	22,25 25,75 23,45 33,34 31,42 44,69 46,15 50,75 50,49	472 5,07 5,43 5,12 6,12 6,19 7,45 7,45	0,345 4,344 0,343 4,342 0,341 0,340 0,338 0,337 0,338	11, 67 12, 05 12, 42 12, 76 13, 09 13, 41 13, 71 13, 80 14, 28	14,98 17,44 28,05 22,81 25,71 28,76 31,95 34,27 38,73 42,32	3, 18 4, 48 4, 78 5, 35 5, 65 5, 65 6, 25 6, 25	8, 372 6, 371 8, 379 9, 369 9, 367 8, 365 8, 365 8, 364 8, 363	9,77 10 12 10,45 10,76 11,06 11,35 11,63 11,89 12,15 12,40	10 49 17, 28 14, 19 16, 21 18, 36 26, 61 22, 98 25, 45 28, 04 30, 73	3 24 3.50 3.77 4 83 4.34 4.79 5.84 5.38	
1,21 1,22 1,23 1,24 1,25 1,25 1,28 1,29 1,28	Q 245 D 245 D 244 Q 244 Q 245 Q 245 Q 245 Q 245 Q 247 D 241	27 28 27,61 27,93 28,24 28,53 29,11 29,39 29,65 24,91	156,2 167,6 179,4 19,4 203,6 216,1 228,9 241,8 253,0 268,4	12,50 12,95 13,39 13,83 14,27 14,70 15,13 15,55 15,97 16,38	4 262 0,251 0,251 0,250 0,250 0,250 0,259 0,258 0,258 0,257	24, 16 24, 48 24, 18 25, 36 25, 36 25, 54 25, 91 26, 17 26, 42 28, 67	122,8 131,8 141,3 150,8 170,9 181,2 194,7 202,5 213,4	11,07 11,48 11,88 12,28 12,68 13,07 13,46 13,85 14,23 14,51	Q 278 Q 277 Q 277 Q 276 D, 275 Q 275 Q 274 Q 273 Q 273	21,60 21,90 22,20 22,48 22,15 23,01 23,27 23,52 23,16 24,80	98,01 105,6 113,3 121,3 129,4 137,7 146,2 154,9 163,7 172,8	9,98 10,27 10,64 11,01 11,37 11,73 12,89 12,44 12,88 13,14	0,308 0,307 0,306 0,306 8,305 0,304 0,304 0,303 0,302 0,302	17, 67 17, 95 18, 21 18, 47 18, 72 18, 96 19, 20 19, 42 19, 65 19, 86	65.50 70,87 76,29 81,87 87,59 93,47 99,48 1011,9	8,10 8,42 8,73 9,35 9,67 9,97 10,28 10,58	8, 336 0, 335 0, 334 8, 333 0, 332 0, 331 0, 330 0, 330 0, 329	14, 81 15,06 15,30 15,54 15,77 15,99 16,21 16,42 16,62 16,62	46.04 49.88 53.85 57.94 62.15 66,48 70.92 75,48 60,14 84,93	5.78 5.705 7.75 7.61 7.88 8.15 8.45 8.95 9.21	0.362 0.361 0.360 0.359 0.358 0.357 0.357 0.356 0.353	12,64 12,64 12,67 13,09 13,31 13,52 13,73 14,13 14,32 14,51	33, 53 36, 42 39, 43 45, 73 49, 02 49, 02 52, 40 55, 89 59, 41	5.79 8.03 8.28 8.52 8.76 7.24 7.24 7.71	
131 132 133 134 135 136 137 138 139 148	0,241 0,241 0,240 0,240 0,239 0,239 0,238 0,238	30,16 30,41 30,65 30,88 31,11 31,53 31,53 31,76 31,97 32,17	282.0 295.9 309.9 324.2 338.7 355.4 368.2 383.3 398.6 414.8	16, 79 17, 20 17, 60 18, 81 18, 40 18, 80 19, 19 19, 58 19, 96 20, 35	0,257 0,257 0,256 0,255 0,255 0,255 0,255 0,255 0,254 0,254 0,254	25,51 27,14 21,37 27,79 27,91 28,12 28,23 28,44 28,64 28,83	22 \ 5 23 5.8 247.2 268.8 272.7 284.8 294.9 307.3 319.8 332.5	14, 98, 15,35 15,72 16,15 16,51 16,81 17,17 17,53 17,58 18,23	9 272 9 271 9 271 9 271 9 270 9 270 9 270 9 259 9 258	24.23 24.45 24.67 24.88 25.09 25.50 25.50 25.50 25.88 25.88	182,0 191,5 200,8 210,5 220,4 250,4 240,5 250,8 261,2 271,8	13,49 13,83 14,17 14,51 14,84 15,18 15,51 15,84 16,18 18,49	0,301 0,300 0,300 0,300 0,299 0,298 0,298 0,297 0,297 0,297	20 08 20 28 20 48 20 68 20 87 21 06 21 25 21, 45 21, 50 21, 18	124,9 131,5 138,5 145,4 152,5 159,7 167,0 174,4 182,7	11, 18 11, 47 11, 17 12,06 12,35 12,64 12,92 13,21 13,49 15,77	Q 528 B 528 Q 328 B 328 B 328 B 326 Q 525 B 324 B 524 D 523 D 523	17, 02 17, 21 17, 38 17, 58 17, 76 17, 94 18, 18 18, 28 18, 44 18, 60	89,81 94,81 99,68 105,10 11 G.4 115,8 121,3 126,9 132,6	9, 48 9, 74 9, 98 10, 25 18, 51 18, 78 11, 11, 27 11, 27 11, 77	8,334 0,353 0,353 0,351 0,351 0,358 0,348 0,348 0,348	14, 69 14, 87 15, 04 15, 21 15, 38 15, 54 15, 70 15, 86 16, 02 16, 17	66.88 70.73 74.67 78.69 82.79 86.99 91.25 95.61 100.0	8,18 8,41 8,64 8,87 8,33 9,33 9,55 9,10 10,23	

HHB.Nº HOGA. BORNED H BAMA BSAM, HHB.Nº

THE COCKUM

HAN OTA DOOKHH

KONTE HOBIKOB

TAGREN, HOBIKOB

TAGREN, HOBIKOB

CKOPOCTHOFO MIDMITERS

COHO 3 NO P I POCKT

COTABNA KAPACEBA

CHAPACEBA

CHAPACEBA

CONTRON CABNA

COCTABNA KAPACEBA

CONTRON CARAMA

COCTABNA KAPACEBA

CONTRON CARAMA

COCTABNA KAPACEBA

CONTRON CARAMA

COCTABNA KAPACEBA

CONTRON CARAMA

CONTRON CARAMA

COCTABNA KAPACEBA

CONTRON CARAMA

COCTABNA KAPACEBA

CONTRON CARAMA

COCTABNA KAPACEBA

CONTRON CARAMA

CONTRON C

CCAN				X	03 Q 0	рици	EHM		MS	POXO	8 A M O	CTH	ŗ	1	***************************************										ССКИЙ
Furdanhucckhii Paanuc R		0,025				0, 027	5			9,030)			0,035	******			0, 0 40				0, 845			15
PARM	Ä	3	C2 R	€√Ř	y	ε	C ² R	CVR	3	С	C2R	C√R	y	С	C2 K	CVR	y	С	C2 R	CVR	y	ច	C2 R	CVR	FUAPABAI PARUBC
0,41 0,42 0,43 0,44 0,45 0,46 0,46 0,48 0,50	Q.237 Q.237 Q.236 Q.236 Q.236 Q.235 Q.235 Q.235 Q.235	32,37 32,57 32,76 32,94 53,13 33,31 53,49 33,66 33,83 34,88	429 6 443,4 461,4 471,6 493,9 510,4 521,0 543,8 560,9 578,0	23, 32 23,68	G, 253 G, 255 G, 252 D, 252 D, 251 D, 251 D, 251 O, 250 O, 250 O, 250	29.01 29.21 29.39 29.51 29.75 29.92 30.09 30.25 30.42 30.58	345,3 358,3 371,5 384,8 398,2 411,8 425,6 439,5 453,5 467,7	18.58 18.93 19.27 19.62 19.96 20.29 20.63 20.95 21.30 21.63	9, 268 Q, 267 Q, 267 Q, 265 Q, 265 B, 265 Q, 265 Q, 265 Q, 265 Q, 265 Q, 265 Q, 265 Q, 265 Q, 265	26, 25 26, 43 26, 61 26, 78 26, 95 21, 12 27, 28 27, 44 27, 60 21, 76	282,6 293,4 304,4 315,6 326,9 338,3 349,8 361,5 373,3 385,2	16,81 17,15 17,45 17,76 18,08 18,39 18,70 19,01 14,32 19,65	0, 295 0, 295 0, 294 0, 294 0, 295 0, 295 0, 295 0, 295 0, 291	21,95 22,11 22,28 22,44 22,60 22,75 22,98 23,05 23,05 23,34	197.5 305.4 213.4 221.5 229.7 238.1 246.5 255.1 263.7 272.5	14, 85 14, 33 14, 51 14, 88 15, 16 15, 43 15, 15 15, 97 16, 24 16, 51	0,322 0,321 0,321 0,320 0,320 0,319 0,319 0,318 0,317 0,317	18, 76 18, 92 19, 07 19, 22 19, 37 19, 51 19, 60 19, 80 15, 93 20, 07	144.3 158,3 156,4 162,5 168,8 175,2 181,6 188,1 194,7	12,01 12,25 12,58 12,75 12,75 13,25 13,47 13,71 13,95 14,19	0,346 0,346 0,345 0,344 0,345 0,345 0,345 0,341 0,341 0,341	16,32 16,46 16,61 16,75 16,89 17,02 11,16 17,29 17,42	109, Z 113, 8 118, 6 123, 4 128, 3 133, 3 138, 4 143, 5 148, 7 153, 9	10, 45 10, 67 10, 89 11, 11 11, 33 11, 54 11, 76 11, 98 12, 41 12, 41	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0,52 0,54 8,56 0,58 0,60 0,62 0,64 0,66 8,68 0,18	0,234 0,233 0,233 0,232 0,231 0,231 0,230 0,230 6,229	34, 53 54, 64 54, 95 35, 25 35, 25 35, 82 36, 09 36, 36 36, 61 36, 87	617.7 648.1 684.1 720. T 757,8 795.4 833.6 872.4 911.5 951.4	29, 54	8,248 8,248 8,246 8,246 8,244 8,444	30, 90 31, 20 31, 50 31, 79 32, 25 32, 35 32, 60 32, 85 33, 34	496,5 \$25,8 \$55,7 \$86,0 616,9 648,2 680,0 712,9 745,0 178,2	72, 18 22, 95 23, 57 24, 24 24, 84 25, 46 26, 69 27, 29 27, 90	0.263 0.263 0.262 0.261 0.260 0.250 0.259 0.258 0.258	28, 06 28, 35 28, 64 28, 91 29, 18 29, 44 29, 69 29, 94 30, 18	409 4 434 1 459,2 484,8 510 9 554,3 591,6 619,3 647,5	20, 23 20, 83 21, 43 22, 02 22, 50 23, 18 23, 15 24, 32 24, 89 25, 44	0, 291 0, 290 0, 289 0, 285 0, 285 0, 285 0, 285 0, 284 0, 283	23, 63 23, 98 24, 17 24, 42 24, 67 24, 92 25, 15 25, 38 25, 61 25, 83	290.3 308.5 327.0 346.8 365.3 384.9 404.9 425.3 446.0 467.0	17.04 11.56 18.08 18.60 19.11 19.52 20.52 21.12 21.61	0,316 0,315 0,314 0,313 0,312 0,310 0,309 0,308 0,307	20, 33 20, 59 20, 84 21, 08 21, 32 21, 55 21, 17 21, 99 22, 20 22, 41	215.8 229.0 243.2 257.8 272.7 287.8 303.3 319.1 335.1	14,66 15,13 15,59 16,06 16,51 16,97 17,42 17,86 18,30 18,74	0, 348 6, 358 0, 357 0, 356 6, 335 0, 354 0, 353 0, 354 0, 353 0, 351 0, 358	17, 88 18,04 18, 28 18, 58 18, 72 18, 94 19,15 19, 36 19, 56 19,76	164.7 175 T 181.8 199.6 216.4 222.5 234.8 241.4 260.2 273.2	12,83 13,25 13,68 14,05 14,50 14,91 15,32 15,73 16,13 16,53	0,52 0,54 0,56 0,58 0,60 0,64 0,64 0,58 0,70
0,72 8,74 0,76 0,78 0,80 0,82 0,84 8,85 0,88	Q 228 Q 227 Q 227 Q 227 Q 226 Q 226 Q 225 Q 225 Q 225 Q 225 Q 224	37.11 37,35 37,58 37,81 38,03 38,25 38,45 38,67 38,87 38,07	991, 6 1032 1073 1115 1157 1199 1242 1286 1323 1374	31, 49 32, 13 32, 16 33, 39 34, 62 34, 63 35, 25 35, 86 36, 46 37, 06	Q 243 0, 242 0, 241 0, 241 0, 240 0, 240 0, 239 0, 238 0, 238	33,58 33,81 34,03 34,25 34,46 34,61 34,68 35,08 35,21 35,46	811, 8 845,8 860, 2 915, 0 950, 2 985,8 1022 1058 1095 1132	28,49 29,08 29,67 30,25 30,83 31,40 31,97 32,53 33,09 33,64	0. 256 0. 256 0. 255 0. 254 0. 254 0. 253 0. 253 0. 253 0. 251 0. 251	38, 64 30, 86 31, 08 31, 29 31, 50 31, 70 31, 90 32, 09 32, 28 32, 46	6760 7048 734.1 7637 7937 824.0 854.6 885.6 916.9	26, 88 26, 55 21, 09 27, 64 28, 17 28, 70 29, 23 29, 16 30, 28 36, 80	0, 282 0, 281 0, 281 0, 279 0, 279 0, 279 0, 277 0, 276 0, 276	26, 04 26, 25 26, 45 26, 85 27, 04 21, 22 21, 40 21, 58 21, 15	488,3 509,9 531,8 554,0 576,5 599,3 622,4 645,8 669,5 693,2	22.10 22.58 23.06 23.54 24.01 24.48 24.95 25.41 25.81 26.33	0,306 0,305 0,305 0,304 0,303 0,302 0,500 0,500 0,500	22.51 22.80 22.99 23.18 23.37 23.55 23.72 23.89 24.06 24.23	368.0 384.8 401.8 419.2 436.8 454.6 472.6 490.9 509.4 528.2	19 18 19.62 20.95 20.47 20.90 21.32 21.74 22.16 22.57 22.98	0, 329 0, 328 0, 327 0, 325 0, 325 0, 324 0, 323 0, 322 0, 322 0, 322 0, 322	19.95 20.13 20.32 20.49 20.67 20.84 21.00 21.17 21.33 21.48	286,5 308,8 313,7 3276 341,7 356,0 370,6 385,4 408,3 415,4	16, 92 17, 32 17, 71 18, 10 18, 48 18, 87 19, 25 19, 53 20, 01 28, 38	0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88
8,92 0,94 0,96 8,58 1,05 1,10 1,15 1,20 1,25 1,28	Q 223 Q 223 Q 223 Q 222 Q 221 Q 221 Q 213 Q 217 Q 217 Q 216	39, 25 39, 54 39, 54 39, 82 40, 43 40, 43 40, 64 41, 24 41, 62 41, 58 42, 53	1418 1463 1508 1508 1554 1600 1716 1835 1956 2078 2203 2329	37, 56 38, 25 38, 84 39, 42 40, 88 41, 43 42, 84 44, 22 45, 59 46, 93 48, 26	0,237 0,257 0,256 0,255 0,255 0,255 0,254 0,233 9,232 0,238 0,229 0,228	35,65 35,84 36,01 36,19 36,36 36,36 37,18 37,18 37,56 37,92 38,27 38,61	1169 1207 1245 1284 1322 1421 1528 1622 1726 1831 1938	34, 20 34, 74 35, 29 35, 83 36, 36 31, 69 36, 99 48, 28 41, 54 42, 79 44, 82	0 250 0 250 0 249 0 249 0 248 0 247 0 245 6 244 0 243 0 242 2 440	32,64 32,82 33,69 33,17 33,33 33,74 34,12 34,49 31,84 35,18 35,50	980.5 1013 1045 1078 1111 1195 1281 1368 1457 1547 1639	31, 31 32, 82 32, 83 32, 83 33, 33 34, 51 35, 79 36, 99 38, 17 39, 33 48, 48	0,215 0,274 0,274 0,273 0,272 0,271 0,269 0,268 0,265 0,265	27.92 28.03 28.25 28.42 28.57 28.95 29.31 29.66 29.98 30.31 30.61	717.4 741.7 765.4 791.2 816.3 8801 945.3 1012 1079 1148 1218	26. 78 21, 23 21.68 23.13 28.13 29.67 39.74 31.81 32.85 33.89 34.91	0, 298 0, 297 0, 296 0, 296 0, 295 0, 293 0, 291 0, 290 6, 288 0, 284	24, 39 24, 54 24, 10 24, 85 25, 00 25, 36 25, 70 26, 35 26, 35 26, 35 26, 94	547, 1 566, 3 585, 6 605, 2 625, D 675, 3 726, 8 779, 3 833, 0 887, 6 943, 3	23, 39 23, 80 24, 20 24, 60 25, 90 25, 95 26, 96 27, 92 28, 86 29, 19 30, 71	0, 520 0, 519 0, 518 0, 517 0, 516 0, 514 0, 512 0, 508 0, 508 0, 508	21 64 21 79 21 94 22 08 22 22 22 57 22 89 23 21 23 51 23 79 24 07	430.7 446.3 461.9 471.8 493.8 534.7 576.5 619.3 663.1 707.6 753.1	20,75 21, 12 21, 49 21, 86 22,22 23, 12 24,01 24,59 25,75 26,60 27,44	Q92 094 0,96 0,98 1,00 1,05 1,10 1,15 1,25 1,25 1,30

HHS M NOAL NOANHED IN ALTA BEAM MHRIN

THE THE COCKUM

HAY OTH OCOKUM

H KONTP HOBUKOB

TACHEU, HOBUKOB

PYKEPHT CABUY

GROPOCTHOF MUSMUTEAS

GROPOCTHOF MUSMUTEAS

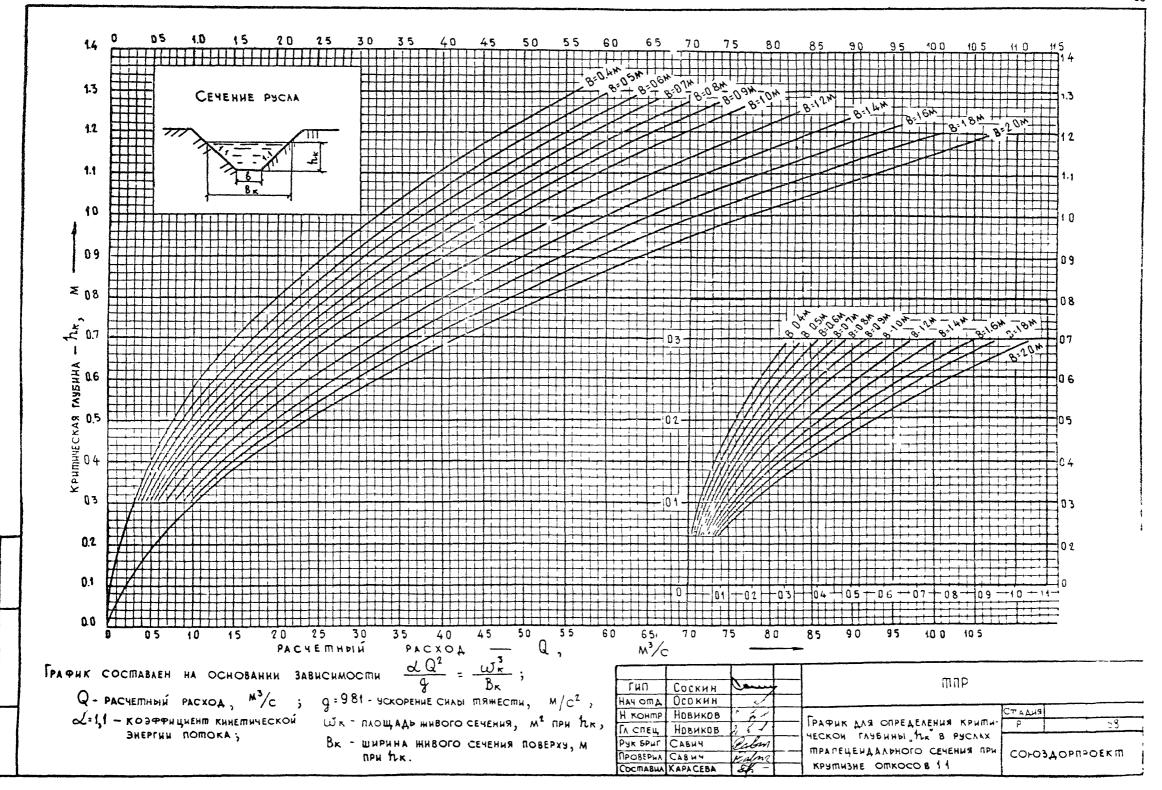
COMOLOGOPOCK

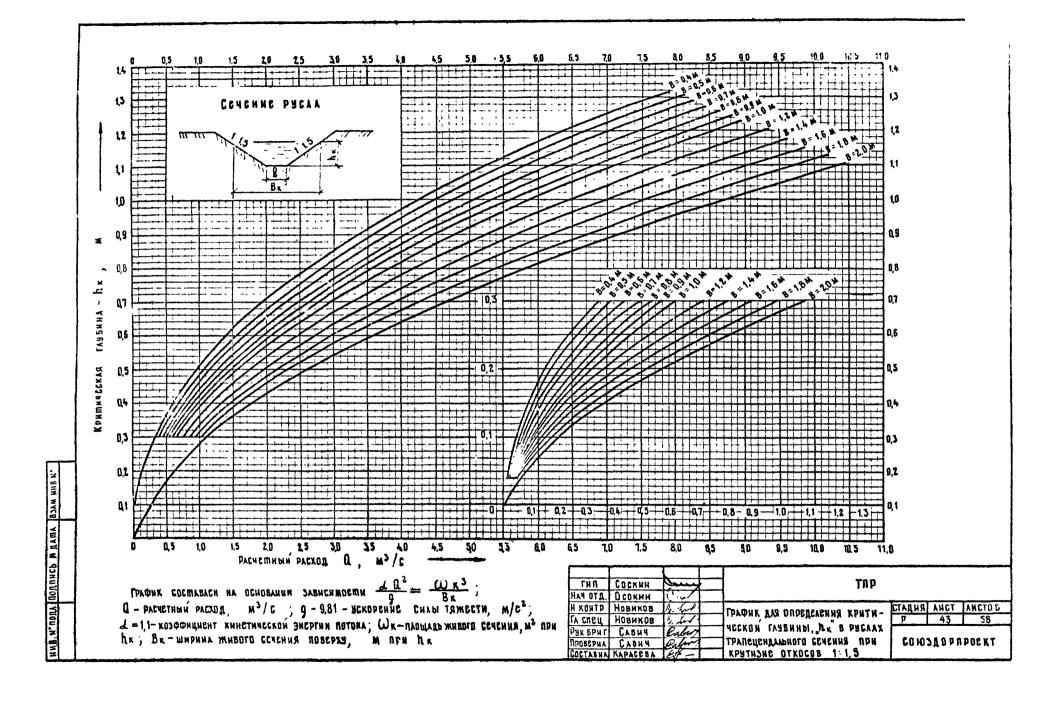
BOGGERAL CABUY

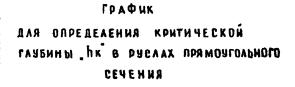
COCTABBA KAPACEBA

COMOLOGOPOCK

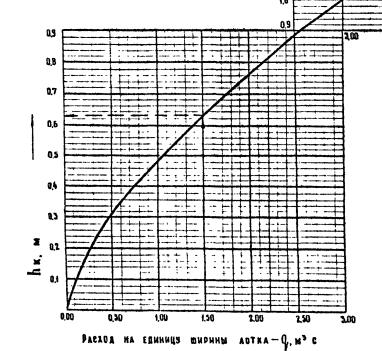
BCANYUM, C²R M CVR


COMOLOGOPOCK


CO

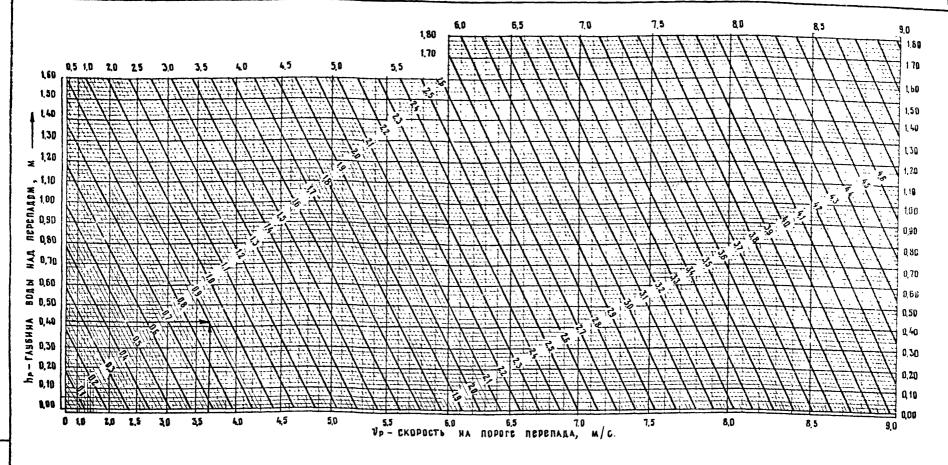

i	45	i	٧ï	i	17	i	٧ī	i	٧ī
0, 002	0,0447	0,022	0, 1483	0, 042	0, 2049	0, 062	0, 2490	0,082	0, 2864
0,003	0,0548	0,023	0, 1517	0,043	0,2074	0,063	0, 2510	0,083	0, 2881
0,004	0,0632	0,024	0, 1549	0,044	0,2098	0,064	0,2530	0,084	g, 2898
0,005	0,0707	0,025	0, 1581	0,045	0,2121	0,065	0, 2550	0,085	0, 2915
0,006	0,0775	0,026	0,1612	0,046	0, 2145	0,066	0, 2569	0,086	O, 2933
0,007	0,0837	0,027	0, 1643	0.047	0,2168	0,067	0, 2588	0,087	0, 2950
0,008	0,0894	0,028	0, 1673	0,048	0,2191	0,068	0, 2608	0,088	0, 2966
0,009	0,0949	0,029	0, 1703	0,049	0, 2214	0,069	0, 2627	0,089	0, 2983
0,010	0,1000	0,030	0, 1732	0,050	0, 2236	0,070	0, 2646	0,090	0, 3000
0,011	0, 1049	0,031	0,1761	0,051	0, 2258	0,071	0, 2665	0,091	0, 3017
0,012	0, 1095	0,032	0, 1789	0,052	0, 2280	0,072	0, 2683	0,092	0, 3033
0,013	0,1149	0,033	0, 1817	0,053	0, 2302	0,073	0, 2702	0,093	0, 3050
0,014	0,1183	0,034	0,1844	0,054	0, 2324	0,074	0, 2720	0,094	0, 3066
0,015	0,1225	0,035	0, 1871	0,055	0, 2345	0,075	0,2739	0,095	0, 3082
0,016	0,1255	0,036	0,1897	0,056	0, 2366	0,076	0, 2757	0,096	0, 3098
0,017	0, 1304	0,037	0, 1923	0,057	0, 2387	0,077	0, 2775	0,097	0, 3114
0,018	0, 1342	0,038	0, 1949	0,058	0, 2408	0,078	0, 2793	0,098	0, 3130
0,019	0, 1378	0,039	0, 1975	0,059	0,2429	0,079	0, 2811	0,099	0, 3146
0,020	0, 1414	0,040	0, 2000	0,060	0, 2449	0,080	0, 2828	0,100	0, 3162
0,021	0, 1449	0,841	0, 2025	0,061	0, 2470	0,081	0, 2846	,	·

THT LTO.PAH	Соскин Осокин	C 66	_		TNP			
	Новиков Новиков	4. Lord		уначений	<u>سّ</u>	RHARATO	41 41	AHCTOB 58
Рук.Бриг Проверид	CABHY	Balon Balon St-	ТАВАНЦА	JAATHUM	,,,,,	союз	дорп	POEKT


HAB. W. HORL HOLINCE W AABA BSAM WHR N'

$$h_K = \sqrt[3]{\frac{d_1 Q^2}{Q}} = 0.482\sqrt[3]{Q^2}$$

 $q = \frac{0}{8}$ — Packor ha erhhulu mhdhhu aotka, m^3/ϵ ;


hк — контическая гаченна, м;

d=1.1 - коэффициент кинетической энергии потока;

q = 9.81 - 9ekopenue cham tameeth, m/c 2 .

TUR HAY OTC	Соскин Осокин			TNP			
H KOHTP	Новиков	1. 4,5	_		RUBATS	ANCT	AHLYDS
TA CREU	HOSHKOB	E. Lul		диналадачно кли хифач	P	44	58
Рчк бриг	CABHY	Pales		критической глувины hk в			
RPOBEDHA	CABHY	Radu		OTOHAKO TEOMRAD KAASEA	Сою	3000	NPOEKT
COCTABHA	KAPACEBA	RH-		CEMEHUA			

Данный график является вспомогательным для определения глубины воды в сжатом сечении "h. после перепада в руслах прямочгольного сечения. Составлен график во формуле: $Z-P=\frac{V_P^2}{2g}+\frac{h_P}{2}$;

Z-BENDADFATEABHAR BEAUHHHA;

Р - ВЫСОТА ПЕРЕПАДА, М;

Vp — скоросто на пороте перепада, м/с; h, — газына воды над перепадом, м; g — эскорение снаы тяжести, м/с²

ПО ГРАФИКЕ В ЗАВИСИМОСТИ ОТ h, и V, находится величина Z-P (как показано стреаками); затем по заданноме P вычисаяется Z ; по графику на листе 46 впредсяяется h.

ГИП СВЕКИН СЕЛ	ТПР			
FA CHEL HOBUKOB A. THE	ГРАФИК ДЛЯ ОПРЕДЕЛЕНИЯ	RHAATO	AUGT 45	AUCTOB 58
PHE BOHF CABUY ROBEPHA CABUY COCTABUA KAPACEBA PHE BOHF CABUA COCTABUA KAPACEBA	ВСПОМОГАТСАЬНОЙ ВВАИЧИНЫ "Z-P" дая русеа прямовгоаь- ного сечения.	CO103	AOPN	POEKT

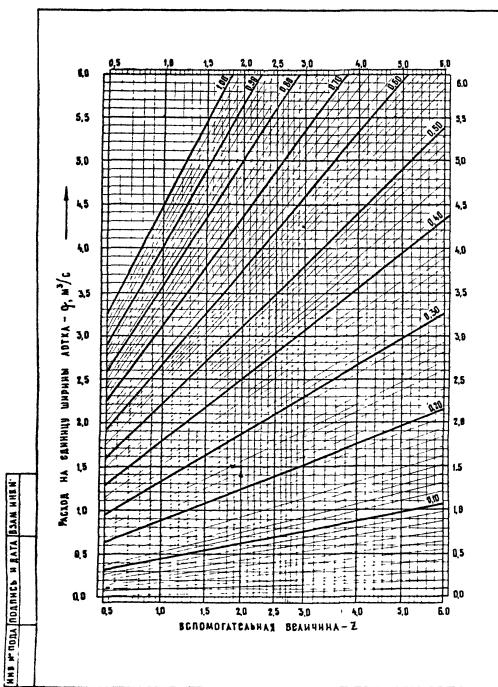


ГРАФИК ДЛЯ ОПРЕДСЛЕНИЯ ГЛИВИНЫ ВОДЫ В СЖАТОМ СЕЧЕНИИ ПОСЛЕ ПЕРЕПАДА " h_{ξ}^{-} составлен по формиле:

$$h_{\epsilon} \frac{Q}{8\sqrt{2g}Z} = \frac{q}{\sqrt{2g}Z} ;$$

 $Q = PACYETHЫЙ PACXOD, <math>M^3/c$;

В-ширина автка, м,

Z-BCDOMOFATCABHAR BEANNIHA; g=8.81 — SEXOPENDE CHABI MARCETH, M/ ϵ^2 ; $q=\frac{Q}{B}$ — PACXOR HA BRUHHUY WHPHHB ABTKA, M³/ ϵ

ПО ГРАФИКУ В ЗАВИСИМОСТИ ОТ 9 И Z НАХОДИТСЯ ВСЛИЧИНА _he как показано стреаками

ПН1 ДТО РАН	СОСКИН ОСОКИН		•	TNP			
HKOHTP	НОВИ КОВ Нови ков	1 1		трафик для определения глубины		46	44CTDB 58
Рук бриг Првверна Составна		Cabo		АДАПЭЧЭП ЭАЗОП НИНЭРЭЭ МОТАЖЭ В ОТОНФАЙТИОМЯЧП ХААЗЕЧ В "h. RK КЭРЭЭ	l	здорп	POEKT

hx he	9,02	0,04	0,06	0,08	0,10	0,12	0,14	0, 16	0, 18	0,20	0,22	0,24	0,26	0,28	0,30	0,32	0.34	0,36	0,38	0,40	0,42	0,44	Q.46	0,48	0,50	0,52	0,54	0,56	0,58	0,60
0,10 2 4 6 8	0,31 0,41	0,20 0,27 0,35 0,43	0,15 0,21 0,27 0,34	0,12 0,17 0,22 0,28	0,10 0,14	0,12 0,16 0,21	0,14 0,18	0,16						1	ABN	ица		ВЗАИ		olX Pyl	CDAX	HR9.	енні		רח	ниде		4		
0,20 2 4 6 8	1,02 1,17 1,32	0,81 9,92	0,57 1,65	0,55 0,63	0,41 1,48	0,31 0,37 0,42 0,49 0,55	0,33 0,38 0,44	0,29 0,34 0,40	0,26 0,31 0,36	0,20 0,24 0,28 0,33 0,38	0,26 0,30	0,28	D,26	ñ 78	•			h _c *	$=\frac{h_0}{2}$		+ <u>8</u>		-1) 							
0, 30 2 4 6 8	1,63	1,14 1,28 1,38 1,51	0,92	0,78 0,87 0,95 1,04	0,69 0,76 0,84 0,92	0,81 0,68 0,75 0,82 0,90	0,55 0,62 0,68 0,75	0,51 0,57 0,63 0,69	0,47 0,52 0,58 0,64	0,43 0,48 0,54 0,59 0,65	0,40 0,45 0,50 0,55	0,37 0,42 0,47 0,51	8,34 0,39 9,44	0,32 0,36 0,41 0,45	0,42	9,36	0,38		0,38											
0,40 2 4 6 8		1,77	1,54 1,56 1,77	1,52	1,17	1,05 1,13 1,21	0,96	0,95 1,03	0,82 0,89 0,95	0,71 0,77 0,83 0,89 0,95	0,72 0,78 0,84	0,68 0,73 0,79	0,64 0,69 0,75	0,55 0,60 0,65 0,71 0,76	0,57 0,62 0,67	0,54 0,59 0,64	0,51 0,56 0,61	0,49 0,53 0,58	0,46 0,51 0,55	0,52	0,46		0,46 0,50	D,48						
0,50 2 4 6 8			2,01 2,13 2,26	1,73 1,84 1,95 2,06 2,17	1,63 1,73 1,82	1,65	1,27 1,35 1,43 1,52 1,60	1,25	1,31	1,02 1,09 1,16 1,23 1,38	1,09 1,16	0,97 1,03 1,10	0,98 1,94	0,81 0,87 0,93 0,99 1,05	0,88 0,94	0,79 0,84 0,90	0,75 0,81 0,86	0,77	0,69 0,74 0,79	0,71	0,63 0,68 0,73	0,61 0,65 0,70	0,67	0,52 0,56 0,60 0,65 0,69	1,54 0,58 0,52	0,56 0,60	0,54 9,58 9,62		D,58	
0,60 2 4 6 8				2,40 2,52	2,24 2,35	1,94 2,04	1,78 1,87 1,96	1,65 1,73 1,82	1,62	1,37 1,45 1,52 1,60 1,68	1,30 1,37 1,44 1,51 1,59	1,35	1,23 1,30 1,35	1,11 1,17 1,24 1,38 1,37	1,06 1,12 1,18 1,24 4,30	1,87 1,13 1,19	1,03 1,08 1,14	1,94	0,95 1,00 1,05	0,96 1,01	9,88 9,92 9,98	9,85 8,89 0,94	0,82 0,85 0,91	9,79 9,83 9,88	0,76 0,80 0,85	0,77	9,79 9,75 8,80	0,68 0,73	0,62 0,66 0,70 0,75 0,79	0,64 0,68 0,72

Примечания

1. Верхняя правая часть таблицы не заполнена, так как в руслах с прямочгольным ссчением h_c не монет быть более h_k . 2. Таблица составлена из расчета, что $V_c < 20\,\text{m/c}$ 3. Продолжение таблицы дано на листе 18.

инв. И-подл. подпись и дама взаминв. И

RN7	Соскин Осокин	10 52		TNP			
H. KOHMP.	Новиков	4. 4	•	-капро) хібнинаєв арипарТ	RNDAMO	лист	листов
гл. спец.	HOBUKOB	2. del		женных) главин he" после	Р	47	58
рук.Бриг.	Cabhy	Polor		Перепадов в РУСЛАХ С			
проверил		Palmy		прямочгольным сечением.	Союз	дорпр	DEKT
СОСПАВИЛ	KAPACEBA	26-				-	

B3AM WHB A	
RBARWEL M AATA	

83A	
RATA	
N CHIEF	
- Mary	
ž	

he	0,02	0.04	0.06	0.08	01.0	0.12	0,14	31,0	81.0	0.20	0.22	0.24	0,26	0.28	0.30	0,32	0,34	0.36	0,38	0,40	0.42	0,44	0.46	0.48	0,50	0.52	0.54	0,56	0.58	0.60
0,70 2 4 6 8							2.24 2.34 2.44	2.08 2.17 2.26	1.86 1.95 2.03 2.12 2.21	1.76 1.84 1.92 2.00 2.08	1,66 1,74 1,81 1,89 1,97	1,58 1,65 1,72 1,80 1,87	1,50 1,57 1,64 1,71 1,78	1,43 1,50 1,57 1,64 1,71	1,37 1,43 1,50 1,57 1,64	1,31 1,37 1,44 1,50 1,57	1,26 1,32 1,38 1,44 1,51	1,27 1,33 1,39	1.17 1.22 1.28 1.34 1.40	1,13 1,18 1,24 1,29 1,35	1.09 1,14 1,20 1.25 1.31	1.05 1.10 1.16 1.21 1.27	1.01 1.07 1.12 1.17 1.23	89.0 20.1 80.1 21.1 1.13	0.95 1.00 1.05 1.10 1.15	0.92 0.97 1.02 1.06 1.11		0.86 0.91 0.96 1.00	0.84 0.88 0.93 0.97 1.02	0,81
0, 80 2 4 5							2.74 2.84	2,64	2,48	2.17 2.25 2.34 2.42 2.51	2.05 2.43 2.22 2.30 2.38	1,95 2,03 2,11 2,19 2,27	2.01 2.09	1,78 1,85 1,92 2,00 2,07	1,71 1,77 1,84 1,92 1,99	1,64 1,70 1,77 1,84 1,91	1,57 1,64 1,70 1,77 1,84	1.51 1.58 1.64 1.71 1.77	1,46 1,52 1,59 1,65 1,71	1.41 1.47 1.53 1.59 1,56	1.48 1.54	1.32 1.38 1.44 1.49 1.55	1.28 1.34 1.39 1.45 1.50	1,24 1,30 1,35 1,40 1,46	1.20 1.26 1.31 1.36 1.42	1.16 1.22 1.27 1.32 1.38	1.13 1.18 1.23	1.10 1.15 1.20 1.25 1.30	1.07 1.12 1.17 1.22 1.27	1.04 1.09 1.14 1.19 1.24
0. 90 2 4 6 8							3.16 3.27 3.38 3.49		2.76 2.85 2.95 3.05 3.14	2.60 2.69 2.78 2.88 2.97	2,47 2,55 2,64 2,73 2,82	2,35 2,43 2,52 2,60 2,69	2,24 2,32 2,40 2,48 2,56	2,22 2,30 2,38	2.06 2.13 2.21 2.28 2.36	1.98 2.05 2.13 2.20 2.27	1.91 1.98 2.05 2.12 2.19	1.84 1.91 1.98 2.05 2.11	1.78 1.84 1.91 1.98 2.04	1,72 1.78 1.85 1.91 1.98	1,67 1,73 1,79 1,85 1,92	1,61 1,67 1,73 1,79 1,86	1.56 1.62 1.68 1.74 1.80	1,52 1,57 1,53 1,69 1,75	1,47 1,53 1,59 1,64 1,70	1,43 1,49 1,54 1,60 1,66	1,39 1,45 1,51 1,56 1,57	1.36 1.41 1.46 1.52 1.57	1,32 1,37 1,43 1,48	1,29 1,34 1,39 1,44 1,50
1,00 5 10 15 20								3.46 3.72	3.50 3.76	3,06 3,30 3,55 3,80 4,06	2.91 3,14 3,37 3,61 3,85	2,77 1,99 3,21 3,44 3,68	2.65 2.86 3.07 3.29 3.52	2,54 2,74 2,95 3,65 3,38	2,44 2,63 2,83 3,84 3,25	2.35 2.53 2.73 2.93 3.43	2,25 2,44 2,63 2,83 3,02	2.18 2.36 2.54 2.73 2.92	2.fi 2.28 2.46 2.64 2.83	2.04 2.21 2.39 2.56 2.75	1,98 2,15 2,32 2,49 2,57	1.92 2.08 2.25 2.42 2.59	1.87 2.02 2.19 2.35 2.52	1,81 1,97 2,13 2,29 2,45	1.76 1.92 2.07 2.73 2.39	1,72 1,87 2,02 2,17 2,33	1.67 1,82 1,97 2,12 2,27	1.63 1.77 1.92 2.07 2.22	1 59 1.73 1.87 2.02 2.17	1,55 1,69 1,83 1,97 2,12
1.25 36 35 49 45 1.50											4,10	3.92 4,18 4,41	3.75 3.98 4.22 4.47 4.72	3.60 3.82 4.05 4.29 4.53 4.77	3.46 3.68 3.90 4.13 4.36 4.59	3.55 3.76		3.12 3.32 3.52 3.73 3.94 4.15	3.02 3.21 3.41 3.62 3.82 4.03	3.51		2.95 3.13 3.32	2.87 3.05 3.23 3.42	2.62 2.80 2.97 3.15 3.33 3.52	1	2,49 2,66 2,83 3,00 3,17 3,35	2.59 2.76 2.93 3.10	, ,	2,80 2,96	2,27 2,42 2,58 2,74 2,98 3,87

RUHAPAMUA.

A. TABANUA COCTABAEHA HO PACUETA, UTO Vo 4 20 M/C.

2. AEBAR HUMHRR VACTO TABANUM HE DARDAHEHA, TAK KAK BRECD Vo > 20 M/C.

run	COCKNH	Daniel -	TNP			
ATO PAH	ОСОКИН	1.20	-			
H KOHTP	Новиков	1. Sant	1	RNEATO	AUCT	AUCTOS
TA CREU	Новиков	i mi	TABANUA SHAYEHNI BSANMHUX (CBRPA	P	48	58
PYK SPUT	CABHY	Palas	XEHHUX) TAYENH he NOCAE MEPENA			
ПРОВЕРИА	CABNY	Pales	AUB B PYCAAX E NORMOYTOALHIM	CO10	14D A E	POEKT
СОСТАВИА	KAPACERA	68-	CEYEHHEM	ļ		

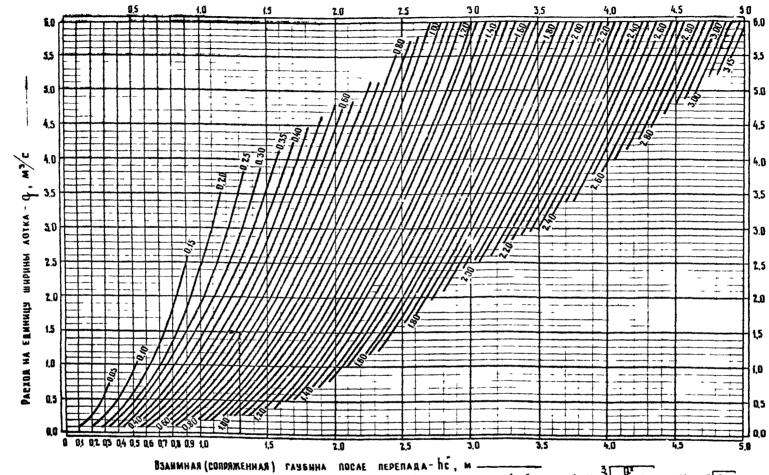


График составаен по формуле полученной в результате преобразований следующих формуле; і. Полный напор над водобойной стенкой — $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$; $\frac{1}{\sqrt{2}}$ $\frac{1$

HAK MOKASAHO CTPEAKAMN B SABUCUMUCTU OT O u h c.

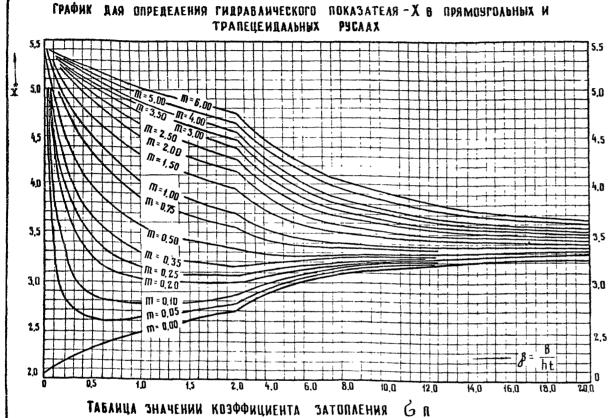
תעז	Соскин Осокин	المنافعة المنافعة		TNP			
		R. Las.		ГРАФИК ДАЯ ОПРЕДЕЛЕНИЯ ВЫСОТЫ	CTAILHA	AUCT	VACLOB
TA CHEU		21.20	<u></u>	ВОДОБОЙНОЙ СТЕНКИ ПОСАЕ ЯЕРЕПАДА	Р	49	58
DAK PAR DAR PAR	CABHY	Defry.		В РУСЛАХ С ПРЯМОЧГОЛЬНЫМ МЭЦНЕНО	еою	310PN	IPOEKT
	KADACERA	Ochus OH —					

Табанцы составаены для воределения $\Psi(\eta)$ входящего в эравнение неравномерного движения при прямом чклоне дна водотока, котврое применяется для построения кривой совбодной возерхности $\frac{i \ell}{h_o} = \eta_z - \eta_z - (1-j) \mathbb{E} \Psi(\eta_z) - \Psi(\eta_z) \ ;$ i - яклон дна водотока, \sim ; ℓ - яклина кривой между двумя сечениями, м;

Бо-гаченна воды при равномерном четановившемся движений, м

проволжение таблицы дано на листе 51 RPHMETANRE:

		k					
run	COCKMH	Dane		TNP			
ETO PAN	ОСОКИН	1:00					
H KOHTP	HOBNKOB	4.20	·	Zuragnus Aurum (Pin)	RNDATT	AHCT	AUCTO
A CREU	HOBUKOB	V. and		Значение функции Р(п) дая пря-	Ρ	50	58
PUK BPHP	CABHY	Baban?		MECO SKADHA AHA BRIOTOKA (L>O)			
ANGBEOGR	CABUY	Carberry		вачен хвинэранс хідникасач ичп	COH):	BOPAP	UEXT
COCTABNA	KAPACEBA	94-		аического пвказателя "Х"	ĺ		


η	X=	X =	X =	Χ÷	Χ÷	Χ÷	Х	χ.=	χ÷	X
	2,00	2,50	3,00	3,25	3,50	3,75	4.00	4,50	5.00	5,50
1,05	1.857	1.234	0,896	0779	0 587	0 612	0.548	0447	0375	0.317
1,06	1.768	1,164	0.838	0726	0.640	0 566	0 506	0411	0 343	0 290
1,07 1,08	1,693	1,105	0.790	0.682	0.600	0.529	0.471	0.381	0.316	0.266
	1,629	1,053	0,749	0.645	0 565	0.497	0.441	0,355	0.292	0.245
1,09	1,573	1.009	0,713	0,512	0.534	0.469	0.415	0,332	0, 271	0.226
1,10	1,522	0 9 5 9	0.680	0.583	0 506	0.444	0392	0,312	0.253	0.210
4,41	1,477	0.938	0.652	0,557	0.482	0.422	0,372	0.293	0.237	0,196
1,12 1,13	1,436	0.901	0.626	0,533	0.461	0.402	0354	0.277	0,223	0,183
1,14	1,398 1,363	0,872 0.846	0,602 0,581	0,512 0,493	0.442 0.424	0,384 0,368	0,337 0,322	0.263 0.250	0.211	0.172
1,15	1,331	0.821	0.561	0,495	0,424	0.353	0.322	0,238	0.200	0,162
1,15	1,301	0.797	0.542	0,458	0.391	0.333	0.308	0.237	0,190	0.153
1.17	1,273	0.775		0,442	0,377	0.325			0.181	0,145
	1.247	0.755	0,526				0.283	0,217	0.173	0 137
1.18		1	0,510	0,427	0.364	0.314	0.272	0.208	0.165	0.130
1, 19 1, 20	1,222 1,199	0.735	0,495	0.413	0,352	0,302	0 252	0.200	0.158	0.124
1. 21	1,177	0,718 0,701	0.480 0.467	0,400 0,388	0.341 0.330	0.292 0.282	0.252 0.243	0.192 0.184	0.151	0.48
1.22	1,156	0,685	0.454	0.377	0,320	0.272	0.235	0.184	0,144 0,138	0,113
1,23	1,136	0.670	0.442	0,366	0.310	0,263	0.227	0,170	0.130	
1.24	1,117	0.656	0.431	0.356	0.301	0.255	0.219	0.164	0.132	0,103
1.25	1,098	0.643	0,420	0,346	0,232	0.247	0.212	0.158	0.121	0.098 0.094
1.26	1.081	0,630	0.410	0,337	0,284	0,240	0.205	0.152	0.116	0.090
1,27	1,065	0.518	0.400	0.328	0.276	0,233	0.199	0.147	0,111	0,086
1.28	1.049	0,606	0.391	0,320	0.258	0.226	0.193	0.142	0.107	0.082
1.29	1,033	0.594	0.382	0.312	0.261	0.220	0.187	0.137	0,103	0,070
1.30	1.018	0.582	0.373	0,304	0.254	0.214	0,181	0.133	0.099	0.076
1.31	1,004	0,571	0.365	0.297	0,247	0.208	0.176	0,129	0.095	0.073
1,32	0.990	0,561	0.357	0.290	0,241	0.202	0,171	0,125	0.092	0.070
1,33	0.977	0,551	0,349	0.283	0,235	0,197	0.166	0,121	0.089	0.067
1.34	0.954	0.542	0.341	0,277	0.229	0.192	0,161	0.117	0.086	0.064
1,35	0,952	0,533	0.334	0.271	0.224	0.187	0,157	0,113	0,083	0,061
1,36	0,940	0,524	0,328	0,265	0.219	0.182	0.153	0.109	0.080	0,058
1.37	0.928	0,516	0.322	0,259	0.214	0.177	0,149	0.106	0.077	0.055
1,38	0,917	0.508	0.316	0.253	0.209	0,173	0.145	0.103	0.074	0.054
1.39	0,905	0.500	0,310	0.248	0,204	0.169	0.141	0.100	0.072	0,052
1.40 1.41	0,896 0,885	0,492 0,484	0.304 0.298	0.243	0,199 0,195	0,165 0,161	0.137 0.134	0,097 0,094	0.070 0.068	0,050 0,048

η	χ =	χ =	χ=	χ=	Χ÷	Χ=	χ =	X -	Х	X (=
	2.00	2,50	3,00	3.25	3.50	3.75	4.00	4,50	5.00	5 50
1,42	0,876	0477	0 293	0.233	0.191	0.157	0.131	0 091	0,066	0 046
1,43	0866	0,470	0 288	0,229	0.187	0,153	0.128	8800	0.064	0.045
1.44	0856	0 4 63	0,283	0.225	0.183	0.150	0.125	0.085	0.062	0 044
1,45	0.847	0.456	0.278	0.221	0,179	0.147	0,122	0 083	0.060	0.043
1,46	0,838	0,450	0,273	0,217	0.175	0,144	0.119	0,081	0.058	0.042
1,47	0.829	0,444	0,268	0.213	0,171	0,141	0.116	0,079	J.056	0 041
1,48	0.821	0,433	0,263	0,209	0.168	0.138	0.113	0.077	0.054	0.040
1.49	0.813	0,432	0,259	0.205	0.165	0.135	0,110	0 075	0.053	0.039
1.50	0.805	0,426	0.255	0.201	0.162	0.132	0 108	0 073	0.052	0 038
1,55	0,767	0,399	0,235	0.184	0.147	0.119	0.097	0.065	0.045	0,032
1,50	0,733	0,376	0.218	0.170	0,134	0.108	0,087	0.058	0 0 3 9	0.027
1,65	0,703	0.355	0,203	0.157	0.123	0,098	0.079	0.052	0.034	0.023
1,70	0.675	0,335	0.189	0.145	0.113	0.090	0.072	0.046	0 030	0.020
1.75	0.650	0.318	0.177	0.134	0,104	0.083	0,065	0.041	0.026	0 017
1.80	0.626	0.303	0,156	0,124	0,096	0.077	0.060	0.037	0.023	0.015
1,85	0,605	0.289	0,156	0.415	0.089	0.071	0.055	0.033	0.020	0,013
1.90	0,585	0.276	0.147	0.108	0,083	0.065	0,050	0.030	0.018	0.011
1.95	0.567	0.264	0.139	0.102	0.078	0.061	0,046	0.027	0.016	0.009
2.0 2.1	0,550 0,518	0.253 0.233	0.132	0.097	0.073	0.057	0.043	0.025	0.015	800.0
2.2	0,316	0,216	0.119 0.108	0.085 0.077	0.064 0.057	0.049	0.037	0.021	0 012	0.007
2.3	0,466	0,201	0.100	0.069	0.051	0.043 0.038	0.032 0.028	0.018 0.015	0.010	0.006
2,4	0,444	0,188	0.090	0.063	0.031	0.034	0.024	0,013	0.008 0.007	0.GO5 0.004
2.5	0.424	0,175	0.082	0.057	0.041	0,031	0.021	0,013	0,000	0.003
2.6	0.405	0.165	0.076	0.052	0.037	0,037	0,019	0.0095	0.0050	0.0025
2.7	0.389	0.155	0.070	0.048	0.037	0.025	0.017	0.0084	0.0045	0.0020
2.8	0.374	0.146	0.065	0.044	0.030	0.022	0.015	0.0075	0.0040	
2,9	0.360	0,138	0.060	0.040	0,027	0.020	0.013	0.0067	0.0035	0.0010
3.0	0,346	0.131	0.056	0.037	0.025	0.0185	0,0125	0.0050	0.0030	0.00075
3.5	0.294	0.104	0.041	0,026	0.017	0.0125	0,0075	0,0035	0,0020	0.00050
4.0	0.255	0.084	0,031	0,019	0,012	0.0085	0,0050	0.0020	0.0010	0,00025
4.5	0,226	0.070	0.025	0.014	0.009	0,0065 0,0050	0,0035	0,0045	0,0005	0
5,0	0.203	0.059	0.020	0.010	0,007	0.0050	0.0025	0,0010	Ö	0 1
6,0	0,158	0,047 0,029	0.014 0.009	0,007 0,004	0,004 0,002	0.0030 0.0015	0,0015 0,0010	0,0005 0,0002	0	0
8,0 10,0	0.126 0.100	0.029	0,005	0,004	0,002	0.0005	0.0005	0,0002	0	0
10.0	0, 100	0,041	0,000	0,00%	3,001	3,0000	0,0000	<u> </u>	-	لــــــــــا

$\eta = \frac{h}{h_0}$ относительная глубина, h -глубина воды в сечении при неравномерном $\frac{h}{h_0} = \frac{\lambda i}{h_0} \frac{C^2}{h_0} \cdot \frac{h}{h_0}$, λ - i , козффициент кинетической энергии; C-ско	ДВИЖЕНИИ М; ОРОСТНОЙ МНОЖИТЕЛЬ;
Q=9.81 - чекорение силы тяжести, м/с²; В-ширина потока поверхч.	М;

q=9,81 - SCKOPEHNE GUADI TAXEGIN, M P-CMOVEHHDIŃ REPUMETP, M: $f(\eta) = \int \frac{1}{1-\eta^{\times}} d\eta$

7 W T A TO . PAH	Соскин Осокин	 E 4/	-	тпр			
H KOHTP	Новиков Новиков	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		ЗНАЧЕНИЕ ФУНКЦИИ. Ч (П) ДЛЯ ПРЯМОГО УКЛОНА ДНА ВОДОТОКА(1>0)	RNDATS 9	AHCT 51	AUCTOB 58
РУК БРИС ПРОВЕРИА СОСТАВИА		Palus Ostros Off-		ВАЧДИТ ХРИНЭРАНС ХІННРИЛЕВ НИП Х. ВАЗТАБАНОЙ ОТОНОВНИА		aon Ea	POPEKT

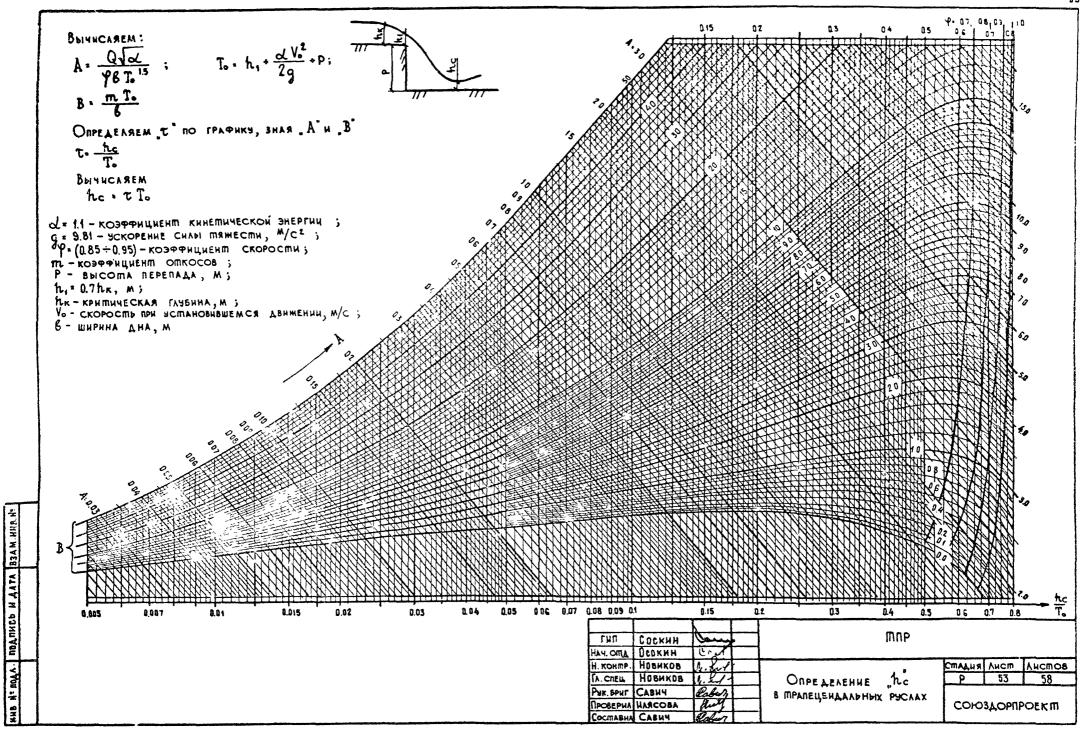

hn Hi	Gn	hn Hi	Gn	hn Hi	Gn	hn H	Gn	hn Hi	6 n	hn H	Gn	hn Hi	6n
8,05	8,997	0,40	0.957	0.60	0,906	0.75	0.823	0.85	0.710	0,925	0,555	0,975	0,319
0,10	0.995	0.42	0.953	0.62	0,897	0,76	0.814	0.86	0,695	0.930	0,540	0,980	0.274
0.15	0.990	0,44	0.949	0.64	0.888	0,77	0.805	0,87	0,680	0,935	0.524	0,986	0.229
0.20	0.985	0,46	0.945	0,66	0,879	0.78	0,796	0.88	0,563	0.940	0,506	0,990	0.170
0.25	0.980	0.48	0,940	0.68	838,0	0,79	0,786	0,89	0.644	0.945	0.488	0.995	0.100
0.30	0.972	0,50	0,935	0.70	0,856	0,80	0.776	0,90	0,621	0,950	0 470	1,000	0.000
0,32	0,970	0,52	0.930	071	0,850	0.81	0.762	0 905	0.609	0 955	0.446		
0.34	0.967	0.54	0,925	0.72	0.844	0.82	0,750	0,910	0,596	0,960	0,421		
0.36	0.964	0.56	0,919	0.73	0,838	0.83	0737	0,915	0 583	0.965	0.395		
0.38	0,981	0.58	0.913	0.74	0,831	0.84	0724	0.920	0,570	0,970	0,357		

График составлен по формулам инженера Чэглева:
А для прямоэгольного русла $X = 3.4 - \frac{2.8}{B+2}$;
Б. Для трапецеидального русла: $X = 3.4 \left(1 + \frac{1}{B+1}\right) - 1.4 \frac{1}{B+1}$; M = коэффициент откоса; $M^1 = 2\sqrt{1+M^2}$; $M^2 = \frac{1}{h_2}$; M^2

NPHMEHAHUE

ПРИ РАСЧЕТЕ ВОДОБОЙНОЙ СТЕНКИ В САЧЧАЕ, ЕСЛИ ОНА РАБОТАЕТ КАК ЗАТОПЛЕННЫЙ ВОДОСЛИВ РАВХОД ВОДЫ НАД СТЕНКОЙ ОПРЕДЕЛЯЕТ СЯ ПО ФОРМЧАЕ: $Q_1 = 6n$ ја $8 H_{01}^{-3/2}$; $Q_2 = 8$ ычисленный расход м 3 /с; который должен отличаться от расчетного не более чем на 5%; 6n - коэффициент затопления; $p_4 = 1,86$ при коэффициенте водослива $M_1 = 0.42$; 6 = 80 ширина русла по дну, м; $H_{01} = 10$ полный напор над стенкой, м; 6n = 10 спределяется по таблице в зависимости от отношения $\frac{h_1}{n}$ $\frac{h_2}{n}$ по-глубина затопления стенки, м; H_{11} - напор над кой, м.

	LNU	Соскин	Que	 TNP				_
I	ATO PAH	Осокин	-10					
	H KOHTP	HOBUKOB	4.55	ГРАФИК ДЛЯ ОПРЕВЕЛЕНИЯ ГИДРАВАИ	RUEATJ	AUCT	HOTON	
- 1	LY CUER	Новиков	1. Ent-	-OMRAD B X RESTACENDO DOODS	Р	5.2	58	_
	PAK PANL		Patro					
	HPOBEPHA	-	eden)	ХАЛЎЧ КИНАЛА В НЭПЕЦЕН В АЛЬНЫХ РУСАЛУ В ТНЭНДИФФЕОН ЙЙНЭРАНС АДИНДАЛУ	СОЮ	3 ADPAI	PUEKT	
	COCTABHA	KAPACEBA	A.	 SATORAEHIN On	İ			

TPSHMW W

П ДАЯ ТОРФЯНЫХ ГРУНТОВ

THE W. HOLK | BORNES H RAMA | SOAM. BIND W.

ХАРАКТЕРИСТИКИ ГРУНПОВ	Средине скорости твчения при бредней газбине пвтока 1 м. — м./ с
Терф верховой, маарразаржившийся	1,5
CPERHE "	1
хорошо	8,6
Торф осоково-гипновый, малоразложившийся	1
« — СРЕДИЕ И ХОРОШО РАЗАОМИВШИЙСЯ	8,5
порф попянон, макоразанивымия	1
Торф хвощевой средне и хорошо разложившийся	0,5
ТОРФ ИНЗИИНЫЙ , АВСНОЙ	0,5

RPHMEHAHUG

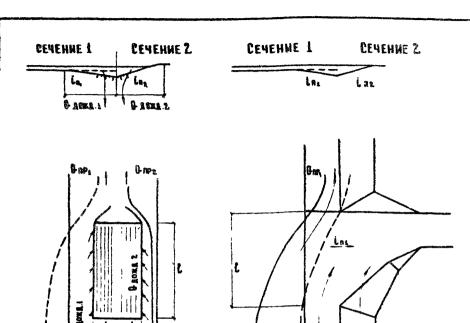
1. Нижние пределы скоростей течения соответствующ нижним пределам PASMEPOB HACMUL IPEHMA, A BEPXHHG MPEACAM CKOPOGMEN - BEPXHHM RPEAC-AAM PASMEDOB MAEMUL

LHU	Соскин	lary	TNP					
ATO PAH	Осокин							
H KOHTP	Новиков	221		CTARUS	AHCT	AHGTOB		
TA ENEU,	Новиков	1: 2-8	LOUACKAEMPIE (HEDADM PI BAHO-	P	54	58		
PYK BPHT.	CABHY	Beles	тив) състипе скорасши					
POSEPHA	CABHY	alon	H ZIGHERBOOH RAR RUNDHOR	CO10:	COHILDRADORKT			
COCTABHA	COKDADBA	CORS	BOWNEGT LIENROPOR	}				

	- U					X	PAK	TEPH	СТИК	N E	PYHT	OB						
NAUMEHOBAHKE	COREPXAHUE	٠ ٢	99LD 92PE V	иний Скелі 1.2.7	BEC [1	10 10	l ra i	HHHH I	BEC ID	9HT080	OFTE!	MHЫИ D PK	FAFTA	IPIE Lbarlo (N.)	OBBE	иныи	CAET	PYHIO
TPYHT OB	Z	-0,05vm		(PEA	ниЕ	,	7 A 9	БИ	НЫ	n t	OTO	KA	, M				
	HEE	5-0	0.4	1	1,5	2	0.4	1	1,5	2	0.4	1	1,5	2	0,4	1	1.5	2
	MEHEE 0.005 MM	500'0		t	PEA	ни	E C	KO	POCT	и	TE4	ΕH	ия		м/с			·
FAUHW	3 0 -50	70-50	0,35	0,4	8,43	0,45	0,7	0.85	0,9	0,95	1	1,2	1.3	1,4	1.4	1.7	8.1	1.9
Тяжелые сыглинки	20-30	80-70	0,35	0,4	0,43	0,45	0,7	0,85	0.9	0,95	i	1.2	1,3	1.4	1,4	1,7	1.8	1,9
ТОЩИЕ СУГАИНКИ	10-20	90-80	0,35	0.4	0,43	0.45	0,65	8.0	0,85	0.9	0,95	1.2	1,3	1.4	1,4	1.7	1,8	1,9
АЕССОВЫЕ ГРУНТЫ В УСАО- ЖИЗ ЗАИВНИНИВИТ КРОСХОЖ	_	_	_	-	-	_	Q,6	0,7	0,75	0,8	0.8	1	1,1	1.2	1.1	1,3	1,4	1.5
CAUECH	5-10	2040	BC	TA	5 A W I	ĮE I	A A H	MCT	E 54	В 3	ABHCK	MOCT	TO N	KPAUI	ности	RECYA	ных ф	PAKUKÉ

ДАЯ СКАЛЬНЫХ ГРУНТОВ

	CPEAHU	E PAYBL	HN ROT	OKA, M			
HANMEHOBAHNE FPYHTOB	0,4	i	1,5	2			
	СРЕДНИЕ СКОРОСТИ ТЕЧЕНИ						
Конгаомерат, мергель, сланцы	2	2,5	2,8	3			
ПОРИСТЫЙ МЭВЕСТНЯК, ПАОТНЫЙ КОНГАОМЕРАТ, САОГОТЫЙ МЭВЕСТНЯК, МЭВЕСТКОВЫЙ ПЕСЧАНИК, ДОДОТИТОВЫЙ МЭВЕСТНЯК	3	3,5	3,8	4			
ДВАОМИТОВЫЙ ПЕСЧАНИК; ПАОТНЫЙ, НЕСАОИСТЫЙ ИЗВЕСТНЯК; КРЕМНИСТЫЙ ИЗВЕСТНЯК, МРАМОР	4	5	5,5	6			
ГРАНИТЫ, ДИАБАЗЫ, БАЗАЛЬТЫ, АНДЕЗИТЫ, ИФИФПОЛЬНИКАЯ	15	18	19	20			

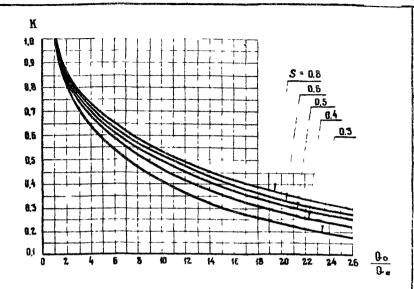

ДАЯ ИСКУССТВЕННЫХ ЭКРЕПЛЕНИИ

	-	CPE AHL	GEVJ 38	NHP 16	TOKA,M
тыпы чкг	PENAEHUŃ	0.4	ı	1,5	2
		CPEAHI	NE CKOPI	OCTH TE	IEHWA C
БЕТСННЫЕ ДОТК	NOVERVE 3 M				
поверхностью :		1			
BETOH	W - 500	13	16	17.5	19
БЕТОН	M-150	12	14	15	16
SETOH	M - 100	10	12	12,5	រេ

Коэффициенты шероховатости "П"

XLPAKTEP	EDCT	DAHNE A	08EPXH 0C 1	TH.
ROBEPX HOCTU AGTKA	AHBPO 33WOQOK	XOPOLIEE	зонимае	BAOXOE
ГААНКАЯ БЕТОННАЯ ПОВЕРХНОСТЬ	9,812	0,014	0,015	0,016
MEPOXOBATAR SETONHAR ROBEPXHOCTS	_	0.014	0,016	0.018
КАНАВЫ В ВАОТНОМ АЕССЕ И В ГРАВИИ С ИАИСТЫМ САОЕМ	0,017	0,019	0,02	0,025
ЗХИНРВАЯ В СВЕНАХ	0.025	0.027	0,03	0,033
KAHABЫ С ОЛЕРНОВАННЫ- МИ ОТКОСАМИ	0,028	0,03	0.033	0,035
КАНДВЫ НЕПРАВИЛЬНОЙ ФОРМЫ С ОДЕРНОВАННЫМИ ОТКОСАМИ		0,027	0.03	0,035
КАНАВЫ НЕПРАВИЛЬНОН ФОРМЫ В СКАЛЕ	0,025	0,03	0,035	0,04

PHR HAY OTR	Соскин Соскин	(16,2	 TNP					
M. KOHTP.		4.20	ДОПУСКАЕМЫЕ СРЕДНИЕ СКОРОСТИ ТЕЧЕНИЯ ДЛЯ СВЯЗНЫХ, СКЛАЬ-	RNRATS	AUCT 55	BUCTOB 58		
PSK SPRF. RPOBEPHA	eabh4	Babur Cose	НЫХ ГРУНТОВ, ИСКУССТВЕННЫХ ЗКРЕПЛЕНИЙ КОЗФФИЦМЕНТЫ СОЮЗЯОРПРО ШЕРОХОВАТОСТИ "П					



Дождеприемные колодцы и поперечные сбросные вотки (дождеприемники) CAERNET PASIEARTH HA:

- 1. PACHDADMEHHME HA SYACTKAN CHUCKOB:
- 2. 8 DOHNWEHHMX MECTAX.

В первом случае возможен "проскок"части расхода мимо дождеприем-НИКА, ВО BTOPOM - ДОЖДЕПРИЕМНИК ПРИНИМАЕТ ВЕСЬ РАСХОД, ПОСТУПАЮЩИЙ К НЕМУ 1 PACYET DOWDENPHEMHUKOB, PACHDADWEHHUX HA YYACTKAX CHYCKOB BEDETCH METOROM PACYETA NO CEYEHNAM IN 2 8 NONKPOMOYHUX AOTKAX W HA PASMENHTEAD-НЫХ ПОЛОСАХ ВЫВЕЛЯЮТСЯ ВВА СЕЧЕНИЯ СПЛОСКОСТЬЮ РАЗВЕЛА ПО ЛИНИИ НАИБОЛЬШИХ ГЛУБИН ПОЛИГОНАЛЬНОЕ СЕЧЕНИЕ ПРИКРОМОЧНОГО ЛОТКА СО СТОРОНЫ ПРОЕЗЖЕЙ ЧАСТИ ЗАМЕ-**НЯЕТСЯ ТРЕЧГОЛЬНЫМ СЕЧЕНИЕМ 1.ОБРАЗОВАННЫМ ПРОДОЛЖЕНИЕМ ПЛОСКОСТИ** ПРОЕЗЖЕЙ ЧАСТИ.

ДАЯ КАЖДОГО СЕЧЕНИЯ ТРЕУГОЛЬНОГО ПРОФИЛЯ С ВЕРТИКАЛЬНОЙ ГРАНЬЮ ONPEREARIOT:

4 PACKOR BOWRENDHEMHUKA KAK BOAR PACKORA B AOTKE θ nows = $K \cdot \theta_0$

2 PACKOR _ NPOCKOKA MUMO ROWSENDHEMHUKA

$$0 = 0 - 0 = 0 = (1 - K) \cdot 0 ;$$

3 PACKOR B NOTKE REPER KAMRUM L-M ROMBERPHEMHUKOM KAK CYMMA РАСЧЕТНОГО РАСХОДА ЛОЖДЕВЫХ ВОЛ С ПЛОЩАЛИ ВОДОСБОРА ДОЖЛЕНРИЕМНИКА BPACH I M PACKORA " POCKOKA" DIP (L-1) MUMO RPERMINUETO (L-1) **DOX DERIPHEMHHKA**

ЗНАЧЕНИЯ КОЗФФИЦИЕНТА ШЕРОХОВАТОСТИ "П" ПРИНИМАЕТСЯ В ЗАВИСИМОСТЬ OT XAPAKTEPA ROBEPXHOCTH AOTKA RO TAGANUE HA ANCTE 55

4 ЗНАЧЕНИЯ КОЗФФИЦИЕНТА "К ОПРЕДЕЛЯЮТСЯ ПО ГРАФИКУ В ЗАВ.

от сквозности дождеприемной решетки

 $S = \frac{d}{dex}$ (B-ширина стержней d-ширина отверстии между стерж PACKODA B JOTKE REPED DOWNERPHEMHUKOM GO U RAPAMETPA

PHE BPUT RPOBEPHA COCTABHA	CABNY Cabny Condagba	Ester)	индаеная	союздорпроект			
LY CHER	HOBUKOB	is sul	РАСЧЕТЫ ЛИВНЕВОЙ	D	5E		
H KOHTP	HOBUKOB	3. And		RULATO	INC.	*#750H	
BYD PAR	Осокин	Fait	1119				
run	СОСКИН	Com	TNP				

NOAOMCHHE Paevemhofs CG4thus	in	Домдеприеми и ку			ЯРОДВАНИЙ ЭКАОН АВШКА								
		MHR	8,cm	E,cm	8,005	9, 905	8,01	8,92	8,93	9, 94	Q , 95	9, 95	1,97
Веченне автка Раздели пельней Полосы	0,100	I	28	80	17.5	13,0	9,9	19,1	10,7	11,5	12,2	12.9	13,5
		Ī	48	40	22.8	19,4	17,5	19,9	22,5	24,8	26,7	28,6	38.4
		ш	30	38	11,2	9.5	8,6	9.7	10,9	12.0	13,0	13.9	14.7
	0, 125	I	20	80	23,9	19, 5	13.6	13,8	13,8	14,7	15.6	16,4	17,2
		I	40	40	31,3	28,6	24,5	25,7	299	32,5	35,8	38,1	48,3
		ш	30	38	15,5	14.1	12,0	13,0	14.5	15,9	17,2	18,4	19, 5
Висшисе сече- ин в 2 при кро- мечного лотка	0,276	I	20	80	74.4	61,0	49.5	37.9	36,8	37.8	39,3	40,9	42,5
		I	40	40	99,5	92.5	89,0	84,8	89,2	95,7	102,9	109.5	115,2
		I	38	36	45,1	45.7	43,8	40,6	42.8	48,0	49.2	52.2	55,2
	6,450	T	20	80	145.4	122,8	100.0	84.0	75.2	13,3	74,2	76,1	78.2
		I	40	40	282.9	1920	184,5	186.1	187.6	196,7	207,9	219,2	230,1
		Ī	30	30	101, 1	93.8	90,4	89.9	98.3	94,5	59,4	104.6	110.2
	6,02	Ī	20	80	1.4	1,5	1,8	1,8	1.6	14	1,3	1,1	1,0
Baumpennee		I	40	40	2,8	2,1	2,4	2,9	3,0	2,9	2.7	2,5	2,5
		I	30	30	0.9	1.0	1,2	1,5	1,5	1,4	1,3	1,2	1,1
		CEPDCHON L		100	R.B	0.8	0,7	0.7	0,5	0,5	0,4	0,3	8,2
танка у прихрамачнага датка			8	125	14	1.3	1.2	1,2	1,1	0,8	0,6	8,5	0.4
				150	2.1	1.9	19	1,8	1.7	1.3	0,4	0,8	0,7
				175	3.0	2.8	2.7	2.6	2,5	1,8	14	11	0,9
				200	41	39	3.8	3.6	3,4	2,4	1,9	1.5	1,3
	Ø. 03	Ī	20	80	2.2	2.3	2.4	2.7	3.0	3.1	2,7	2,5	2,3
		Ī	40	40	3,3	34	3.8	4.7	5.4	5,7	5,4	5,3	5,2
		I	50	30	1.7	17	1,9	2,3	2,6	2,8	2,7	2,6	2,5
		CSPOCHOŃ P		100	14	1.2	1.2	1,1	1,1	1.0	0,3	0.7	9,6
				125	2.4	21	2.0	1,9	1.8	1,7	1,5	1,3	1,1
			0	150	3.6	3.4	3,1	3.9	2.8	2,7	2.3	1,5	1,6
				175	5,2	4,4	4.3	4,2	41	4,0	34	2,8	2,4
			1	200	7.8	6.3	6.2	6,1	6.0	5.8	4.6	3,8	33
		Ī	20	80	32	3,3	34	3.7	41	4.3	4.6	4,3	4.0
	0,04	Ī	40	40	4.8	49	5,4	6,5	7,4	8,1	8,8	87	8,6
		III	39	30	2,3	24	2.7	32	3.7	4.0	43	4,2	4.1
		СБРОСИВИ В В В В В В В В В В В В В В В В В В	T-	100	2.2	1,8	1,7	1,6	1,5	14	1.3	12	1,1
			9	125	3.8	3,1	3.0	2.9	2.8	2.8	2,7	2,3	1,9
				158	5,5	4.7	4.3	4,2	4.1	4.8	37	3,4	3,0
				175	7.9	7.0	5,8	5.2	5.9	58	5,5	5,8	4.3
			l	280	10,9	95	8.8	83	8.1	7.8	1,5	5,8	5,8

MOTO NO MASANES & SASSEMMEENH ON MERC. PASAPHINNEL PASME -РОВ ДОМДЕПРИСМИНИКА В ПЛАНЕ И ЭКЛОНОВ АВЖКА И ПРЕДСМАВЛЯ-HOWERO CORON PRESEABHON (MANDOADONN) PACKER P ARMEC CENERAR WEANKOM (BES RPOCKOKA) . RPHHHMAEMWN ABMEERPWEMHUNBE RPHMCHARUS I THEM ADMACRPHEMENT PEWEROK B TASABRE SHARE-HHH Q.: I-PEWERKA 26 = 49 = 80 cm2

W-PENERKA 25 = 20 = 40 cm2

III PEMERKA 26 x C = 60 x 38 cm2

2 AAA ROAYYEHUR SHAYEHUH Q . B M3/C RPUBEZEHUME B MABAULE всличины следчем чиномать на 0,001 3 NPH Q. & O. BEED PACKOR B ADMIKE NOCMSHARM B ASMACHPHEM-HUK M.C. Q gomg = Q. M PACKOR _ R POCKOKA" Q np. = D 5 Полные РАСХОДЫ В ЛОПКЕ, ДОМЯЕПРИЕМНИКА И ПРОСКОКА" DAPEREARIORER CHMMUPOBANHEM COOMSEMERSHOWNE SEAHHHH RAS ФРАГМЕНТОВ

Q.=Qa1 + Qa2, Agoma = A soma + Q soma 2; Qap = Qap 1 + Qap 2 ROMMERAHER: I ROM PACHEME BONEPCHEME ESPOCHEME ADMIKEB ДАЯ ВНЕШНЕГО ССЧЕНИЯ 2 САВДЧЕМ ПРИНИМАМЬ Qez = Qaome = H Qnp2 = B

> 2. Мирина отверстия дождеприемника внатрен HETO OPATMENMA 1 MAR CEPOCHOTT AOMKA CAB-AYEM MPHHHMAMD B. = 0

Пример Определинь расходы проскова" Опр и пожасприемника Q дома. С Решеткой типа I в дотке разделительной полосы шириней в и на ансте 26 с продольным чклоном і. = 0.005. Поперечные чклоны лотка имеют PASHME SHAMEHUR: Lm, = 0.108 Lm, = 8.125 PACKOR B AOMKE C SHE-**ТОМ РАСХОДА МИМЯ ПРЕВЫДУЩЕГО ДОМ ДЕПРИЕМНИКА ОПРЕВЕЛЕН** Q = Q PACH. + Q np (1-1) = 8,180 M/C

1. Для обычного состояния поверхности эемляного вотка n=0.02.

ЯРИМЕЧАННЯ.

4. Констракция решетки Ітипа дана в альвоме I дождеприемные ЗИНИ ОН ДАСИАННАХ _ 1-9-10 д дузоро просита ни васиания повывана и дасовя KANDERM . BRURCK AL

2. Конструкции решеток II и III типов представлены в ГОСТ 26008-83

RH7 ATO PAH	СОСКИН СОСКИН	1000		TAP					
H.KOHTP.	Новиков	Se. Lat		CTARHA	AHET	AHCTUB			
ta creu		b. Lud.	РАСЧЕТЫ АНВНЕВОЙ	P	57	58			
PUK SPUT	CABHY	Bales	KAHAAHSALLIN						
NPDBepu a	MARCOBA	theel	The state of the s	BOPAP	IPDEKT				
COCTABHA	COKDADBA	core		I					

2. Выясляви сечения: CERCHNE 1: in, = 0, 100, 61 = 20 cm f1= 80 cm CG4CHHE 2: inz = 0,125, 62 = 20 CM, €2=20 CM

2 HORESPEN H3 YCASBHR Qo=Qo++Qos HAXDRHM PACKORDI B ABMKAX CENERHUM NON HANGOADWEN TANGUNG HA AUHUN MAADEGTA h=0,16

 $Q_{01} = 0.375 \frac{1}{0.02.01} R_{10}^{10/3} 0.005^{1/2} = 0.101 M^{3}/c$ $Q_{02} = 0.375 \frac{1}{0.02.0125} 0.16^{1/3} \cdot 0.05^{1/2} = 0.081 M^{3}/c$ Do = Qos + Qoz = 0,182 43/c

4. No marange ha anche 57 unpercasem Q = 1 = 13 8.001 = 0.013 M3/c Q = 2 = 19.5-0.001 = 8.0195 M2 S EAS PEWENKH MUNA I NPH S= 8.75 HA AHCME 56

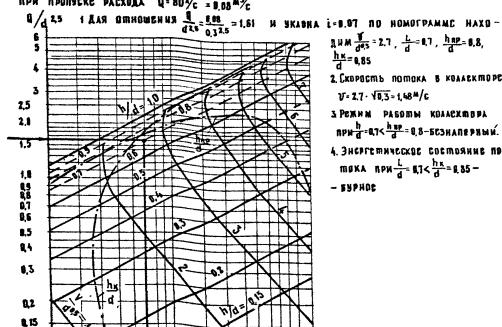
ПРИ $\frac{q_{01}}{q_{x}} = \frac{9101}{9101} = 7.8$ и $\frac{Q_{02}}{Q_{x2}} = \frac{0.081}{0.019} = 4.1$ НАХОДИМ $K_1 = 0.58$ и $K_2 = 0.73$ 6. Расход дамдеприемника $Q_{00MД} = Q_{00} \cdot K_2 = 0.01 \cdot 0.58 = 0.950$ м 3 С. $Q_{00MД} = Q_{02} \cdot K_2 = 0.858$ м 3 С Q sems = Qxoms + Q 40ms 2 = 0,110 M3/c.

7 PAEXOD _RPOCKOKA" Q ap = Q o - Q gomg = Q 180-Q 119= Q 861 M3/C

II. Расчет дождеприемных колодцев, расположенных в пониженных местах. 1. PACKAS GEMBERPHEMBURA B ROHNMEHHOM MEEME GOOMBE MEMBERBERBE PACKORY Quoma = Qo , enderemeny, kak cymma pacyemhoro pacyora Ro-MACEMA BOA C BADWARN BOROCGOPA ROMACNPHEMHNKA N PACKOROB _ NPOGKOKA T жимо последних домпепривминиев на эчастках спусков к пониженному MECHI Qo = Q PAGU. + Q RP (1-1)

2 Расход дождеприемника при рабоме решемки дождеприемного колодца по CREME BARGARRA C MUPOKUM REPORTM (Hat 1,33 $\frac{\omega_p}{L}$) orpedeasemen формиле Одожд = Q = m · L 129 н . Уг и при работе решетки по схеме HEMERERHAR HEPES OMBEPERHE (Ho > 1.33 WP) NO POPMULE Q ADMA-Q-- H W- 129 HO где: $H_{a} = h + \frac{V^2}{2a}$; h-гачина воды в лотке перед дождеприемным колодцем; V- скорость подхода потока к дождеприсмиому колоду 1=1,0 - коэффициент Мориванса; С. - пасщаяь виверений решетки, 1-данна периметра ре-MERKN, 42PE3 KOMBPHO NOMOK ROCMHRACM & PEWEMKH; M=0,358, M=0,458 иоэфициениы расхода; q-98 м/с² - эскорение сиам мяжести

PACHEM KOAACKMDPOB


-SWEEDES XWHYSERDEN DAOG XWMAPBERM NEESSMAN X ROMROUNDERD MEDONASALON -осачао кэтонарилто и вочемску коннериндую мофесь минкчев в йня BARNEM RECMALLHOHADHOLD REDEROBELO DEMNMA PAROMEN, NEU KOMODOM B. KOA-АСКМЕРС ПРОИСХОДИМ ПЕРНОДИЧЕСКОЕ ОБРАЗОВАНИЕ И СРЫВ ВАХУУМА ОСНОВНОЙ ЗА-- Осабар химинью при видов и при вобрати в при в BA"HC TPOBKOBOTO PCMHMA PASOTIM **Ветановаение режима равоты и опрелеаение параметров потока в коа-**

вини на номограмме разграничиваем области спокайного состояния помока (выше И АВВСЕ АННИИ) И БУРНОГО (НИЖЕ И ПРАВСЕ)

ANHHR hop GOOMBEMGMBEEM BOSHNKHOBENHIO B KOLACKMOPE HECMALHOHAPHOFO NPOEKOBOFG ВООСТИВАЛОВ ИТИВОВЛЕ МЕШВОЛОЕ МЕНТАЛЬНОН МОЛЕСТВИВ ИНИНА КОМЕ ЭТИН ТИТЕЛЕВ ДМИНЯСЯ B BESHAROPHOM PEMHME.

ДАЯ КВААСКИОРВЬ ВНАМСПРОМ С + ГМ РАСХОД И СКОРОСПЬ ПОМОКА ЯРИ РАСЧЕМАХ ПО НОМОГРАМ MC ORPCREARIONCH SMHOMEHHEM STHOCHTCADHMX PACKORA $\frac{q}{d^2s}(M^{\frac{n}{2}})$ is ckepscth $\frac{v}{d^{n_s}}(M^{\frac{n_s}{2}}c)$ cosmetrementhe ha $d^{n_s}(M^{\frac{n_s}{2}})$ is $d^{n_s}(M^{\frac{n_s}{2}}c)$

Пример: впредванть екоровть потока наполнения, режим работы и энергетическое состояние потока в коллекторе диаметром d=0.3м, члотенного с эклоно t=0.007 RPH RPORTERE PACKORA Q=80 1/C = 8 08 M3/C

 $\frac{1}{d}$ $\frac{1}{d}$ = 2.7, $\frac{L}{d}$ = 0.7, $\frac{h_{BP}}{d}$ = 0.8,

2. CKOPSCM D DOMOKA B KSAACK MOPE, V= 2.7 · \8,3 = 1,48 M/C

3 РЕЖИМ РАБОМЫ КОЛАСКМВРА при d = 0,7 < h ир = 0,8 - БСЗНАПЕРНЫЙ.

4. Энергетическое состояние прmaka now 1 = 17< hx = 185 -- EMPHOR

COCKUM AM OMA BEBKUH HKOHMP HOBHKOB TA CHELL HOBUKOB PSK BPUT CABHY SPOREPHA NASCOBA COCMABUA CABUS

TARUS ANCT AHEMES

THP

союздорпроект

PACHETM AMBREBON M H JIACHAAHAN

От пе ча та но
в Навосибирскам филиале ЦИТП
в 30006, г Навосибирск, ул. Лазарева 33/4
выдана в печать "Ди" XII 19 90г.
Заказ <u>ZZS</u> Тираж <u>ТЭ</u>

509-09-7.