Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный университет»

М.И. Шиляев, Е.М. Хромова, Ю.Н. Дорошенко

ТИПОВЫЕ ПРИМЕРЫ РАСЧЕТА СИСТЕМ ОТОПЛЕНИЯ, ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Учебное пособие

Томск Издательство ТГАСУ 2012 УДК 697(075.8) ББК 38.762я7 III 60

Шиляев, М.И. Типовые примеры расчета систем отопления, вентиляции и кондиционирования воздуха [Текст] : учебное пособие / М.И. Шиляев, Е.М. Хромова, Ю.Н. Дорошенко. – Томск : Изд-во Том. гос. архит.-строит. ун-та, 2012. – 288 с. – ISBN 978-5-93057-478-4.

Пособие соответствует ФГОС ВПО дисциплин «Отопление», «Вентиляция», «Кондиционирование воздуха и холодоснабжение зданий» профиля подготовки бакалавров «Теплогазоснабжение и вентиляция» направления 270800 «Строительство».

Представлены основы расчета теплового и воздушного баланса зданий различного назначения и приведены примеры построения процессов состояния влажного воздуха на *I-d*-диаграмме. Рассмотрены закономерности струйных течений и примеры расчетов устройств воздухораспределения. Приведены методики гидравлического и аэродинамического расчета систем отопления и вентиляции, типовые примеры расчетов элементов систем отопления, вентиляции и кондиционирования воздуха. Дан необходимый для расчетов справочный и нормативный материал, представленный в приложениях и списке рекомендуемой литературы.

Учебное пособие предназначено для бакалавров профиля подготовки «Теплогазоснабжение и вентиляция», а также родственных профилей. Может использоваться в практике инженерно-технических работников организаций, занимающихся проектированием систем жизнеобеспечения зданий и сооружений.

Рецензенты: д.т.н., профессор Волгоградского государственного архитектурностроительного университета **Н.В. Мензелинцева**;

д.т.н., профессор Сибирского федерального университета г. Красноярска **Ю.Л. Липовка**;

д.т.н., профессор Томского государственного архитектурностроительного университета С.А. Карауш.

ISBN 978-5-93057-478-4

© Томский государственный архитектурно-строительный университет, 2012 © М.И. Шиляев, Е.М. Хромова, Ю.Н. Дорошенко, 2012

ОГЛАВЛЕНИЕ

Введение	,
1. Отопление	
1.1. Расчет тепловой мощности системы отопления	
1.1.1. Уравнение теплового баланса здания	
1.1.2. Основные потери теплоты через ограждающие	
конструкции зданий	
1.1.3. Дополнительные потери теплоты через	
ограждающие конструкции зданий	
1.1.4. Расчет расхода теплоты на нагрев	
инфильтрующегося наружного воздуха	
1.1.5. Дополнительные бытовые теплопоступления	
в помещения	
Примеры 1.1.–1.4	
1.2. Водяное отопление	
1.2.1. Гидравлический расчет системы водяного	
отопления	
1.2.1.1. Гидравлический расчет главного	
циркуляционного кольца по удельной	
линейной потере давления	
1.2.1.2. Гидравлический расчет второстепенного	
циркуляционного кольца	
Примеры 1.5–1.7	
1.2.1.3. Гидравлический расчет по характеристикам	
сопротивления и проводимостям	
Пример 1.8	
1.2.2. Тепловой расчет отопительных приборов	
Примеры 1.9–1.10	
1.3. Воздушное отопление	
Примеры 1.11–1.13	
2. Вентиляция	
2.1. Аэродинамический расчет систем вентиляции	
2.1.1. Аэродинамический расчет систем вентиляции	
с естественным побуждением движения воздуха.	
Пример 2.1	

2.1.2. Аэродинамический расчет систем венти:	ляции
с принудительным побуждением движения	
Пример 2.2	
2.2. Расчет воздуховодов для равномерной раздачи воздуха	
Пример 2.3	
2.3. Расчет воздуховодов для равномерного	
всасывания воздуха	
Пример 2.4	
2.3.1. Подбор диаметров ответвлений при расч	
воздуховодов	
Пример 2.5	
2.4. Закономерности струйного течения	105
2.4.1. Примеры расчетов устройств	
воздухораспределения на основе теории	
свободной изотермической струи	105
Примеры 2.6–2.8	110
2.4.2. Движение неизотермической свободной	струи 114
Примеры 2.9–2.10	114
2.4.3. Стесненные струи	119
Пример 2.11	122
2.5. Вытяжные зонты	
Пример 2.12-2.13	124
2.6. Бортовые отсосы	130
Пример 2.14–2.17	133
2.7. Воздушные души	139
2.7.1. Использование теории свободной струи	
для расчета воздушных душей	140
Пример 2.18	142
2.7.2. Метод расчета воздушных душей	
(горизонтальными и наклонными струям	ми),
предложенный П.В. Участкиным	143
Примеры 2.19–2.20	145
2.7.3. Расчет воздушных душей для уменьшен	ия
концентрации вредных выделений	148
Пример 2.21	
2.8. Воздушные завесы	
2.8.1. Завесы шиберующего типа	
Пример 2.22	

2.8.2. Завесы смесительного типа	155
Пример 2.23	156
2.9. Обработка приточного воздуха	157
2.9.1. Калориферы	157
Пример 2.24	161
2.9.2. Фильтры.	163
Пример 2.25	164
2.10. Определение влаговыделений и тепловыделений	
при испарении жидкости	167
Примеры 2.26–2.28	170
2.11. Аэрация промышленного здания	177
Пример 2.29	180
3. Кондиционирование воздуха	185
3.1. Производительность систем вентиляции	
и кондиционирования воздуха (СКВ)	185
3.1.1. Определение воздухообмена в помещении	185
3.1.2. Определение параметров наружного воздуха	187
3.1.3. Определение параметров внутреннего воздуха	188
3.1.4. Определение параметров удаляемого воздуха	189
3.1.5. Определение параметров приточного воздуха	190
3.2. Построение процессов СКВ на <i>I-d-</i> диаграмме	
влажного воздуха	191
3.2.1. Построение луча процесса	191
3.2.2. Прямоточная схема СКВ для теплого периода	191
3.2.3. Прямоточная схема СКВ для холодного периода	193
3.2.4. Схема СКВ с первой рециркуляцией	
для теплого периода	194
3.2.5. Схема СКВ с первой рециркуляцией	
для холодного периода	196
Примеры 3.1–3.8	198
3.3. Основное оборудование центральных СКВ	218
3.3.1. Камеры орошения	218
3.3.1.1. Расчет камеры орошения по методике	
ВНИИКондиционер	218
Пример 3.9	221
3.3.1.2. Расчет камеры орошения с использованием	
модели тепломассообмена	225

Пример 3.10	228
3.3.2. Расчет воздухонагревателей	231
Пример 3.11	233
3.3.3. Расчет воздухоохладителей	236
3.3.3.1. Расчет воздухоохладителей при сухом	
охлаждении	236
3.3.3.2. Расчет воздухоохладителей при	
охлаждении и осушении воздуха	238
Пример 3.12	239
Список рекомендуемой литературы	243
Приложение 1. Таблица для гидравлического расчета тру-	
бопроводов водяного отопления при перепадах температуры	
воды в системе 95–70 °C, 105–70 °C и A _ш = 0,2 мм	240
Приложение 2. Коэффициент местных сопротивлений ξ для	
стальных трубопроводов	25
Приложение 3. Потери давления на местные сопротивления	
для расчетов трубопроводов водяного отопления	25
Приложение 4. Теплоотдача открыто проложенных	
стальных трубопроводов	25
Приложение 5. Техническая характеристика	
отопительных приборов	26
Приложение 6. Размеры каналов из кирпича	26
Приложение 7. Площадь живого сечения каналов	
из шлакогипсовых и шлакобетонных плит, м ²	26
Приложение 8. Нормируемые размеры круглых	
воздуховодов из листовой стали	26
Приложение 9. Нормируемые размеры прямоугольных воз-	
духоводов из листовой стали	26
Приложение 10. Абсолютная эквивалентная шероховатость	_0.
материалов, применяемых для изготовления воздуховодов	26
Приложение 11. Номограмма для определения потерь давления	
на трение в круглых воздуховодах естественной вентиляции	26
Приложение 12. Номограмма для определения потерь давления	
на трение в круглых воздуховодах механической вентиляции	26:
Приложение 13. Коэффициент шероховатости поверхности	
канала	26
Приложение 14. Значения коэффициентов местных сопро-	
тивлений	26

Приложение 15. Определение относительной скорости по оси зонта.	273
Приложение 16. Определение относительной центральной	
скорости	273
Приложение 17. Высота спектра вредных выделений	274
Приложение 18. Удельная величина отсасываемого	
воздуха, поправка на глубину уровня	275
Приложение 19. Поправка на скорость движения воздуха	
в помещении.	276
Приложение 20. Относительный расход воздуха К	278
Приложение 21. График для определения коэффициентов <i>b</i>	
и c для расчета воздушных душей	278
Приложение 22. Номограмма для определения типоразмера ПД.	279
Приложение 23. Расстояние по вертикали от центра проема	
до уровня нулевых давлений	280
Приложение 24. Основные расчетные показатели боковых	
двухсторонних воздушно-тепловых завес	280
Приложение 25. Определение \overline{Q} для боковой завесы	
	281
Приложение 26. Поправочный коэффициент k_2 для завес	
смешивающего типа.	281
Приложение 27. Данные для подбора воздухонагревателей КСк3.	282
Приложение 28. Технические данные фильтров	283
Приложение 29. <i>I-d-</i> диаграмма влажного воздуха	284
Приложение 30. Количество форсунок по рядам в камере	
орошения ОКФ-3	285
Приложение 31. Технические характеристики	
воздухонагревателей (без обводного канала)	286
Приложение 32. Показатель N , для расчета	
	207
воздухоохладителей	287

ВВЕДЕНИЕ

Для создания и поддержания в помещениях, зданиях и сооружениях требуемых параметров воздушной среды (температуры и влажности), а также скорости движения, газового состава и чистоты воздуха применяют системы вентиляции и кондиционирования воздуха. В соответствии с определенными требованиями воздух в системах вентиляции и кондиционирования при обработке нагревают, охлаждают, осущают и увлажняют. Система отопления предназначена для создания в помещениях здания в холодный период года температурной обстановки, соответствующей комфортным параметрам для человека и отвечающей требованиям технологического процесса. Решая задачу отопления здания, необходимо рассчитать ограждения и обогревающие устройства так, чтобы они обеспечивали требуемые тепловые условия в обслуживаемой зоне помещения, прежде всего в наиболее суровый период зимы, который считается расчетным.

Потребность в систематизированно изложенном материале для подготовки инженеров-строителей по специальности «Теплогазоснабжение и вентиляция» по дисциплинам «Отопление», «Вентиляция», «Кондиционирование воздуха и холодоснабжение» назрела давно. Задачи, подобные приведенным в настоящем учебном пособии, представлялись ранее в соответствующих учебниках и справочниках, однако в основном в формальном, отвлеченном от нормативных требований и конкретных ситуаций, виде.

Учебное пособие состоит из трех частей, касающихся систем отопления, вентиляции и кондиционирования воздуха с общим библиографическим списком и приложениями, включающими в себя необходимые справочные данные для расчетов. В списке рекомендуемой литературы представлены нормативные документы, справочники, на основе которых приводятся расчеты систем отопления, вентиляции и кондиционирования

воздуха, а также учебная литература по специальности «Теплогазоснабжение и вентиляция».

Каждая часть пособия содержит разделы с теоретическими положениями, изложенными в компактной форме, при этом теоретические положения по вентиляции и кондиционированию воздуха совмещены. Совмещение касается расчета производительности систем вентиляции и кондиционирования воздуха, а также теоретических основ расчета процессов изменения тепловлажностного состояния воздуха с помощью *I-d*-диаграммы в системах вентиляции и кондиционирования воздуха.

В третью часть авторы также включили материал, полученный в результате научно-исследовательской работы по тепломассообмену в оросительных камерах. Приводится сравнение результатов расчета оросительной камеры кондиционера воздуха (КВ) на основе физико-математической модели, разработанной на кафедре ОиВ ТГАСУ под руководством профессора М.И. Шиляева, с расчетами по методике ВНИИКондиционер. Показывается, что физико-математическая модель дает возможность оптимизировать режим работы оросительной камеры, методика ВНИИКондиционер этого сделать не позволяет.

Разделы 1 «Отопление» и 3 «Кондиционирование воздуха» написаны к.ф.-м.н., доц. Е.М. Хромовой, раздел 2 «Вентиляция» – д.т.н., проф. М.И. Шиляевым и к.т.н., доц. Ю.Н. Дорошенко. Авторы выражают благодарность всем сотрудникам каф. ОиВ ТГАСУ, принявшим участие в обсуждении и подготовке рукописи к печати.

1. ОТОПЛЕНИЕ

1.1. Расчет тепловой мощности системы отопления

1.1.1. Уравнение теплового баланса здания

Температурная обстановка в помещении зависит от тепловой мощности системы отопления, а также от расположения обогревающих устройств, теплозащитных свойств наружных ограждений, интенсивности других источников поступления и потерь теплоты. В холодное время года помещение теряет теплоту через наружные ограждения, теплота расходуется на нагрев наружного воздуха, на нагрев материалов, транспортных средств, изделий, одежды, которые холодными попадают с улицы в помещение. Системой вентиляции в помещение может подаваться воздух с более низкой температурой, технологические операции могут быть связаны с процессами, сопровождаемыми затратами теплоты. Теплота поступает в помещение от технологического оборудования, источников искусственного освещения, инсоляции, нагретых материалов, изделий, людей. В помещениях могут осуществляться технологические процессы с выделением теплоты [13, 25].

Сведением всех составляющих поступлений и расхода теплоты в тепловом балансе помещения определяется дефицит или избыток теплоты. Дефицит теплоты указывает на необходимость устройства в помещении отопления, избыток теплоты обычно ассимилируется воздухом и с ним отводится из помещения вентиляцией. Для определения тепловой мощности системы отопления составляют баланс часовых расходов теплоты для расчетного зимнего периода в виде

$$\Sigma Q_{\rm o} = Q_{\rm orp} + \Sigma Q_{\rm d} + Q_{\rm u} + Q_{\rm texh}, \qquad (1.1)$$

где $Q_{\text{огр}}$ — основные потери теплоты через ограждающие конструкции здания, Вт; $\Sigma Q_{\text{д}}$ — суммарные добавочные потери теплоты через ограждающие конструкции здания, Вт; $Q_{\text{и}}$ — расход тепла на нагревание воздуха, поступающего в помещение при инфильтрации и вентиляции, если эти составляющие не учтены в тепловом балансе для расчета вентиляции, Вт; $Q_{\text{техн}}$ — дебаланс между

расходом тепла на технологические нужды и минимальными технологическими и бытовыми теплопоступлениями, Вт.

Расчетная тепловая мощность системы отопления соответствует максимальному дефициту теплоты. Результаты расчета заносятся в табл. 1.1.

Tаблица 1.1 Ведомость расчета теплопотерь помещений

на- °С			ристи :дения		\bigcirc												Т
№ пом., н знач., <i>t</i> в,	наим.	ориен.	размер, м×м	$A_{\rm M}^2$	k , $B_{\rm T}/({ m M}^2$ $^{\circ}$	$n(t_{\scriptscriptstyle \mathrm{B}}-t_{\scriptscriptstyle \mathrm{H}}),$	Qorp, Br	ориен.	прочие	$Q_{ m orp} + Q_{ m L}$	$Q_{\scriptscriptstyle \mathrm{H}},\mathrm{BT}$	Q_6, Br	$\Sigma Q_{ m o,}$ BT				
1	2	3	4	5	6	7	8	9	10	11	12	13	14				

1.1.2. Основные потери теплоты через ограждающие конструкции зданий

Основные потери теплоты $Q_{\text{огр}}$, Вт, через рассматриваемые ограждающие конструкции зависят от разности температуры наружного и внутреннего воздуха и рассчитываются с точностью до 10 Вт по формуле [17]

$$Q_{\rm orp} = A \cdot k \left(t_{\scriptscriptstyle \rm B} - t_{\scriptscriptstyle \rm H} \right) n, \tag{1.2}$$

где n — коэффициент, зависящий от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, принимаемый по [16]; $t_{\rm B}$ — расчетная температура воздуха помещения, °C, принимаемая по [4, 5]; $t_{\rm H}$ — расчетная зимняя температура наружного воздуха, °C, равная средней температуре наиболее холодной пятидневки с обеспеченностью 0,92, принимаемая по [15]; k — коэффициент теплопередачи наружного ограждения, ${\rm BT/(m^2\cdot ^\circ C)}$; A — расчетная поверхность ограждающей конструкции, ${\rm M}^2$.

При проведении расчетов пользуются следующими условными обозначениями ограждающих конструкций: НС – наружная стена; ВС – внутренняя стена; ДО – окно с двойным остек-

лением; TO – окно с тройным остеклением; $\Pi \tau$ – потолок; $\Pi \pi$ – пол; HД – наружная дверь.

Теплопотери через внутренние ограждения между смежными помещениями следует учитывать при разности температуры воздуха $t_{\rm B}$ этих помещений более 3 °C.

Теплопотери для лестничной клетки определяются для всех этажей сразу, через все ограждающие конструкции, как для одного помещения.

Обмер площадей наружных ограждений производится с соблюдением определенных правил:

- площадь окон и дверей по наименьшим размерам проемов в свету;
- площадь потолков и полов по расстоянию между осями внутренних стен и расстоянию от внутренней поверхности наружных стен до осей внутренних стен;
- высота стен первого этажа по расстоянию от уровня нижней поверхности конструкции пола первого этажа до уровня чистого пола второго этажа при наличии неотапливаемого подвала;
- высота стен промежуточного этажа по расстоянию между уровнями чистого пола данного и вышележащего этажей;
- высота стен верхнего этажа по расстоянию от уровня чистого пола до верха утеплителя чердачного перекрытия;
- длина наружных стен в угловых помещениях по расстоянию от внешних поверхностей наружных стен до осей внутренних стен, а в неугловых помещениях по расстоянию между осями внутренних стен.
- длина внутренних стен по размерам от внутренних поверхностей наружных стен до осей внутренних стен или между осями внутренних стен.

1.1.3. Дополнительные потери теплоты через ограждающие конструкции зданий

Дополнительные теплопотери, определяемые ориентацией ограждений (стен, дверей и световых проемов) по сторонам света, рассчитываются как

$$Q_{\text{д.op}} = Q_{\text{огр}} \cdot \beta_{\text{op}},$$
 (1.3)

где $\beta_{\rm op}$ — коэффициент добавки на ориентацию (рис. 1.1); $Q_{\rm orp}$ — основные теплопотери через данное ограждение, Вт.

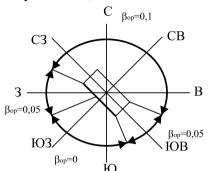


Рис. 1.1. Значения коэффициента добавок на ориентацию

Прочие дополнительные теплопотери:

- а) при наличии двух и более наружных стен принимается добавка на все вертикальные ограждения, равная 0,05;
- б) для угловых помещений и помещений, имеющих два и более наружных вертикальных ограждения, температуру внутреннего воздуха принимают для жилых зданий на 2 °С выше расчетной, а для зданий другого назначения повышение температуры учитывают 5%-й добавкой к основным теплопотерям вертикальных наружных ограждений;
- в) дополнительные потери теплоты на нагревание холодного воздуха, поступающего при кратковременном открывании наружных входов, не оборудованных воздушно-тепловыми завесами, принимаются в зависимости от типа входных дверей и высоты здания H, м:
 - для тройных дверей с двумя тамбурами между ними

$$Q_{\text{д.н.д}} = Q_{\text{огр.н.д}} (0, 2 \cdot H);$$
 (1.4)

- для двойных дверей с тамбурами между ними

$$Q_{\text{д.н.д}} = Q_{\text{огр.н.д}} (0.27 \cdot H);$$
 (1.5)

– для двойных дверей без тамбура

$$Q_{\text{д.н.д}} = Q_{\text{огр.н.д}} (0.34 \cdot H);$$
 (1.6)

– для одинарных дверей

$$Q_{\text{д.н.д}} = Q_{\text{огр.н.д}} (0.22 \cdot H),$$
 (1.7)

где $Q_{\text{огр.нд}}$ — основные теплопотери через наружные двери в помещении лестничной клетки.

1.1.4. Расчет расхода теплоты на нагрев инфильтрующегося наружного воздуха

При естественной вытяжной вентиляции в помещениях жилых и общественных зданий приточный нормируемый расход воздуха может складываться из поступлений в помещения либо в виде суммарного расхода, равного расходам приточного, нагретого в приточных установках, и инфильтрационного воздуха (без предварительного нагревания). В этом случае инфильтрационный поток воздуха является организованным, задаваемым в исходных условиях параметром $L_{\rm H}$, величина которого формируется в результате дебаланса между задаваемыми вентиляционными вытяжным и приточным воздухообменами. Расход теплоты $Q_{\rm H}$, Вт, на нагревание этого организованного инфильтрационного потока определяется по формуле [21]

$$Q_{_{\mathrm{H}}} = 0.28 \cdot L_{_{\mathrm{H}}} \cdot \rho_{_{\mathrm{B}}} \cdot c \left(t_{_{\mathrm{B}}} - t_{_{\mathrm{H}}} \right), \tag{1.8}$$

где $L_{\rm H}$ — расход приточного, предварительно не подогреваемого инфильтрующегося воздуха, м³/ч; $\rho_{\rm B}$ — плотность воздуха в помещении, кг/м³, $\rho_{\rm B} = \frac{353}{273 + t_{\rm B}}$; c — удельная теплоемкость воздуха, равная 1,005 кДж/(кг.°С).

Для жилых зданий приточный воздухообмен нормируется удельным расходом 3 м 3 /ч на 1 м 2 площади жилых помещений и кухни ($L_{\rm H}$ = $3\cdot A_{\rm пола}$), что соответствует примерно однократному воздухообмену.

При неорганизованной инфильтрации через существующие неплотности и щели в стенах, воротах, окнах, фонарях зданий различного назначения расход теплоты $Q_{\rm H}$, Вт, определяется по формуле

$$Q_{\scriptscriptstyle \rm H} = 0.28 \cdot \Sigma G_{\scriptscriptstyle \rm H} \cdot c \left(t_{\scriptscriptstyle \rm B} - t_{\scriptscriptstyle \rm H} \right) k_{\scriptscriptstyle \rm T}, \tag{1.9}$$

где $G_{\rm H}$ — расход инфильтрующегося воздуха, кг/ч, через ограждающие конструкции помещения; $k_{\rm T}$ — коэффициент учета влияния встречного теплового потока в конструкциях, равный 0,7 для стыков панелей стен и окон с тройными переплетами, 0,8 — для окон и балконных дверей с раздельными переплетами и 1 — для одинарных окон, окон и балконных дверей со спаренными переплетами и открытых проемов; $t_{\rm B}$, $t_{\rm H}$ — расчетные температуры воздуха, °C.

При естественной вытяжной вентиляции в помещениях общественных зданий расчет выполняется по выражениям (1.8) и (1.9), при этом принимается за расчетное значение большая из величин.

Расход инфильтрующегося воздуха $\Sigma G_{\rm H}$ через отдельные ограждающие конструкции определяется по [17], где учитывается воздухопроницаемость стен, стыков стеновых панелей, неплотностей окон, дверей, ворот и фонарей. Ввиду незначительности инфильтрационных потоков через стены и стыки стеновых панелей современных зданий (кроме деревянных щитовых, рубленных и т. п.) выражение для определения расхода инфильтрующегося воздуха в помещении $\Sigma G_{\rm H}$, кг/ч, можно ограничить только двумя его членами

 $\Sigma G_{\rm H} = \Sigma A_2 \cdot G_{\rm H}^* \left(\Delta P_i/\Delta P_1\right)^{0.67} + 3456 \cdot \Sigma A_3 \cdot \Delta p_1^{0.67},$ (1.10) где $G_{\rm H}^*$ – нормативная воздухопроницаемость наружных ограждающих конструкций, кг/(м²·ч), принимаемая по [16]; A_2 – площадь, м², световых проемов (окон, балконных дверей, фонарей); A_3 – площадь, м², щелей, неплотностей и проемов в наружных ограждающих конструкциях; ΔP_i , ΔP_1 – расчетные разности давлений на наружной и внутренней поверхностях ограждающих конструкций соответственно на расчетном этаже при ΔP_1 =10 Па.

Расчетная разность ΔP_i , Па, давлений воздуха на наружную и внутреннюю поверхность ограждений определяется по формуле

 $\Delta P_i = (H-h) (\rho_H-\rho_B) g + 0.5 \cdot \rho_H \cdot v^2 (c_H-c_\Pi) k_v - P_{int},$ (1.11) где H – высота здания, м, от уровня средней планировочной отметки земли до верха карниза, центра вытяжных отверстий фо-

наря или устья шахты; h — расчетная высота, м, от уровня земли до верха окон, балконных дверей, наружных дверей, ворот, проемов или до оси горизонтальных и середины вертикальных стыков стеновых панелей; $\rho_{\rm H}$ — плотность наружного воздуха, кг/м³, определяемая по формуле

$$\rho_{H} = \frac{353}{273 + t_{..}}; \tag{1.12}$$

g — ускорение силы тяжести, м/c^2 ; v — скорость ветра, м/c, принимаемая по [15] по параметрам Б (если скорость ветра при параметрах Б меньше, чем при параметрах А, то следует принимать по параметрам А); c_{H} , $c_{\text{п}}$ — аэродинамические коэффициенты для наветренной и подветренной поверхностей ограждений здания, соответственно принимаемые по [14]: c_{H} = 0,8, $c_{\text{п}}$ = -0,6; k_{v} — коэффициент учета изменения скоростного давления ветра в зависимости от высоты здания, принимаемый по табл. 1.2; P_{int} — давление воздуха в помещении, Па.

 Таблица 1.2

 Коэффициент учета изменения скоростного давления ветра

Высота над поверхностью земли H , м	10	20	30	40
k_{v}	0,4	0,55	0,7	0,8

Для помещений жилых и общественных зданий, оборудованных только естественной вытяжной вентиляцией, давление P_{int} можно принять равным потере давления в вытяжной системе

$$P_{int} = h_i \cdot g \left(\rho_{+5^{\circ}\text{C}} - \rho_{\text{B}} \right), \tag{1.13}$$

где h_i — расстояние по вертикали от центра вытяжной решетки до верхней кромки вытяжного канала или шахты, м; $\rho_{+5^{\circ}\text{C}}$ — плотность наружного воздуха при t_{H} = +5 °C, кг/м³.

При наличии в помещении дебаланса механического воздухообмена значение P_{int} определяется из уравнения воздушного баланса помещения.

1.1.5. Дополнительные бытовые теплопоступления в помещения

При расчете тепловой мощности системы отопления необходимо учитывать регулярные бытовые теплопоступления в помещение от электрических приборов, коммуникаций, тела человека и других источников. При этом значения бытовых тепловыделений, поступающих в комнаты и кухни жилых домов, следует принимать в количестве не менее 10 Вт на 1 м² площади пола и определять по уравнению, Вт,

$$Q_{6}=10 \cdot A_{\text{пол}},$$
 (1.14)

где $A_{\text{пол}}$ – площадь пола отапливаемого помещения, м².

Пример 1.1. Расчет тепловой мощности трехэтажного жилого здания

Исходные данные

- 1. План и разрез жилого здания представлены на рис. 1.2.
- 2. Расчетная температура наружного воздуха для г. Томска $t_{\rm H}$ = –40 °C [15]. Расчетные температуры внутреннего воздуха: жилая комната 21 °C, кухня 19 °C, лестничная клетка 16 °C [5].
 - 3. Характеристика наружных ограждений здания:
- а) толщина наружной стены $\delta_{\rm Hc}$ = 400 мм с коэффициентом теплопередачи $k_{\rm Hc}$ = 0,236 Bt/(м².°C);
- б) толщина перекрытия над неотапливаемым подвалом $\delta_{\text{пл}}=350$ мм с коэффициентом теплопередачи $k_{\text{пл}}=0.2$ Вт/(м²°C);
- в) толщина чердачного перекрытия $\delta_{\rm nr}$ = 450 мм с коэффициентом теплопередачи $k_{\rm nr}$ = 0,193 BT/(м².°С);
- г) окна двойные в деревянных переплетах с коэффициентом теплопередачи $k_{\text{до}}$ = 1,818 Bt/(м^{2.o}C);
- д) наружные двери двойные с тамбуром с коэффициентом теплопередачи $k_{\rm H,I}=0.394~{\rm BT/(m^2.oC)};$
- е) коэффициент теплопередачи внутренней стены здания $k_{\rm BC}$ = 1,63 Bt/(м^{2.o}C).

- 4. Коэффициент n при наличии чердака и подвального помещения принимается равным: для наружных стен, окон и дверей n = 1, для пола первого этажа и потолка третьего этажа n = 0.9 [16].
 - 5. Высота помещения h = 3.0 м.

Порядок расчета

1. Определяем расчетную высоту этажей и высоту здания; толщина межэтажного перекрытия принимается равной $\delta_{\text{птэ}}$ = 300 мм:

$$h_1 = h + \delta_{\Pi\Pi} + \delta_{\Pi\Pi} = 3,0 + 0,35 + 0,3 = 3,65 \text{ M};$$

 $h_2 = h + \delta_{\Pi\Pi} = 3,0 + 0,3 = 3,3 \text{ M};$
 $h_3 = h + \delta_{\Pi\Pi} = 3,0 + 0,45 = 3,45 \text{ M};$
 $H_{3\Pi} = h_1 + h_2 + h_3 + 0,7 = 11,1 \text{ M}.$

2. Определяем расчетный коэффициент теплопередачи для окна по выражению

$$k_{\text{ok}} = k_{\text{no, To}} - k_{\text{HC}} = 1,818 - 0,236 = 1,582 \text{ BT/M}^2 \,^{\circ}\text{C},$$

где $k_{\text{до,то}}$ – коэффициент теплопередачи окна, полученный по результату теплотехнического расчета, $\text{Bt/m}^2\,^{\circ}\text{C}$.

- 3. Определяем основные и дополнительные потери теплоты через ограждающие конструкции здания согласно подразд. 1.1.2, 1.1.3 и результаты расчетов заносим в табл. 1.3 (графы 1–11).
- 4. Производим расчет расхода теплоты на нагрев инфильтрующегося наружного воздуха согласно подразд. 1.1.3. Расчет выполняем по выражениям (1.8) и (1.9), при этом принимаем за расчетное значение большую из величин. Результаты расчетов заносим в графу 12 табл. 1.3.
- 5. Рассчитываем дополнительные бытовые поступления теплоты в помещения по уравнению (1.14) подразд. 1.1.4, которые заносим в графу 13 табл. 1.3.
- 6. Составляем тепловой баланс каждого помещения здания согласно выражению (1.1) подразд. 1.1.1. Результаты расчетов заносим в графу 14 табл. 1.3. Определяем тепловую мощность системы отопления здания суммированием значений графы 14 табл. 1.3.

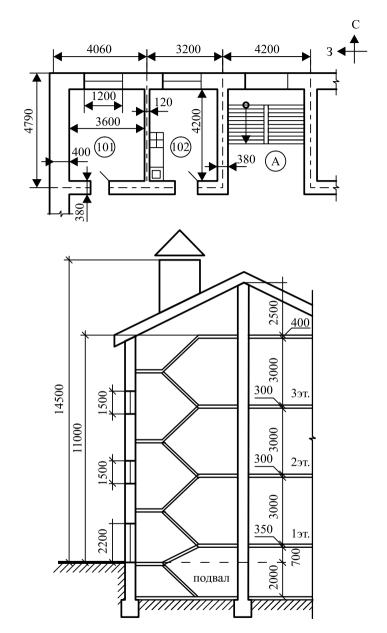


Рис. 1.2. План 1-го этажа и разрез здания

Таблица 1.3

Ведомость расчета теплопотерь помещений

	Σ <u>0</u> ., Βτ	1875		1136	2746
	$Q_{\delta},$ BT	13	161	141	1
	$Q_{ m lb}$ BT	12	1022	849	1038
	$Q_{ m orp}^{+} + Q_{ m a}, \ { m Br}$	11	253 286 206 1183 86 1014	179 185 150 –86	678 315 351 185 179 1708
Br	проч.	10	11,0 13,0 9,0 -	1 1 1 1	230
$Q_{\scriptscriptstyle m II}$	ориен.	6	22,0 13,0 17,9 	16,3 16,8 	61,6 7,7 31,9
	$Q_{ m orp}, \ m BT$	8	220 260 179 183 86	163 168 150 –86	616 77 319 185 179
	$n(t_{\scriptscriptstyle \mathrm{B}}-t_{\scriptscriptstyle \mathrm{H}}),$	7	63 63 63 56,7 23–19	59 59 53,1 19–23	56 56 56 50,4 50,4
	k , $\mathrm{Br/(M^2 ^oC)}$	9	0,236 0,236 1,582 0,2 1,63	0,236 1,582 0,2 1,63	0,236 0,394 1,582 0,2 0,193
RIU	A, w	5	14,82 17,5 1,8 16,1 13,2	11,7 1,8 14,1 13,2	46,6 3,5 3,6 18,4 18,4
Характеристика ограждения	размер, м×м	4	4,06×3,65 4,79×3,65 1,2×1,5 3,66×4,39 4,39×3,0	3,2×3,65 1,2×1,5 3,2×4,39 4,39×3,0	4,2×11,1 1,6×2,2 1,2×1,5×2 4,2×4,39 4,2×4,39
рактерис	ориен.	3	0 8 0 1 1	C C	00011
X	наим.	2	НС ДО Пл ВС	НС ДО Пл ВС	НС НД ДО ПЪ Пъ
	№ пом., назнач., _{tв} , °С	1	101 Жилая комната, 23°C	102 Кухня, 19°С	А ЛК, 16°С

Окончание табл. 1.3

		2 <u>0</u> %, BT	14		1640		970			1838			1120		11325
	$Q_{6},$ BT		13		161		141				141		Итого		
		Вт	12		1022 161		849		1022 161				849		И
	$Q_{ m orp} + Q_{ m a},$	BT	11	229 258	206 86	622	163 185 –86	262	239	206 176 86	226	169	145 -86	412	
		проч.	10	$\frac{10,0}{11,7}$	9,0		1 1 1		10,4 $12,3$	9,0		1 1	1 1		
	$Q_{\pi}, \operatorname{Br}$	ориен.	6	19,9	9,0		14,8 16,8 -		20,8 12,3	17,9		15,4) 		
	$Q_{ m orp},$	Br	8	199	179 86		148 168 –86		208 245	179 176 86		154	145 -86		
	$n(t_{\rm B}-t_{\rm H}),$	J,	7	63	63 23–19		59 59 19–23		63 63	63 56,7 23–19		59	53,1 19–23		
	<i>k</i> ,	$B_{\rm T}/({ m M}^2{ m ^{\circ}C})$	9	0,236	1,582 1,63		0,236 1,582 1,63		0,236	1,582 0,193 1,63		0,236	0,193		
		A,	5	13,4 15,8	1,8 13,2		10,6 1,8 13,2		14 16,5	1,8 16,1 13,2		11,04	14,1 13,2		
	Характеристика ограждения	размер, м×м	4	4,06×3,3	1,2×1,5 4,39×3.0		3,2×3,3 1,2×1,5 4,39×3		4,06×3,45 4,79×3,45	1,2×1,5 3,66×4,39 4,39×3,0		$3,2\times3,45$	3,2×4,39 4,39×3		
	терист	ори- ен.	3	O m	C		CC		C 3	CII		C)		
	Харак	наим.	2	HC	ДО ВС		НС ДО ВС		HC	AO IIr BC		HC	IIT BC		
;	Nº ⊓OM.,	назнач., t_{b} , $^{\circ}\mathrm{C}$	1	201	Ж. к., 23 °С		202 Кухня, 10%	13.0		301 Ж. к., 23 °C		202	302 Кухня, 19°С		

Пример 1.2. Расчет расхода теплоты на нагрев инфильтрующегося наружного воздуха через окно помещения

Исходные данные

- 1. Помещение кухни № 102 на рис. 1.2 оборудовано естественной вытяжной вентиляцией с нормальным воздухообменом 3 $\text{м}^3/\text{ч}$ на 1 м^2 пола помещения.
- 2. Высота здания от уровня земли до верха вытяжной шахты естественной вентиляции $H=14,55\,\mathrm{m}$. Расчетная высота от уровня земли до верха окна $h=3,45\,\mathrm{m}$, при расстоянии от пола до подоконника 0,9 м (см. рис. 1.2). Расстояние от центра вытяжной решетки до верха вытяжной шахты $h_i=10,85\,\mathrm{m}$.
- 3. Площадь пола комнаты 102 по рис. 1.2 $A_{\text{пола}}$ =14,1 м²; размеры окна 1,2×1,5 м.
- 4. Плотность наружного воздуха при $t_{\rm H}$ = -40 °C $\rho_{\rm H}$ =1,515 кг/м³; плотность внутреннего воздуха при $t_{\rm B}$ = +19 °C $\rho_{\rm B}$ =1,209 кг/м³; плотность наружного воздуха при $t_{\rm H}$ = +5 °C ρ_{+5} °C =1,27 кг/м³.
- 5. Скорость ветра, принимаемая по [15], для г. Томска v = 4.7 м/с. Нормативная воздухопроницаемость оконного проема, принимаемая по [16], $G_{+}^* = 5$ кг/(м³·ч).
- 6. Аэродинамические коэффициенты для наветренной и подветренной поверхностей ограждений здания, принимаемые по [14], $c_{\rm H}$ = 0,8, $c_{\rm H}$ = -0,6.

Порядок расчета

1. Расчет производим согласно методике, представленной в подразд. 1.1.4. Вычисляем давление воздуха в жилом помещении по формуле (1.13)

$$P_{int}$$
=10,85 · 9,81 (1,27–1,209) = 6,5 Π a.

2. Определяем разность давлений воздуха на наружную и внутреннюю поверхность ограждения (окна первого этажа) по формуле (1.11)

$$\Delta P = (14,55-3,45) (1,515-1,209) 9,81+$$

+0,5 · 1,515 · 4,7² (0,8+0,6) 0,475 -6,5 = 37,95 Па,

где коэффициент учета изменения скоростного давления ветра при высоте здания H = 14,55 м по табл. 1.2 принимается равным $k_v = 0,475$.

3. Вычисляем расход инфильтрующегося воздуха через окно первого этажа по формуле (1.10)

$$\Sigma G_{\rm H} = (1,2\cdot1,5) \ 5 \ (37,95/10)^{0,67} = 22,0 \ {\rm KF/Y}.$$

4. Рассчитываем по формуле (1.9) расход теплоты для нагревания инфильтрующегося воздуха через окно первого этажа вследствие действия теплового и ветрового давления:

$$Q_{\text{H}} = 0.28 \cdot 22.0 \cdot 1.005 (19+40) 0.8 = 292 \text{ BT},$$

где коэффициент учета влияния встречного теплового потока для окон с раздельными переплетами принимается равным $k_{\rm r}$ = 0,8.

5. Вычисляем по формуле (1.8) расход теплоты для нагревания инфильтрующегося воздуха при естественной вентиляции, не компенсируемый притоком подогретого воздуха:

$$Q_{\text{H}} = 0.28 (3 \cdot 14.1) 1.209 \cdot 1.005 (19+40) = 849 \text{ Bt}.$$

За расчетную величину следует принять большее из полученных значений $Q_{\rm u}$ = 849 Вт и записать в графу 12 табл. 1.3.

Пример 1.3. Определение температуры внутреннего воздуха помещения на основе составления теплового баланса

Исходные данные

- 1. На рис. 1.3 приведены план и разрез неотапливаемого подвала, над которым находятся отапливаемые жилые помещения с температурой внутреннего воздуха $t_{\rm B}$ = +20 °C. Стены подвала выше уровня тротуара выложены из красного кирпича на тяжелом растворе, ниже из бетонных блоков толщиной 90 см; пол подвала бетонный; бетон приготовлен с каменным щебнем. Окна подвала двойные, размером 1,0×0,6 м.
- 2. Коэффициент теплопередачи окна $k_{\text{до}}$ = 1,84 Вт/м² °С. Коэффициент теплопередачи наружной кирпичной стены подвала $k_{\text{нс}}$ = 0,43 Вт/м² °С. Коэффициент теплопередачи перекрытия над подвалом $k_{\text{пл}}$ = 0,575 Вт/м² °С.

- 3. Коэффициенты теплопередачи для неутепленного пола принимают равными для I зоны 0,465, для II зоны 0,233, для III зоны 0,116 и для IV зоны 0,07 Bt/m^2 °C.
- 4. Определить минимальную температуру воздуха в подвале, если $t_{\rm H}$ = -32 °C.

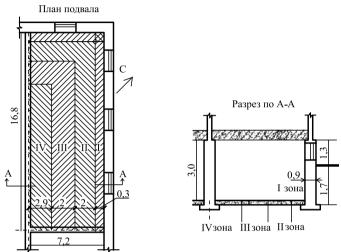


Рис. 1.3. План и разрез помещения

Порядок расчета

- 1. Температура воздуха в подвале определяется на основании баланса тепла, поступающего в подвал из вышележащих отапливаемых помещений и теряемого через наружные ограждения. Обозначим температуру воздуха подвала через t_x .
- 2. Теплопоступления через перекрытие в подвал можно определить согласно выражению (1.2)

$$Q_{\text{пост}} = k_{\text{пл}} \cdot A_{\text{пл}} \cdot (t_{\text{в}} - t_{x}) =$$

$$= 0,574 \cdot 7,2 \cdot 16,8(20 - t_{x}) = 69,43(20 - t_{x}) \text{ Bt.}$$

3. Определяем теплопотери через надземную часть подвала.

Угловые наружные стены ориентированы: одна на северозапад, вторая – на северо-восток. А так как добавки на эти стороны света к основным теплопотерям помещения одинаковы (см. подразд. 1.1.3), то нет необходимости подсчитывать теплопотери порознь для каждой наружной стены.

Общая длина обеих стен составит:

$$l = (16,8+0,9) + (7,2+0,9) = 25,8 \text{ M}.$$

Добавки к основным теплопотерям: на стороны света 10%, на угловое помещение 5%, на ветер 5% – всего 20%.

Теплопотери через наружные стены и окна по формуле (1.2) составляют:

$$Q_{\text{пот.над}} = \left[k_{\text{нс}} \cdot A_{\text{нс}} + k_{\text{до}} \cdot A_{\text{до}}\right] (t_x - t_{\text{н}}) \beta =$$

$$\left[0,43 \cdot 25,8 \cdot 1,3 + (1,84 - 0,43)1,0 \cdot 0,6 \cdot 4\right] (t_x + 32)1,2 =$$

$$= 21,37(t_x + 32) \text{ Bt.}$$

4. Определяем теплопотери через подземную часть подвала.

Всю подземную часть стены и пол подвала от уровня тротуара до осей внутренних стен делим на 2-метровые зоны.

Коэффициент теплопроводности бетона с каменным щебнем равен λ =1,86 Bt/(м·°C) >1, поэтому стеновые блоки и пол рассматриваем как неутепленные конструкции, коэффициенты теплопередачи которых определяем по [18].

Площадь І зоны

$$A_{\rm I} = (16.8 \cdot 1.7 + 7.2 \cdot 1.7) + (16.8 \cdot 0.3 + 7.2 \cdot 0.3) = 48.0 \text{ m}^2.$$

Площадь II зоны

$$A_{\text{II}} = (16.8 - 2.3)2 + (7.2 - 0.3)2 = 42.8 \text{ m}^2.$$

Площадь III зоны

$$A_{\text{III}} = (16.8 - 4.3)2 + (7.2 - 2.3)2 = 34.8 \text{ m}^2.$$

Площадь IV зоны

$$A_{IV} = (16,8-4,3) + (7,2-4,3) = 15,4 \text{ m}^2.$$

Теплопотери через подземную часть стены и пол подвала по формуле (1.2) составляют:

$$Q_{\text{пот.под}} = \left[k_{\text{I}} \cdot A_{\text{I}} + k_{\text{II}} \cdot A_{\text{II}} + k_{\text{III}} \cdot A_{\text{III}} + k_{\text{IV}} \cdot A_{\text{IV}} \right] (t_{x} - t_{\text{H}}) =$$

$$= \left[0,465 \cdot 48,0 + 0,233 \cdot 42,8 + 0,116 \cdot 34,8 + 0,07 \cdot 15,4 \right] (t_{x} + 32) =$$

$$= 37,41 (t_{x} + 32) \text{ Bt.}$$

5. Составляем уравнение баланса тепла для ограждающих конструкций подвала

$$Q_{\text{пост}} = Q_{\text{пот.над}} + Q_{\text{пот.под}},$$

$$69,43(20 - t_x) = 21,37(t_x + 32) + 37,41(t_x + 32).$$

После преобразования получаем отрицательное значение температуры воздуха в подвале $t_x = -3.84$ °C.

Пример 1.4. Расчет основных теплопотерь через утепленные полы, расположенные на грунте на лагах

Исходные данные

Определить теплопотери через полы жилой комнаты № 101 (рис. 1.4).

Порядок расчета

Расчет теплопотерь через полы для каждого помещения здания производим в следующем порядке. Результаты записываем по форме табл. 1.1, графы 2–7.

1. Вычерчиваем план первого этажа здания в масштабе 1:100 с указанием всех размеров (рис. 1.4) и наносим расположение всех четырех зон.

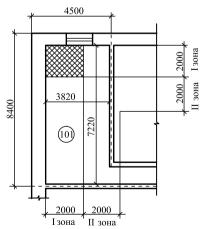


Рис. 1.4. Фрагмент плана к примеру 1.4

- 2. В графе 2 указываем условное обозначение отдельных зон полов ПлІ, ПлІІ и т. д. Например, в жилой комнате № 101 размещаются только первая и часть второй зоны.
- 3. В графе 4 записываем размеры каждой зоны, расположенной в данном помещении. Например, размеры первой зоны составляют $2,0\times7,72$ и $2,0\times3,82$, а второй зоны $-1,82\times5,72$. Расчеты производятся с точностью до 0,1 м.
- 4. В графе 5 указываем площади каждой зоны с точностью до $0.1~\text{m}^2$.
- 5. В графе 6 записываем значения коэффициента теплопередачи для каждой зоны. Например, $k_{\rm I}$ = 0,33 Bt/(м² °C); $k_{\rm II}$ = 0,18 Bt/(м² °C).
- 6. В графе 7 коэффициент *п* принимается равным 1, т. к. ограждение имеет непосредственный контакт с окружающей средой.

1.2. Водяное отопление

1.2.1. Гидравлический расчет системы водяного отопления

На основе гидравлического расчета осуществляется выбор диаметра труб d, мм, обеспечивающий при располагаемом перепаде давления в системе отопления $\Delta P_{\rm p}$, Па, пропуск заданных расходов теплоносителя G, кг/ч. Перед гидравлическим расчетом должна быть выполнена пространственная схема системы отопления в аксонометрической проекции.

1.2.1.1. Гидравлический расчет главного циркуляционного кольца по удельной линейной потере давления

Способ заключается в подборе диаметров труб при равных перепадах температуры воды во всех стояках и ветвях [3, 7, 8]. Рассмотрим последовательность гидравлического расчета.

1. На основании расчета теплопотерь на аксонометрической схеме наносят тепловые нагрузки отопительных приборов и стояков.

Далее выбирают главное циркуляционное кольцо.

Главным считают циркуляционное кольцо, в котором расчетное циркуляционное давление, приходящееся на единицу длины кольца, имеет наименьшее значение.

В вертикальной однотрубной системе — это кольцо через наиболее нагруженный стояк из удаленных от теплового пункта стояков при тупиковом движении воды или также через наиболее нагруженный стояк, но из средних стояков при попутном движении воды в магистралях.

В вертикальной двухтрубной системе — это кольцо через нижний отопительный прибор наиболее нагруженного из удаленных от теплового пункта стояков при тупиковом движении воды или наиболее нагруженного из средних стояков при попутном движении воды в магистралях.

В горизонтальной однотрубной системе многоэтажного здания основное циркуляционное кольцо выбирают по меньшему значению расчетного циркуляционного давления, приходящегося на единицу длины кольца в кольцах через ветви на верхнем и нижнем этажах. Так же поступают при расчете системы с естественной циркуляцией воды, сравнивая значения расчетного циркуляционного давления в циркуляционных кольцах через отопительные приборы, находящиеся на различных расстояниях от теплового пункта.

2. Выбранное циркуляционное кольцо разбивают на участки по ходу движения теплоносителя, начиная от теплового пункта. За расчетный участок принимают отрезок трубопровода с постоянным расходом теплоносителя. Для каждого расчетного участка надо указать порядковый номер, длину l, тепловую нагрузку $Q_{\rm yq}$ и диаметр d.

При гидравлическом расчете стояков вертикальной однотрубной системы каждый проточный и проточно-регулируемые стояки, состоящие из унифицированных узлов, рассматриваются как один общий расчетный участок. При наличии стояков с замыкающими участками приходится производить разделение на

участки с учетом распределения потоков воды в трубах каждого приборного узла.

Результаты гидравлического расчета заносятся в табл. 1.4.

Таблица 1.4 Ведомость гидравлического расчета

Расход теплоносителя на участке, кг/ч, определяется по формуле

$$G_{yq} = \frac{3.6 \cdot Q_{yq} \cdot \beta_1 \cdot \beta_2}{(t_r - t_0)c},$$
(1.15)

где β_1 и β_2 — поправочные коэффициенты, учитывающие дополнительную теплоотдачу в помещение, принимаемые по табл. 1.5–1.7; Q_{yq} — тепловая нагрузка участка, Вт; c — удельная массовая теплоемкость воды, равная 4,187 кДж/(кг·°С); t_{Γ} и t_0 — соответственно температура воды в подающей и обратной магистрали, °С.

Задавшись диаметром d по табл. 1.8 и определив количество воды на участке $G_{\rm yq}$, по прил. 1 определяем скорость движения воды v и фактическое значение удельного сопротивления R.

Сумму коэффициентов местных сопротивлений (КМС) на участке $\Sigma \xi$ определяем по прил. 2. Предварительно необходимо провести подробный расчет принятых значений местных сопротивлений по участкам.

Таблица 1.5 Номенклатурный ряд отопительных приборов

Обозначение прибора	Шаг номенклатурного ряда отопительных приборов
Радиаторы чугунные секционные:	
MC-140-108	185
MC-140-98	174
M-140 AO	178
M-140A	164
M-90	140
MC-90-108	150
Радиаторы стальные панельные типа РСВ:	
однорядные	174
двухрядные	301
Конвектор настенный с кожухом «Универсал»	131
Конвектор настенный с кожухом «Универсал-С»	122
Конвектор настенный с кожухом «Комфорт–20»	165

Таблица 1.6

Значение коэффициента В1

Шаг номенклатурного ряда отопительных приборов, Вт	β_1
120	1,02
150	1,03
180	1,04
210	1,06

Примечание. Для отопительных приборов помещений с номинальным тепловым потоком более 2300 Вт следует принимать коэффициент β'_1 =0,5 (1+ β_1) вместо β_1 .

Таблица 1.7 Значение коэффициента β₂

Отопительный прибор β₂ Радиатор: 1,02 чугунный секционный 1,04 Конвектор: 1,02 с кожухом 1,02 без кожуха 1,03

Таблица 1.8 **Рекомендуемые диаметры трубопроводов**

Трубопроводы	Диаметры, мм			
Магистрали	25; 32; 40; 50; 65; 80			
Стояки	20; 25			
Подводки к трубопроводам	15			

При расчете отдельных участков теплопровода необходимо иметь в виду следующее: местное сопротивление тройников и крестовин относят лишь к расчетным участкам с наименьшим расходом воды; местные сопротивления отопительных приборов, котлов и подогревателей учитывают поровну в каждом примыкающем к ним теплопроводе.

Для стальных трубопроводов потери давления на местные сопротивления Z, Па, могут быть определены по прил. 3, если известны значения $\Sigma \xi$ и скорости движения воды на участке ν . Если материал трубопроводов системы отопления другой, то необходимо воспользоваться данными [19, 20].

1.2.1.2. Гидравлический расчет второстепенного циркуляционного кольца

После гидравлического расчета главного кольца должна быть выполнена увязка расходуемых давлений в малом циркуляционном кольце через ближайший стояк главного циркуляционного кольца. При этом должно выполняться следующее условие:

ного кольца. При этом должно выполняться следующее условие:
$$\frac{\Sigma (Rl+Z)_{_{\Gamma\!\Pi,K}} - \Sigma (Rl+Z)_{_{\!M,K}}}{\Sigma (Rl+Z)_{_{\!\Gamma\!\Pi,K}}} 100 \leq A, \quad \%. \tag{1.16}$$

Потери давления в увязываемых между собой циркуляционных кольцах (без общих участков) могут отличаться не более чем на 15 % при тупиковой схеме и на 5 % при попутной схеме движения теплоносителя в системе отопления.

При невозможности увязки потерь давления предусматривается установка диафрагмы (дроссельной шайбы) диаметром, мм:

$$d_{\rm III} = 10\sqrt[4]{G_{\rm yq}^2/\Delta P_{\rm III}}, \tag{1.17}$$

где ΔP_{III} – разница давлений между кольцами, м вод. ст.; $G_{\text{уч}}$ – расход теплоносителя на участке, т/ч.

Пример 1.5. Гидравлический расчет главного

циркуляционного кольца однотрубной системы отопления с верхней разводкой и тупиковым движением теплоносителя

Исходные данные

- 1. Здание трехэтажное, присоединение системы отопления через смесительный насос, теплопроводы изготовлены из стальных водогазопроводных труб.
- 2. Параметры теплоносителя в системе водяного отопления t_{Γ} = 95 °C, t_{0} = 70 °C.
- 3. Радиаторы типа M90, присоединенные прямой подводкой со смещенными замыкающими участками и кранами КРТ, установлены у остекления световых проемов.
 - 4. Тепловые нагрузки стояков даны на рис. 1.5.

Порядок расчета

- 1. Основное циркуляционное кольцо выбираем через самый удаленный стояк 1 (рис. 1.5).
 - 2. Разделяем кольцо на участки.
- 3. Определяем тепловые нагрузки на участках и заносим результаты в табл. 1.9, графа 2:

1-й участок
$$Q_1 = Q_{_{3,1}} = 31290 \; \mathrm{Bt} \; ;$$

$$Q_2 = Q_1 - \left(Q_{_{\mathrm{CT}6}} + Q_{_{\mathrm{CT}7}} + Q_{_{\mathrm{CT}8}} + Q_{_{\mathrm{CT}9}}\right) = 31290 - \\ - \left(3958 + 3678 + 3678 + 3944\right) = 16032 \; \mathrm{Bt} ;$$

$$Q_3 = Q_2 - \left(Q_{_{\mathrm{CT}4}} + Q_{_{\mathrm{CT}5}}\right) = \\ = 16032 - \left(2878 + 3740\right) = 9414 \; \mathrm{Bt} ;$$

$$Q_4 = Q_3 - Q_{_{\mathrm{CT}3}} = 9414 - 2741 = 6673 \; \mathrm{Bt} ;$$

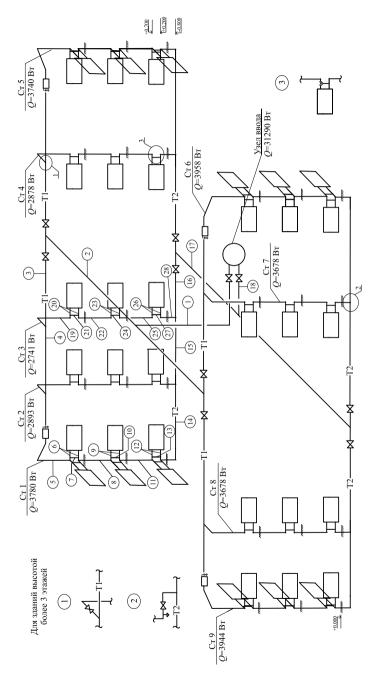
$$S_{-} \text{й участок} \qquad Q_5 = Q_4 - Q_{_{\mathrm{CT}2}} = 6673 - 2893 = 3780 \; \mathrm{Bt} = Q_{_{\mathrm{CT}1}} ;$$

6-й, 9-й, 12-й участки
$$Q_6 = 1/2 \cdot Q_{\rm cr1} \cdot \alpha = 1/2 \cdot 3780 \cdot 0,5 = 945 \ \mathrm{BT} = Q_9 = Q_{12};$$
7-й, 10-й, 13-й участки
$$Q_7 = 1/2 \cdot Q_{\rm cr1} - Q_6 = 1/2 \cdot 3780 - 945 = 945 \ \mathrm{BT} = Q_{10} = Q_{13};$$
8-й, 11-й участки
$$Q_8 = Q_{\rm cr1} = 3780 \ \mathrm{BT} = Q_{11};$$
14-й участок
$$Q_{14} = Q_{\rm cr1} = 3780 \ \mathrm{BT};$$
15-й участок
$$Q_{15} = Q_4 = 6673 \ \mathrm{BT};$$
16-й участок
$$Q_{16} = Q_3 = 9414 \ \mathrm{BT};$$
17-й участок
$$Q_{17} = Q_2 = 16032 \ \mathrm{BT};$$
18-й участок
$$Q_{18} = Q_1 = 31290 \ \mathrm{BT}.$$

4. Определяем расход теплоносителя на участках по формуле (1.15) и заносим результаты в табл. 1.9, графа 3:

$$G_1 = G_{18} = \frac{3,6 \cdot 31290 \cdot 1,03 \cdot 1,02}{4,187(95-70)} = 1130,6 \text{ kg/y};$$

$$G_2 = G_{17} = \frac{3,6 \cdot 16032 \cdot 1,03 \cdot 1,02}{4,187(95-70)} = 579,3 \text{ kg/y};$$


$$G_3 = G_{16} = \frac{3,6 \cdot 9414 \cdot 1,03 \cdot 1,02}{4,187(95-70)} = 340,2 \text{ kg/y};$$

$$G_4 = G_{15} = \frac{3,6 \cdot 6673 \cdot 1,03 \cdot 1,02}{4,187(95-70)} = 241,1 \text{ kg/y};$$

$$G_5 = G_8 = G_{11} = G_{14} = \frac{3,6 \cdot 3780 \cdot 1,03 \cdot 1,02}{4,187(95-70)} = 136,6 \text{ kg/y};$$

$$G_6 = G_7 = G_9 = G_{10} = G_{12} = G_{13} = \frac{3,6 \cdot 945 \cdot 1,03 \cdot 1,02}{4,187(95-70)} = 34,2 \text{ kg/y}.$$

- 5. Согласно табл. 1.8, задаемся диаметром d (табл. 1.9, графа 5): 1-й, 18-й уч. -d=32 мм; 2-й, 17-й уч. -d=25 мм; 3-й, 4-й, 15-й, 16-й уч. -d=20 мм; 5–14-й уч. -d=15 мм.
- 6. Зная расход G и диаметр d, по прил. 1 определяем удельное сопротивление на трение R, $\Pi a/M$, (табл. 1.9, графа 6) и скорость движения теплоносителя v, M/C (табл. 1.9, графа 7).

Puc. 1.5. Схема системы отопления с верхней разводкой и тупиковым движением теплоносителя

7. Определяем значения коэффициентов местных сопротивлений на участках главного циркуляционного кольца по прил. 2 (табл. 1.9, графа 8):

№ участка	<i>d</i> , мм	KMC	ξ		
1	32	вентиль	$\xi = 9$		
1	32	отвод под углом 90°	$\xi = 0.5$		
	$\Sigma \xi_1 = 9.5$				
2	25	тройник на ответвление	$\Sigma \xi_2 = 1.5$		
3	20	вентиль	$\xi = 10$		
3	20	тройник на ответвление	ξ = 1,5		
	$\Sigma \xi_3 = 11,5$				
4	20	тройник на проход	$\sum \xi_4 = 1$		
		тройник на проход	ξ = 1		
5	15	воздухосборник	$\xi = 1,5$		
3	13	отвод под углом 45°	$\xi = 0.8$		
		отвод под углом 90°	$\xi = 0.8$		
	$\Sigma \xi_5 = 4.1$				
	15	тройник на ответвление	ξ = 1,5		
6, 9, 12		кран КРТ при проходе	$\xi = 3.5$		
		прибор М90	$\xi = 1,3$		
	$\Sigma \xi_6 = \Sigma \xi_9 = \Sigma \xi_{12} = 6.3$				
7, 10, 13	15	тройник на противоток	$\sum \xi_7 = \sum \xi_{10} = \sum \xi_{13} = 3$		
8, 11	15	тройник на ответвление – 2	$\Sigma \xi_8 = \Sigma \xi_{11} = 1, 5.2 = 3$		
	15	тройник на ответвление	$\xi = 1,5$		
14		тройник на проход	ξ = 1		
		отвод под углом 90°	$\xi = 0.8$		
			$\Sigma \xi_{14} = 3.3$		
15	20	тройник на проход	$\Sigma \xi_{15} = 1$		
16	20	тройник на противоток	ξ = 3		
10	20	вентиль	$\xi = 10$		
	$\Sigma \xi_{16} = 13$				
17	25	тройник на противоток	$\Sigma \xi_{17} = 3$		
18	32	вентиль	$\sum \xi_{18} = 9$		

- 8. Определяем потери давления на трение, перемножая значения графы 4 на значения графы 6 (Rl), (табл. 1.9, графа 9).
- 9. Зная значения $\Sigma \xi$ (табл. 1.9, графа 8) и скорости движения воды ν (табл. 1.9, графа 7), по прил. 3 определяем потери давления на местные сопротивления (табл. 1.9, графа 10).
- 10. Складывая потери давления на трение (табл. 1.9, графа 9) и потери давления на местные сопротивления (табл. 1.9, графа 10), получаем полные потери давления на каждом участке циркуляционного кольца (табл. 1.9, графа 11).

Таблица 1.9 Ведомость гидравлического расчета

Номер участка	Тепловая нагрузка на участке $Q_{\rm yv}$, Вт	Расход воды на участке G_{y} кг/ч	Длина участка $l,$ м	Диаметр участка d , мм	Удельное сопротивление на трение R , $\Pi a/M$	Скорость тепло- носителя <i>v</i> , м/с	Сумма КМС на участке ∑ξ	Потеря давления на трение на уча- стке <i>Rl</i> , Па	Потери давления на местные сопротивления Z , Па	Суммарные потери давления $(Rl+Z)$, Па		
1	2	3	4	5 THORIT	6	7	8	9	10	11		
1	Главное циркуляционное кольцо 1 31290 1130,6 15,6 32 50 0,324 9,5 780 490,2 1270,2											
_												
2	16032	579,3	4,5	25	60	0,294	1,5	270	63,8	333,8		
3	9414	340,2	2,0	20	75	0,278	11,5	150	440,5	590,5		
4	6673	241,1	3,0	20	38	0,194	1	114	18,6	132,6		
5	3780	136,6	4,6	15	65	0,208	4,1	299	88,6	387,6		
6	945	34,2	0,5	15	3,6	0,052	6,3	1,8	9,3	11,1		
7	945	34,2	0,5	15	3,6	0,052	3,0	1,8	4,4	6,2		
8	3780	136,6	2,0	15	65	0,208	3,0	130	64,8	194,8		
9	945	34,2	0,5	15	3,6	0,052	6,3	1,8	9,3	11,1		
10	945	34,2	0,5	15	3,6	0,052	3,0	1,8	4,4	6,2		
11	3780	136,6	2,0	15	65	0,208	3,0	130	64,8	194,8		
12	945	34,2	0,5	15	3,6	0,052	6,3	1,8	9,3	11,1		
13	945	34,2	0,5	15	3,6	0,052	3,0	1,8	4,4	6,2		
14	3780	136,6	3,0	15	65	0,208	3,3	195	71,3	266,3		
15	6673	241,1	4,0	20	38	0,194	1,0	152	18,6	170,6		

Номер участка	Тепловая нагрузка на участке $Q_{ m yt}$ Вт	Расход воды на участке $G_{\rm yt}$, кг/ч	Длина участка l , м	Диаметр участка d , мм	Удельное сопро- тивление на трение <i>R</i> , Па/м	Скорость теплоно- сителя v, м/с	Сумма КМС на участке ∑ξ	Потеря давления на трение на участке <i>Rl,</i> Па	Потери давления на местные сопротивления Z , Па	Суммарные потери давления $(Rl+Z)$, Па				
1	1 2 3 4 5 6 7 8 9 10 11													
16														
17														
18	18 31290 1130,6 2,0 32 50 0,324 9,0 100 464,4 564,4													
	Σ 5510,4 Πa													
				Мало	е циркуля	иционно	е кольцо							
19	2741	99,1	2,5	15	34	0,147	3,1	85	70,4	155,4				
20	1370,5	49,5	1,0	15	7,5	0,072	4,8	7,5	13,2	20,7				
21	1370,5	49,5	0,5	15	7,5	0,072	1,5	3,8	4,1	7,9				
22	2741	99,1	2,0	15	34	0,147	1,6	68	18,7	86,7				
23	1370,5	49,5	1,0	15	7,5	0,072	4,8	7,5	13,2	20,7				
24	1370,5	49,5	0,5	15	7,5	0,072	1,5	3,8	4,1	7,9				
25	2741	99,1	2,0	15	34	0,147	1,6	68	18,7	86,7				
26	1370,5	49,5	1,0	15	7,5	0,072	4,8	7,5	13,2	20,7				
27	1370,5	49,5	0,5	15	7,5	0,072	1,5	3,8	4,1	7,9				
28	2741	99,1	1,1	15	34	0,147	2,3	37,4	26,9	64,3				
						•			Σ	478,9 Па				

Пример 1.6. Расчет малого циркуляционного кольца

Исходные данные

Выполнить гидравлический расчет второстепенного циркуляционного кольца через стояк 3 однотрубной системы водяного отопления, представленной на рис. 1.5 (см. пример 1.5).

Порядок расчета

- 1. Расчет малого циркуляционного кольца аналогичен расчету главного циркуляционного кольца (см. пример 1.5, табл. 1.9).
 - 2. Складываем полные потери на участках 4–15 (см. табл. 1.9): $(Rl+Z)_{4-15}=132,6+387,6+11,1+6,2+194,8+11,1+6,2+$

$$+194.8 +11.1 + 6.2 + 266.3 +170.6 = 1398.6 \text{ }\Pi a.$$

3. Определяем значения коэффициентов местных сопротивлений на участках малого циркуляционного кольца по прил. 2:

№ участка	d, mm	КМС	٤
19	15	тройник на ответвление	$\xi = 1,5$
19	13	отвод под углом $90^{\circ} - 2$ шт.	$\xi = 0.8.2$
			$\Sigma \xi_9 = 3,1$
20, 23, 26	15	кран КРТ при проходе	$\xi = 3.5$
20, 23, 20	13	прибор М90	ξ = 1,3
			$\sum \xi_{20} = \sum \xi_{23} = \sum \xi_{26} = 4.8$
21, 24, 27	15	тройник на ответвление	$\sum \xi_{21} = \sum \xi_{24} = \sum \xi_{27} = 1,5$
22, 25	15	отвод под углом $90^{\circ} - 2$ шт.	$\sum \xi_{22} = \sum \xi_{25} = 0.8 \cdot 2 = 1.6$
28	15	тройник на ответвление	$\xi = 1,5$
28	13	отвод под углом 90°	$\xi = 0.8$
			$\sum \xi_{28} = 2,3$

4. Выполняем проверку гидравлической увязки между главным и второстепенным циркуляционным кольцом, используя формулу (1.16):

$$\frac{(Rl+Z)_{4-15} - (RL+Z)_{19-28}}{(Rl+Z)_{4-15}} 100\% = A \le 15\%;$$

$$A = \frac{1398,6 - 478,9}{1398.6} 100\% = 65,8 > 15\%.$$

Так как условие не выполняется, то на стояке 3 устанавливаем дроссельную шайбу.

5. Рассчитываем диаметр дроссельной шайбы по формуле (1.17):

$$\Delta P_{\text{III}} = (Rl + Z)_{4-15} - (Rl + Z)_{19-28} = 1398,6 - 478,9 = 919,7 \; \Pi a = \\ = 0,09197 \; \text{м вод. ст.;}$$

$$d_{\text{III}} = 10\sqrt[4]{\frac{0,0991^2}{0,09197}} = 5,72 \; \text{мм.}$$

Принимаем $d_{\rm m}$ = 6 мм.

Минимальный диаметр дроссельной шайбы 3 мм.

Пример 1.7. Гидравлический расчет главного и малого циркуляционных колец насосной двухтрубной системы водяного отопления с нижней разводкой и попутным движением воды

Исходные данные

- 1. Здание пятиэтажное, присоединение системы отопления через смесительный насос, теплопроводы системы отопления выполнены из стальных электросварных прямошовных труб.
- 2. Параметры теплоносителя в системе отопления $t_{\rm r}$ = 95 °C, $t_{\rm o}$ = 70 °C.
- 3. Установлены стальные панельные радиаторы РСГ-2, размещенные у остекления световых проемов.
 - 4. Тепловые нагрузки и длины участков даны на рис. 1.6.

Порядок расчета

1. Выбираем главное циркуляционное кольцо через один из средних стояков 7 и отопительный прибор на первом этаже (рис. 1.6).

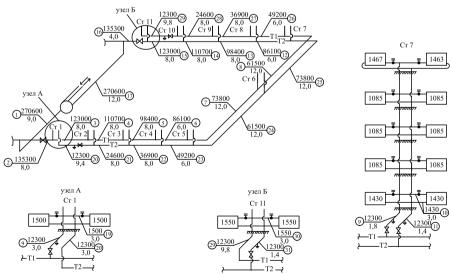


Рис. 1.6. К примеру 1.7

- 2. Определяем расход теплоносителя на участках по формуле (1.15) (табл. 1.10, графа 3).
 - 3. Согласно табл. 1.8 задаемся диаметром d (табл. 1.10, графа 5): 1-й уч. -d=80 мм; 2–4-й уч., 15–17-й уч. -d=65 мм; 5–8-й уч., 12–14-й уч. -d=50 мм; 9-й, 11-й уч. -d=25 мм; 10-й уч. -d=15 мм.
- 4. Рассчитываем значения коэффициентов местных сопротивлений на участках главного циркуляционного кольца по прил. 2 и записываем результаты в табл. 1.10, графа 8:

№ участка	d, mm	KMC	ξ
1	80	задвижка	$\xi = 0.5$ $\xi = 0.3$
1	80	отвод под углом 90° – 1 шт.	$\xi = 0.3$
			$\Sigma \xi_1 = 0.8$
2	65	тройник на ответвление	$\xi = 1,5$ $\xi = 0,3$
2	0.5	задвижка	$\xi = 0,3$
			$\Sigma \xi_2 = 1.8$
3–6	65	тройник на проход	$\sum \xi_{3,4,5,6} = 1$
7–8	50	тройник на проход	$\xi = 1$
7-8	30	отвод под углом 90° – 1 шт.	$\xi = 0,3$
			$\sum \xi_{7,8} = 1,3$
		отвод под углом $90^{\circ} - 2$ шт.	$\xi = 0.5.2 = 1$
9, 11	25	тройник на ответвление	$\xi = 1,5$ $\xi = 9$
		вентиль	$\xi = 9$
			$\Sigma \xi_{9,11} = 11,5$
		крестовина на поворот – 2 шт.	$\xi = 3 \cdot 2 = 6$
10	15	радиатор РСГ	$\xi = 11$ $\xi = 2$
		кран двойной регулировки	
			$\Sigma \xi_{10} = 19$
12–15	50	тройник на проход	$\sum \xi_{12,13,14,15} = 1$
16	65	тройник на противоток	$\xi = 3$
10	0.5	задвижка	$\xi = 0.3$
			$\Sigma \xi_{16} = 3.3$
17	65	задвижка	$\xi = 0.5$
1 /	0.5	отвод под углом 90° – 1 шт.	$\xi = 0.3$
			$\Sigma \xi_{17} = 0.8$

- 5. Определяем потери давления на трение, перемножая значения графы 4 на значения графы 6 (*Rl*), (табл. 1.10, графа 9).
- 6. Зная значения $\Sigma \xi$ (табл. 1.10, графа 8) и скорости движения воды ν (табл. 1.10, графа 7) по прил. 3 определяем потери давления на местные сопротивления (табл. 1.10, графа 10).
- 7. Складывая потери давления на трение (табл. 1.10, графа 9) и потери давления на местные сопротивления (табл. 1.10, графа 10), получаем полные потери давления на каждом участке циркуляционного кольца (табл. 1.10, графа11).
- 8. Выбираем сначала второстепенное циркуляционное кольцо через ближний к тепловому пункту стояк 1 (см. рис. 1.6) и отопительный прибор на первом этаже.

	1		1
№ участка	d, mm	КМС	ξ
		отвод под углом $90^{\circ} - 2$ шт.	$\xi = 0.5.2 = 1$
18	25	тройник на ответвление	$\xi = 1,5$
		вентиль	ξ = 9
			$\Sigma \xi_{18} = 11,5$
		крестовина на поворот – 2 шт.	$\xi = 3 \cdot 2 = 6$
19	15	радиатор РСГ	$\xi = 11$
		кран двойной регулировки	ξ = 2
			$\sum \xi_{19} = 19$
		отвод под углом 90° – 3 шт.	$\xi = 0.5.3 = 1.5$
20	25	тройник на ответвление	$\xi = 1,5$
		вентиль	$\xi = 9$
			$\sum \xi_{20} = 12$
	32		
21–23	40	тройник на проход	$\sum \xi_{21,22,23} = 1$
	50		
24–25	50	тройник на проход	$\xi = 1$
24-23	30	отвод под углом 90° – 1 шт.	$\xi = 0.3$
			$\sum \xi_{24,25} = 1,3$

- 9. Расчет малого кольца занесен в табл. 1.10.
- 10. Складываем полные потери на участках 3–11:

$$\sum (Rl+Z)_{3-11} = 3661 \text{ }\Pi a.$$

11. Выполняем проверку гидравлической увязки между главным и второстепенным циркуляционным кольцом, используя формулу (1.16):

$$\frac{(Rl+Z)_{3-11} - (RL+Z)_{18-25}}{(Rl+Z)_{3-11}} 100\% = A \le 15\%;$$

$$A = \frac{3661 - 3396}{3661} 100\% = 7,2 < 15\%.$$

12. Выбираем далее второстепенное циркуляционное кольцо через дальний от теплового пункта стояк 11 (см. рис. 1.6) и отопительный прибор на первом этаже.

№ участка	d, mm	KMC	ξ
26–28	40 32	тройник на проход	$\sum \xi_{26,27,28} = 1$
29	25	отвод под углом $90^{\circ} - 3$ шт.	$\xi = 0.5.3 = 1.5$
2)	23	вентиль	$\xi = 9$
			$\Sigma \xi_{29} = 10,5$
		крестовина на поворот – 2 шт.	$\xi = 3.2 = 6$
30	15	радиатор РСГ	$\xi = 11$
		кран двойной регулировки	$\xi = 2$
			$\sum \xi_{30} = 19$
		отвод под углом $90^{\circ} - 2$ шт.	$\xi = 0.5.2 = 1$
31	25	тройник на ответвление	$\xi = 1.5$
		вентиль	ξ = 9
	·	·	$\sum \xi_{31} = 11,5$

- 13. Расчет малого кольца занесен в табл. 1.10.
- 14. Складываем полные потери на участках 26-31:

$$\sum (Rl+Z)_{9-15} = 3319 \text{ }\Pi a.$$

15. Выполняем проверку гидравлической увязки между главным и второстепенным циркуляционным кольцом, используя формулу (1.16):

$$\frac{(Rl+Z)_{9-15} - (RL+Z)_{26-31}}{(Rl+Z)_{9-15}} 100\% = A \le 15\%;$$

$$A = \frac{3319 - 2974}{3319} 100\% = 10,4 < 15\%.$$

Таблица 1.10 Ведомость гидравлического расчета

Номер участка	Тепловая нагрузка на участке $Q_{{ m y}^{ m u}},{ m Br}$	Расход воды на участке $G_{\rm yt}$, кг/ч	Длина участка l , м	Диаметр участка d , мм	Удельное сопро- отивление на трение R, Па/м	Скорость теплоно- сителя v, м/с	Сумма КМС на участке ∑ξ	Потеря давления на трение на уча- стке <i>Rl,</i> Па	Потери давления на местные сопротивления Z , Па	Суммарные потери давления $(Rl+Z)$, Па			
1	2	3	4	5		7	8	9	10	11			
Главное циркуляционное кольцо													
1 270600 10743 9,0 80 48 0,56 0,8 432 123 55													
2	135300	5372	8,0	65	30	0,39	1,8	240	134	373			
3	123000	4884	8,0	65	25	0,355	1	200	61,6	262			
4	110700	4395	8,0	65	21	0,32	1	168	50	218			
5	98400	3907	8,0	50	78	0,52	1	624	132	756			
6	86100	3418	6,0	50	60	0,46	1	360	103	463			
7	73800	2930	12,0	50	45	0,39	1,3	540	97	637			
8	61500	2442	12,0	50	31	0,33	1,3	372	69	441			
9	12300	488	1,8	25	42	0,24	11,5	76	323	399			
10	1430	56,8	3,0	15	12	0,083	19	36	67	103			
11	12300	488	1,4	25	42	0,24	11,5	59	323	382			
12	86100	3418	6,0	50	60	0,46	1	360	103	463			
13	98400	3907	8,0	50	78	0,52	1	624	132	756			
14	110700	4395	8,0	50	98	0,59	1	784	170	954			
15	123000	4884	8,0	65	25	0,355	1	200	61,6	262			
16	135300	5372	4,0	65	30	0,39	3,3	120	245	365			
17	270600	10473	12,0	65	116	0,78	0,8	1392	238	1630			
										Σ9019			

Окончание табл. 1.10

Номер участка	Тепловая нагрузка на участке $Q_{ m y_{tb}}$ Вт	Расход воды на участке $G_{\rm yq}$, кг/ч	Длина участка I, м	Диаметр участка d , мм	$\mathbf{y}_{\text{дельное}}$ сопротивление на трение R , $\Pi \mathbf{a}/\mathbf{m}$	Скорость теплоноси- теля v, м/с	Сумма КМС на участке Σξ	Потеря давления на трение на участке Rl'_{μ} Па/м	Потери давления на местные сопротивления Z , Па	Суммарные потери давления (<i>R</i> 1+ <i>Z</i>)
1	2	3	4	5	6	7	8	9	10	11
							ольцо чер		1	1
18	12300	488	3,0	25	34	0,223	11,5	102	284	386
19	1500	60	3,0	15	24	0,112	19	72	123	195
20	12300	488	3,0	25	34	0,223	12	102	297	399
21	24600	977	8,0	32	50	0,312	1	400	49	449
22	36900	1465	8,0	40	40	0,316	1	320	49	369
23	49200	1954	6,0	40	70	0,42	1	420	86	506
24	61500	2442	12,0	50	32	0,33	1,3	384	69	453
25	73800	2930	12,0	50	45	0,394	1,3	540	99	639
										Σ3396
		Второ	степен	ное ци	ркуляцис	онное ко	льцо чере	з стояк 11		
26	49200	1954	6,0	40	70	0,42	1	420	86	506
27	36900	1465	8,0	32	100	0,448	1	800	99	899
28	24600	977	8,0	32	50	0,312	1	400	49	449
29	12300	488	9,8	25	34	0,223	10,5	333	260	593
30	1550	62	3,0	15	24	0,112	19	72	123	195
31	12300	488	1,4	25	34	0,223	11,5	48	284	332
										Σ2974

При гидравлическом расчете вертикальной двухтрубной системы отопления после расчета основного и второстепенных циркуляционных колец через отопительные приборы на нижнем этаже дополнительно рассчитывают стояки. Расчет стояков двухтрубной системы сводится к выбору диаметра труб с увязкой потерь давления на параллельно соединенных участках, т. к. общие участки циркуляционных колец уже рассчитаны.

1.2.1.3. Гидравлический расчет по характеристикам сопротивления и проводимостям

Однотрубные системы отопления могут оснащаться радиаторными терморегуляторами с проходными регулирующими клапанами пониженного гидравлического сопротивления обычного исполнения RTD–G при наличии в узле обвязки отопительного прибора байпаса (замыкающего участка) между трубными подводками [11, 21]. Характеристики клапанов RTD–G представлены в табл. 1.11.

 $\it Taблица~1.11$ Характеристики регулирующих клапанов типа RTD–G

Тип	1 2	кная спос		P_{ma}	$t_{ m max}$,		
ТИП	0,5	1,0	1,5	2,0	рабочее	перепад давлений	°C
RTD-G 15	0,40	0,70	1,2	1,45	0,20		
RTD-G 20	0,50	0,90	1,45	1,90	0,20	16	120
RTD-G 25	0,55	1,15	1,70	2,25	0,16		

Примечание: 1 бар = 10^5 Па.

В целях отключения и демонтажа отдельного отопительного прибора на его обратной подводке рекомендуется устанавливать полнопроходной шаровой кран.

На стояках однотрубных систем отопления должны предусматриваться автоматические регуляторы постоянства расхода типа AB-QM. Регуляторы AB-QM могут устанавливаться как на обратной, так и на подающей части однотрубного стояка или ветви, выполняя одновременно функцию запорной арматуры. Клапан AB-QM — регулирующий клапан со встроенным регулятором перепада давлений. Регулятор перепада давлений поддерживает постоянный перепад давлений на регулирующем клапане вне зависимости от изменения параметров в системе. Технические характеристики клапана AB-QM представлены в таблице 1.12.

В однотрубных системах отопления балансировочные клапаны принимаются к установке по диаметру стояка. Для клапанов типа AB–QM следует проверять, чтобы расчетный расход теплоносителя через стояки, на которых они устанавливаются, лежал в диапазонах, указанных в табл. 1.12.

Условный диаметр d , мм	10	15	20	25	32	40/50	
Минимальный расход (20 %), л/ч	55	90	180	340	640	2000	
Максимальный расход (100 %),	275	450	900	1700	3200	10000	
Перепад давлений ΔP , кПа		16-400		20-	400	30-400	
Условное давление P_{y} , бар	16						
Диапазон температур регулируемой среды, °C			-	10+120			

Гидравлический расчет трубопроводной системы отопления может производиться с использованием характеристик гидравлического сопротивления отдельных ее элементов ($S \cdot 10^4$). Эта величина соответствует потере давления (Па) при расходе воды через элемент сети, равном $100 \, \mathrm{kr/v}$.

При фактическом расчетном расходе воды потеря давления в элементе трубопроводной сети с заданной характеристикой гидравлического сопротивления рассчитывается по формуле

$$\Delta P = \left(S \cdot 10^4\right) \left(\frac{G}{100}\right)^2,\tag{1.18}$$

где ΔP — потеря давления, Па; $(S \cdot 10^4)$ — характеристика гидравлического сопротивления, $\Pi a/(\kappa r/4)^2$; G — расчетный расход воды, $\kappa r/4$.

При последовательном соединении N элементов сети ее общая характеристика гидравлического сопротивления $(S \cdot 10^4)$ будет равна: $(S \cdot 10^4) = (S \cdot 10^4)_1 + (S \cdot 10^4)_2 + ... + (S \cdot 10^4)_N$. (1.19)

При параллельном соединении общая характеристика гидравлического сопротивления ($S \cdot 10^4$) определяется по формуле

$$\frac{1}{\sqrt{\left(S \cdot 10^4\right)}} = \frac{1}{\sqrt{\left(S \cdot 10^4\right)_1}} + \frac{1}{\sqrt{\left(S \cdot 10^4\right)_2}} + \dots + \frac{1}{\sqrt{\left(S \cdot 10^4\right)_N}}. (1.20)$$

Характеристики гидравлического сопротивления обычно берутся из справочной литературы, а также могут быть вычислены с использованием данных, приведенных в табл. $1.13.\ (S\cdot 10^4)$ является средней величиной между значениями для легких и обыкновенных водогазопроводных труб по ГОСТ $3262-75^*$.

Таблица 1.13 Характеристика гидравлического сопротивления ($S \cdot 10^4$), Па/(кг/ч)², для 1 м стальной трубы и местного сопротивления при $\xi = 1$

		Условный диаметр трубопроводов d, мм									
	10 15 20 25 32 40										
$(S \cdot 10^4)_{1 \text{ M Tp.}}$	95,04	30,71	7	1,75	0,46	0,24	0,06				
$(S \cdot 10^4)_{\zeta=1}$	23,91	23,91 9,72 2,98 1,13 0,38 0,16 0,08									

При этом характеристика сопротивления элемента трубопроводной сети ($S \cdot 10^4$) в Па будет равна:

- участка трубы (длиной L, м) $(S \cdot 10^4)_{\rm rp}$ = $L (S \cdot 10^4)_{\rm 1 \, M \, Tp}$;
- устройства (с коэффициентом местного сопротивления ξ) $(S\cdot 10^4)_\xi=\xi\ (S\cdot 10^4)_{\xi=1}$.

Гидравлические характеристики клапанов терморегуляторов влияют на коэффициент затекания воды в отопительный прибор системы отопления с замыкающими участками, а также определяют гидравлическое сопротивление трубного узла прибора.

Коэффициент затекания α без учета гравитационного давления в малом циркуляционном кольце может быть рассчитан через характеристики гидравлического сопротивления:

$$\alpha = \frac{1}{1 + \sqrt{\frac{(S \cdot 10^4)_{\text{or}}}{(S \cdot 10^4)_{\text{3y}}}}},$$
 (1.21)

где $(S\cdot 10^4)_{\rm on}$ — суммарная характеристика гидравлического сопротивления подводок, клапана терморегулятора и отопительного прибора, $\Pi a/(\kappa \Gamma/\Psi)^2$; $(S\cdot 10^4)_{\rm 3y}$ — то же, замыкающего участка, $\Pi a/(\kappa \Gamma/\Psi)^2$;

Коэффициент затекания и общая характеристика гидравлического сопротивления узла отопительного прибора практически не зависят от типа отопительного прибора. Поэтому для стандартных сочетаний диаметров подводок к прибору и замыкающего участка значения α и характеристики гидравлического сопротивления всего этажестояка $(S \cdot 10^4)_{\text{3-ст}}$ при его высоте 3 м представлены в таблице 1.14.

Коэффициент затекания α и характеристика гидравлического сопротивления всего этажестояка $(S\cdot 10^4)_{\text{3-cr}}$ с терморегулятором RTD-G при его высоте 3 м

		диаметр труодов d , мм	Коэффициент α (в числителе) и ($S\cdot 10^4$) _{э-ст} (в знаменателе), $\Pi a/(\kappa r/4)^2$, в зависимости от длины замыкающего участка h , м							
d_{cr}	d_{3y}	$d_{\scriptscriptstyle \Pi}$ и RTD–G	0,08	0,15	0,3	0,5				
	10	15	_	-	0,28/179	0,3/179,8				
15	15	15	_	-	0,21/159,6	0,22/156,5				
	15	20	0,23/148,8	0,24/147,6	0,25/144,8	0,26/141,2				
20	15	15	_	_	0,21/66,9	0,22/68,5				
20	15 20		0,23/50,8	0,24/51,3	0,25/52,1	0,26/53,2				
25	15	20	0,23/26,9	0,24/27,8	0,25/29,3	0,26/31,5				

Пример 1.8. Гидравлический расчет стояка однотрубной системы отопления по характеристикам сопротивления и проводимостям

Исходные данные

- 1. Здание трехэтажное, теплопроводы системы отопления выполнены из стальных водогазопроводных труб.
- 2. Параметры теплоносителя в системе отопления $t_{\rm r}$ = 95 °C, $t_{\rm o}$ = 70 °C. Установлены чугунные радиаторы MC-140-108, размещенные у остекления световых проемов.
- 4. Тепловые нагрузки и длины участков даны на рис. 1.7. Располагаемое давление в стояке $\Delta P_{\rm p}$ = 25 кПа.

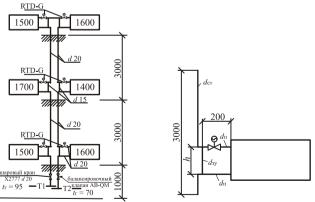


Рис. 1.7. Стояк однотрубной системы отопления

Порядок расчета

1. Определим количество теплоносителя в стояке по формуле (1.15):

$$G_{\text{ct}} = \frac{3,6 \cdot 9300 \cdot 1,04 \cdot 1,02}{4,187(95-70)} = 339,3 \text{ kg/y}.$$

- 2. По таблице 1.14, зная, что d_{3y} = 15 мм, d_{cr} = d_{II} = 20 мм, определяем: коэффициент затекания α = 0,26, характеристику гидсопротивления равлического всего этажестояка $(S \cdot 10^4)_{3-\text{CT}} = 53.2 \cdot 10^4 \, \text{Ta/(кг/ч)}^2$.
- 3. Определим гидравлическое сопротивление всего стояка

по формуле (1.19) с учетом данных табл. 1.13:
$$(S \cdot 10^4)_{\text{ст}} = 53.2 \cdot 10^4 \cdot 4 + (53.2 \cdot 10^4 \cdot 2 - 7 \cdot 10^4 \cdot 2 \cdot 2) + 7 \cdot 10^4 \cdot 2 = 305.2 \cdot 10^4 \, \Pi \text{a}/(\text{кг/ч})^2.$$

4. Потери давления в стояке определим по формуле (1.18):

$$\Delta P_{\text{cr}} = (305, 2 \cdot 10^4) \left(\frac{339, 3}{100}\right)^2 = 3, 5 \text{ kHa}.$$

5. Клапан AB–QM d = 20 мм имеет максимальный расход 900 л/ч при настройке на 100 % (табл. 1.12). Для того чтобы получить расход 320 л/ч необходимо установить настройку: 320/900 = 0.355 (35,5 %). Так как минимально необходимый перепад давлений на клапане АВ-QМ должен быть не менее 16 кПа, то определяем потери давления на клапане АВ-QМ:

$$\Delta P_{\rm AB-QM} = \Delta P_{\rm p} - \Delta P_{\rm ct} = 25 - 3, 5 = 21, 5 \text{ kHz},$$

что удовлетворяет условию его работы.

1.2.2. Тепловой расчет отопительных приборов

Тепловой расчет системы отопления заключается в определении площади поверхности отопительных приборов. К расчету приступают после выбора типа отопительных приборов, места установки, способа присоединения к трубам системы отопления, вида и параметров теплоносителя.

Расчет площади отопительных приборов в однотрубных системах отопления

Поверхность нагрева отопительных приборов в однотрубных системах отопления рассчитывается с учетом температуры теплоносителя на входе в каждый прибор $t_{\rm Bx}$, °C, количества теплоносителя, проходящего через прибор $G_{\rm np}$, кг/ч, и величины тепловой нагрузки прибора $Q_{\rm np}$, Вт [3, 8].

Расчет площади каждого отопительного прибора осуществляется в определенной последовательности и заносится в табл. 1.15.

Таблица 1.15 Ведомость расчета отопительных приборов

№ от.пр.	$Q_{ m o}, { m Br}$	$\Delta t_{\scriptscriptstyle \Pi.M},{}^{\circ}C$	$G_{ m np}$, кг/ч	$\Sigma Q_{ m o}, { m Br}$	$t_{ m ex}$, $^{\circ}$ C	$t_{ m cp},^{ m o}{ m C}$	$\Delta t_{ m cp},^{ m o}{ m C}$	$q_{ m np},{ m BT/M}^2$	$Q_{\mathrm{rp}},\mathrm{Br}$	$Q_{ m np},{ m BT}$	$A_{ m np},{ m M}^2$	Размер, ко- личество	Тип прибора
1	2	3	4	5	6	7	8	9	10	11	12	13	14

1. Определяется суммарное понижение расчетной температуры воды на участках подающей магистрали $\Delta t_{\text{п.м.}}$, °C:

$$\Delta t_{\text{\tiny II.M}} = \frac{q_1 \cdot l_{\text{\tiny yq}}}{c \cdot G_{\text{\tiny vq}}},\tag{1.22}$$

где q_1 — теплопередача 1 м открыто проложенных труб в помещении с температурой $t_{\rm B}$, принимается по прил. 4, в зависимости от разности температур ($t_{\rm F}-t_{\rm B}$); $G_{\rm yq}$ — расход воды на участке, принимается согласно гидравлическому расчету, кг/ч; $l_{\rm yq}$ — длина расчетного участка, м; c — удельная теплоемкость воды, c=4,187 кДж/(кг. °C).

2. Общее количество воды, кг/ч, циркулирующей по стояку, определяется по формуле

$$G_{\rm cr} = \frac{Q_{\rm cr} \cdot \beta_1 \cdot \beta_2 \cdot 3.6}{c \left(t_{\rm r} - \Delta t_{\rm n.m} - t_{\rm o} \right)},\tag{1.23}$$

где β_1 — коэффициент учета дополнительного теплового потока устанавливаемых отопительных приборов за счет округления сверх расчетной величины, принимается по табл. 1.5, 1.6; β_2 — коэффициент учета дополнительных тепловых потерь теплоты отопительных приборов у наружных ограждений, принимается по

табл. 1.7;
$$Q_{cr} = \sum_{1}^{n} Q_{o}$$
 – суммарные теплопотери в помещениях,

обслуживаемых стояком, Вт; t_{Γ} — температура воды на входе в систему отопления, принимается равной 95 °C; t_0 — температура воды на выходе из системы отопления, принимается равной 70 °C.

3. Рассчитывается расход воды, $G_{\rm np}$, кг/ч, проходящей через каждый отопительный прибор с учетом коэффициента затекания α по формуле

$$G_{\text{np}} = G_{\text{cr}} \cdot \alpha,$$
 (1.24)

где α — коэффициент затекания воды в отопительный прибор, для осевого замыкающего участка $\alpha=0.33$, для смещенного — $\alpha=0.5$, для проточного приборного узла $\alpha=1$.

4. Определяется температура воды, °C, на входе в каждый отопительный прибор по ходу движения теплоносителя с учетом $\Delta t_{\rm I.M}$:

$$t_{_{\rm BX}} = t_{_{\rm \Gamma}} - \Delta t_{_{\rm II.M}} - \frac{\sum_{i=1}^{n} Q_{_{\rm O}} \cdot \beta_{_{1}} \cdot \beta_{_{2}} \cdot 3,6}{c \cdot G_{_{\rm CT}}}, \qquad (1.25)$$

где $\sum_{i=1}^{n} Q_{o}$ — тепловая нагрузка приборов вышерасположенных этажей, Вт.

5. Определяется средняя температура воды, °C, в каждом отопительном приборе по ходу движения теплоносителя:

$$t_{\rm cp} = t_{\rm BX} - \frac{0.5 \cdot Q_{\rm o} \cdot \beta_1 \cdot \beta_2 \cdot 3.6}{c \cdot G_{\rm cr}}.$$
 (1.26)

6. Рассчитывается средний температурный напор в каждом отопительном приборе по ходу движения теплоносителя, °C:

$$\Delta t_{\rm cp} = t_{\rm cp} - t_{\rm \scriptscriptstyle B}. \tag{1.27}$$

7. Определяется плотность теплового потока, Bt/m^2 , для каждого отопительного прибора по ходу движения теплоносителя:

$$q_{\rm np} = q_{\rm HOM} \left(\frac{\Delta t_{\rm cp}}{70}\right)^{1+n} \left(\frac{G_{\rm np}}{360}\right)^{p},$$
 (1.28)

где $q_{\text{ном}}$ – номинальная плотность теплового потока, Вт/м^2 , принимается по табл. 1.16; n, p – показатели степени для определения теплового потока отопительного прибора, принимаемые по табл. 1.17.

Таблица 1.16 Номинальная плотность теплового потока отопительных приборов

Наименование и обозначение отопительного прибора	$q_{\scriptscriptstyle ext{HOM}}, ext{Bt/m}^2$		
Радиаторы чугунные секционные:			
MC-140-108	758		
MC-140-98	725		
MC-140-AO	595		
MC-140-A	646		
M-90	700		
MC-90-108	802		
Радиаторы алюминиевые:			
«ELEGANCE»	460		
«СИАЛКО»	596		
«Термал»	404		
Конвектор настенный с кожухом типа «Универсал-С»	345		
Конвектор настенный с кожухом типа «Универсал»	357		
Конвектор настенный с кожухом типа «Комфорт-20»	462		

Коэффициенты п, р

Тип отопительного прибора	Направление движения теплоносителя	Расход теплоносителя G , кг/ч	n	p
Радиатор чугунный секционный, алюминиевый секционный	Сверху – вниз	18 – 50 54 – 536 536 – 900	0,3	0,02 0 0,01
алюминисвый секционный	Снизу – вверх	18 – 61 65 – 900	0,25	0,12 0,04
Конвектор настенный с кожухом типа «Комфорт–20», конвектор напольный с кожухом типов «Ритм», «Ритм–1500»	Любое	36 – 86 90 – 900	0,35	0,18
Конвекторы настенные с кожухом типов «Универсал», «Универсал—С»	Любое	36 – 86 90 – 900	0,3	0,07 0,18 0,07

8. Рассчитывается полезная теплоотдача, Вт, труб стояка, подводок к отопительным приборам, проложенным в помещении:

$$Q_{\rm TD} = q_{\rm\scriptscriptstyle B} \cdot l_{\rm\scriptscriptstyle B} + q_{\rm\scriptscriptstyle \Gamma} \cdot l_{\rm\scriptscriptstyle \Gamma}, \tag{1.29}$$

где $l_{\rm r}$, $l_{\rm B}$ — длины горизонтальных и вертикальных труб стояка и подводок в пределах помещения (пример определения длин труб стояка см. рис. 1.6), м; $q_{\rm r}$, $q_{\rm B}$ — удельные величины теплоотдачи горизонтальных и вертикальных труб, ${\rm Bt/m}$, принимаются по прил. 4 [8].

9. При определении теплоотдачи 1 м неизолированных труб разность температуры теплоносителя и воздуха в помещении принимают с учетом температуры теплоносителя на входе в отопительный прибор $(t_{\rm BX}-t_{\rm B})$.

Данные расчетов полезной теплоотдачи труб заносятся в табл. 1.18.

Таблица 1.18 Теплоотдача открыто проложенных трубопроводов

№	Вертикальные участки					Го	ризонта	льны	е учас	тки	0
пом.,	$t_{\scriptscriptstyle \mathrm{BX}},$	$t_{\rm BX}-t_{\rm B}$	$q_{\scriptscriptstyle \mathrm{B}},$	$l_{\scriptscriptstyle \mathrm{B}},$	$q_{\scriptscriptstyle \mathrm{B}}$ · $l_{\scriptscriptstyle \mathrm{B}}$,	$t_{\scriptscriptstyle \mathrm{BX}},$	$t_{\rm\scriptscriptstyle BX}-t_{\rm\scriptscriptstyle B},$	$q_{\scriptscriptstyle \Gamma},$	$l_{\scriptscriptstyle \Gamma},$	$q_{\scriptscriptstyle \Gamma}$ · $l_{\scriptscriptstyle \Gamma}$,	$\mathcal{Q}_{\mathrm{Tp}},$ \mathbf{p}_{T}
$t_{\text{\tiny B}}$, °C	°C	°C	Вт/м	M	Вт	°C	°C	Вт/м	M	Вт	Di
1	2	3	4	5	6	7	8	9	10	11	12

10. Определяется требуемая теплоотдача отопительного прибора, Вт, в помещении с учетом полезной теплоотдачи проложенных в помещении труб:

$$Q_{\rm np} = Q_{\rm o} - \beta_{\rm rp} \cdot Q_{\rm rp}, \qquad (1.30)$$

где $\beta_{\text{тр}}$ – поправочный коэффициент, учитывающий долю теплоотдачи теплопроводов, полученную для поддержания заданной температуры воздуха в помещении; для открыто проложенных труб $\beta_{\text{тр}}$ принимают равным 0,9.

11. Вычисляется расчетная наружная площадь, м², отопительного прибора по ходу движения теплоносителя:

$$A_{\rm np} = \frac{Q_{\rm np}}{q_{\rm np}}.\tag{1.31}$$

12. При установке конвекторов (см. прил. 5) наружная площадь отопительного прибора принимается более близкой к получившейся по формуле 1.31 и по стандарту определяется марка конвектора. При установке чугунных радиаторов число секций определяется по формуле

$$N = \frac{A_{\rm np}}{f_{\rm o}},\tag{1.32}$$

где $f_{\rm c}$ – площадь нагревательной поверхности одной секции радиатора, ${\rm M}^2$.

Расчет площади отопительных приборов в двухтрубных системах отопления

В двухтрубных системах отопления расчет поверхности нагрева отопительных приборов производится при постоянном температурном перепаде в каждом приборе, равном перепаду температуры теплоносителя на стояке, т. е. $t_{\Gamma} - t_{o}$, °C.

Расчет площади каждого отопительного прибора на стояке осуществляется отдельно в определенной последовательности:

1. Вычерчивается расчетная схема стояка (рис. 1.8), проставляются на ней диаметры труб и величина теплового потока прибора (равная теплопотерям помещения).

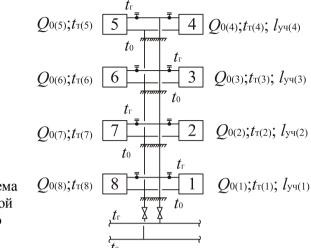


Рис. 1.8. Расчетная схема стояка двухтрубной системы водяного отопления

2. Находим суммарное понижение расчетной разности температур воды $\Delta t_{\text{п.м.}}$ °C, на участках подающей магистрали от начала системы до рассматриваемого стояка.

Далее определяется (допускается ориентировочно) понижение температуры воды по изолированной подающей магистрали насосной системы отопления (табл. 1.19).

Tаблица 1.19 Величина понижения температуры воды на 10 м изолированной подающей магистрали диаметром d

d, mm	25–32	40	50	65-100	125-150
$\Delta t_{\scriptscriptstyle \Pi.M}$, °C	0,4	0,4	0,3	0,2	0,1

3. Определяется суммарное понижение расчетной температуры воды $\Delta t_{\text{п.ст}}$, °C, на участках подающего стояка от магистрали до рассчитываемого прибора:

$$\Delta t_{\text{\tiny п.ст}} = \frac{q_{\text{\tiny B}} \cdot l_{\text{\tiny yq}} \cdot \beta_1 \cdot \beta_2 \cdot 3,6}{c \cdot G_{\text{\tiny yq}}}, \qquad (1.33)$$

где $q_{\scriptscriptstyle \rm B}$ – теплопередача 1 м вертикальной трубы подающего стояка в зависимости от диаметра участка подающего стояка и разности

температуры теплоносителя $t_{\rm BX}$ на входе в помещение и температуры окружающего воздуха $t_{\rm B}$, принимается по прил. 4; $G_{\rm yq}$ — расход воды на участке подающего стояка с учетом предыдущей отопительной нагрузки, кг/ч; $l_{\rm yq}$ — длина расчетного участка подающего стояка, принимаемая равной высоте этажа, м.

Температура теплоносителя $t_{\rm BX}$ (на участке) на входе в рассматриваемое помещение определяется по ходу движения теплоносителя по уравнению, °C:

- для первого прибора

$$t_{\text{BX}(1)} = t_{\Gamma} - \Delta t_{\text{II.M}}; \tag{1.34}$$

- для второго прибора

$$t_{\text{\tiny BX}(2)} = t_{\text{\tiny \Gamma}} - \Delta t_{\text{\tiny \Pi.M}} - \Sigma \Delta t_{\text{\tiny \Pi.CT}(1)}; \qquad (1.35)$$

- для третьего прибора

$$t_{\text{вх}(3)} = t_{\text{г}} - \Delta t_{\text{п.м}} - (\Delta t_{\text{п.ст}(1)} + \Delta t_{\text{п.ст}(2)})$$
 и т. д. (1.36)

Значения $\Delta t_{\text{п.ст}}$ определяются последовательно и непосредственно после расчета $t_{\text{вх}}$ на предыдущем участке подающего стояка. При двухстороннем присоединении отопительных приборов в двухтрубных системах отопления значения $t_{\text{вх}}$ на одном этаже принимаются одинаковыми.

Расход воды на каждом участке подающего стояка на входе в рассматриваемое помещение определяется по формуле, кг/ч:

– для первого прибора

$$G_{yq(1)} = \frac{\sum Q_{yq(1)} \cdot \beta_1 \cdot \beta_2 \cdot 3,6}{c(t_{px(1)} - t_0)};$$
 (1.37)

– для второго прибора

$$G_{yq(2)} = \frac{\sum Q_{yq(2)} \cdot \beta_1 \cdot \beta_2 \cdot 3,6}{c(t_{BX(2)} - t_o)};$$
 (1.38)

– для третьего прибора

$$G_{\text{yч}(3)} = \frac{\sum Q_{\text{yч}(3)} \cdot \beta_1 \cdot \beta_2 \cdot 3,6}{c(t_{\text{вx}(3)} - t_{\text{o}})}$$
 и т. д., (1.39)

где $\Sigma Q_{\rm yq(1-3)}$ — суммарные теплопотери на участке подающего стояка на входе в рассматриваемое помещение, с учетом $Q_{\rm np}$ вышележащего отопительного прибора, Вт; $t_{\rm bx(1...3)}$ — температура теплоносителя на участке подающего стояка на входе в рассматриваемое помещение, °C.

4. Рассчитывается средний температурный напор в отопительном приборе с учетом температуры воды в подающей магистрали и стояке:

$$\Delta t_{\rm cp} = 0.5 [t_{\rm r} - (\Delta t_{\rm n.m} + \Sigma \Delta t_{\rm n.cr}) + t_{\rm o}] - t_{\rm b}.$$
 (1.40)

5. Определяется общее количество воды, циркулирующей в отопительном приборе, с учетом понижения температуры воды в подающей магистрали и стояке, кг/ч:

$$G_{\text{np}} = \frac{Q_{\text{o}} \cdot \beta_1 \cdot \beta_2 \cdot 3.6}{c \left[t_{\text{r}} - \left(\Delta t_{\text{n.m}} + \Sigma \Delta t_{\text{n.cr}} \right) - t_{\text{o}} \right]}.$$
 (1.41)

6. Вычисляется расчетная плотность теплового потока отопительного прибора для теплоносителя (воды), Bt/m^2 :

$$q_{\text{пр}} = q_{\text{ном}} \left(\frac{\Delta t_{\text{cp}}}{70} \right)^{1+n} \left(\frac{G_{\text{пр}}}{360} \right)^{p},$$
 (1.42)

где $q_{\text{ном}}$ – номинальная плотность теплового потока, Вт/м^2 , принимается по табл. 1.16; n, p – показатели степени для определения теплового потока отопительного прибора, принимаемые по табл. 1.17.

7. Определяется полезная теплоотдача труб стояка и подводок, проложенных в помещении, Вт:

$$Q_{\rm TP} = q_{\rm B} \cdot l_{\rm B} + q_{\rm \Gamma} \cdot l_{\rm \Gamma}, \tag{1.43}$$

где $l_{\rm r}$, $l_{\rm B}$ — длины горизонтальных и вертикальных труб стояка и подводок в пределах помещения, м; $q_{\rm r}$, $q_{\rm B}$ — удельные величины теплоотдачи горизонтальных и вертикальных труб в помещении, Вт/м, принимаются по прил. 4 [8] в зависимости от диаметра и разности температуры теплоносителя на входе в рас-

сматриваемое помещение и температуры воздуха в помещении $t_{_{\rm T}} = t_{_{\rm T}} - \left(\Delta t_{_{\rm II,M}} - \Sigma \Delta t_{_{\rm II,CT}}\right) - t_{_{\rm B}}$.

8. Рассчитывается требуемая теплоотдача отопительного прибора в рассматриваемом помещении, Вт:

$$Q_{\text{np}} = Q_{\text{o}} - \beta_{\text{TD}} \cdot Q_{\text{TD}}, \qquad (1.44)$$

где β_{Tp} – поправочный коэффициент, учитывающий долю теплоотдачи теплопроводов (при открытой прокладке $\beta_{Tp} = 0.9$; при скрытой прокладке $\beta_{Tp} = 0.5$; при прокладке в тяжелом бетоне $\beta_{Tp} = 1.8$).

9. Вычисляется расчетная наружная площадь отопительного прибора, M^2 :

$$A_{\rm np} = \frac{Q_{\rm np}}{q_{\rm np}}.\tag{1.45}$$

Пример 1.9. Расчет площади и количества отопительных приборов в однотрубной системе отопления жилого дома

Исходные данные

- 1. Теплоносителем в системе отопления является вода с параметрами t_{Γ} = 95 °C, $t_{\rm o}$ = 70 °C.
 - 2. Тип отопительного прибора радиатор МС-140-108.
 - 3. Диаметры стояков 15 мм.
- 4. Значения отопительных характеристик и коэффициентов: c=4,19 кДж/(кг·°С); $\beta_1=1,02$; $\beta_2=1,04$; n=0,3; p=0; $q_{\text{HOM}}=758$ Вт/м²; $f_{\text{c}}=0,244$ м²; $\beta_{\text{Tp}}=0,9,$ $\Delta t_{\text{п.м}}=0,4\cdot$ °С, $\alpha=1,0$.

Порядок расчета

1. Схематично показываем на плане размещение отопительных приборов (1 секция = 1мм) и стояков (рис. 1.9) с их нумерацией по часовой стрелке, начиная с левого верхнего угла (ст. 1, ст. 2 и т. д.). На стояках проставляем величины тепловых нагрузок приборов, равные расчетным теплопотерям помещений

и нумерацию приборов, начиная с первого по ходу движения теплоносителя прибора (рис. 1.10).

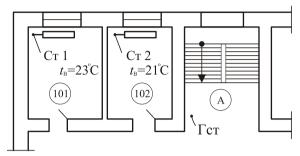


Рис. 1.9. Размещение отопительных приборов на плане здания

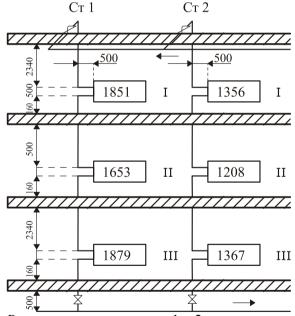


Рис. 1.10. Расчетные схемы стояков 1 и 2

2. Расчет выполняем по представленной методике, и результаты заносим в табл. 1.20 и 1.21.

Таблица 1.20

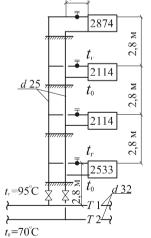
Ведомость расчета отопительных приборов

	Тип при- бора	14	6,4 кг/ч	МС	-140	-108	$G_{\rm cr} = 145, 8~{\rm kr/ ч}$	Mo	C-140-1	.08
	Раз- мер, кол-во	13	$G_{\rm cr} = 136,4~{\rm K}\Gamma/{\rm H}$	6	10	14	$G_{\rm cr} = 14$	9	7	10
	$A_{ m np}$, M^2	12	3T	2,29	2,37	3,34	m Br	1,53	1,65	2,35
•	$Q_{\mathrm{np}},$ BT	11	$Q_{\rm cr} = 5383~{\rm Br}$	1649	1483	1735	$Q_{\rm cr}=33932~{\rm Br}$	1145	1032	1218
•	$Q_{ m p}, m BT$	10	$\mathcal{Q}_{\mathrm{cr}}$	224	681	161	$Q_{ m cr}$ =	234	961	166
	$\frac{q_{\rm np},}{{\rm BT/M}^2}$	6		721	625	519		749	625	519
	$\Delta t_{ m cp}$,	8	Стояк 1	67,4	60,4	52,3	Стояк 2	69,4	60,3	52,3
	$t_{\rm cp}$, ${}^{\circ}{ m C}$	7	С	90,4	82,4	74,3	C	90,4	82,3	74,3
1	$t_{\rm ex}$	9		94,6	86,1	78,6		94,6	86,1	78,6
	$\Sigma Q_{ m o},$ Br	5		_	1851	3504		_	1356	2564
	<i>G</i> пр, КГ/ч	4	d = 15 mM		199,6		d = 15 MM		145,8	
	$\Delta t_{\scriptscriptstyle \Pi.M},$	3	q =	0,4	0,4	0,4	q =	0,4	0,4	0,4
	Qo, Br	7	J., 8	1851	1653	1879	J ₀	1356	1208	1367
	№ от.пр.	П	$t_{\rm B} = 23 {\rm ^oC}$	Ι	П	III	$t_{\rm B} = 21 {\rm ^oC}$	Ι	П	Ш

Τα6πυψα 1.21

Теплоотдача открыто проложенных трубопроводов

	Β. K.	12	224	189	161	234	196	166
	$q_{ m r}$. $l_{ m r}$. $B_{ m T}$	11	40 34	34 29	29 23	41	35 30	30 25
участки	$l_{ m r}$, M	10	0,5	0,5	0,5	0,5	0,5	0,5
Горизонтальные участки	<i>q</i> г, Вт/м	6	80	67 58	58 46	82 70	70	60 49
Горизон	$t_{\mathrm{Bx}} - t_{\mathrm{B}}$,	8	71,6	63,1 55,6	55,6 47	73,6	65,1 57,6	57,6 49
	t_{Bx} , $^{\circ}\mathrm{C}$	7	94,6 86,1	86,1 78,6	78,6 70	94,6 86,1	86,1 78,6	78,6 70
	$q_{ ext{B}}.\ l_{ ext{B}}.$ Br	9	143	119	103 6	150	124 7	105 6
частки	<i>l</i> в, М	5	2,34 0,16	2,34 0,16	2,34 0,16	2,34 0,16	2,34 0,16	2,34 0,16
Вертикальные участки	$q_{ m B}, m BT/M$	4	61 51	51 44	44 35	64 53	53 45	45 37
Вертик	$t_{ m Bx}$ - $t_{ m B}$,	3	71,6 63,1	63,1 55,6	55,6 47	73,6 65,1	65,1 57,6	57,6 49
	$t_{\rm BX}$, $^{\circ}$ C	2	94,6 86,1	86,1 78,6	78,6 70	94,6 86,1	86,1 78,6	78,6
Š	$t_{ m B}$ Π OM.	1	301, 23 °C	201, 23 °C	101, 23 °C	302, 21 °C	202, 21 °C	102, 21 °C


Пример 1.10. Расчет площади и количества отопительных приборов в двухтрубной системе отопления жилого дома

Исходные данные

- 1. Расчетная температура внутреннего воздуха $t_{\rm B} = 18 \, {\rm ^oC}$.
- 2. Теплоносителем является вода с параметрами $t_{\Gamma} = 95$ °C, $t_{0} = 70$ °C.
 - 3. Тип отопительного прибора радиатор М-90-108.
 - 4. Диаметры магистралей 32 мм, стояка 25 мм.
- 5. Значения отопительных характеристик и коэффициентов: c=4,19 кДж/(кг·°С); $\beta_1=1,03$; $\beta_2=1,02$; n=0,25; p=0,04; $q_{\text{HoM}}=700$ Вт/м²; $f_{\text{c}}=0,187$ м²; $\beta_{\text{Tp}}=0,9$.
- 6. Расстояние от начала системы до рассматриваемого стояка 10 м.

Порядок расчета

1. Вычерчиваем расчетную схему стояка (рис. 1.11) и проставляем на ней длины и диаметры труб, а также величины теп-0,5 м ловых потоков приборов.

- 2. Находим по табл. 1.19 суммарное понижение расчетной температуры воды на участках подающей магистрали от начала до рассматриваемого стояка. Значение $\Delta t_{\text{п.м}} = 0.4$ °C.
- 3. Определяем суммарное понижение расчетной температуры воды на участках подающего стояка от магистрали до рассчитываемого прибора по формуле (1.32)

$$\Delta t_{\text{\tiny II.CT}} = \frac{q_{\text{\tiny B}} \cdot l_{\text{\tiny yq}} \cdot \beta_1 \cdot \beta_2 \cdot 3,6}{c \cdot G_{\text{\tiny vq}}}.$$

Рис. 1.11. Расчетная схема двухтрубного стояка

Первоначально определяем температуру теплоносителя $t_{\rm Bx}$, °C, (на участке) на входе в помещение по ходу движения теплоносителя. Затем находятся по уравнениям (1.37)-(1.39) значения $G_{\rm yy}$ и $q_{\rm B}$, Вт/м, определяется $\Delta t_{\rm n.ct}$ в определенной последовательности:

– для первого прибора

$$\begin{split} t_{_{\mathrm{BX}(1)}} &= t_{_{\mathrm{\Gamma}}} - \Delta t_{_{\mathrm{\Pi.M}}} = 95 - 0.4 = 94,6\ ^{\mathrm{o}}\mathrm{C}, \\ G_{_{\mathrm{yu}(1)}} &= \frac{\sum \mathcal{Q}_{_{\mathrm{yu}(1)}} \cdot \beta_{1} \cdot \beta_{2} \cdot 3,6}{c \left(t_{_{\mathrm{BX}(1)}} - t_{_{0}}\right)} = \frac{9635 \cdot 1,03 \cdot 1,02 \cdot 3,6}{4,19 \left(94,6 - 70\right)} = 353,5\ \mathrm{kg/u}, \\ \mathrm{при}\ t_{_{\mathrm{BX}(1)}} - t_{_{\mathrm{B}}} = 94,6 - 18 = 76,6\ ^{\mathrm{o}}\mathrm{C}, \qquad q_{_{\mathrm{B}}} = 107\ \mathrm{By/m}, \\ \Delta t_{_{\mathrm{\Pi.CT}(1)}} &= \frac{107 \cdot 2,8 \cdot 1,03 \cdot 1,02 \cdot 3,6}{4 \cdot 19 \cdot 353 \cdot 5} = 0,77\ ^{\mathrm{o}}\mathrm{C}; \end{split}$$

- для второго прибора

$$\begin{split} t_{_{\mathrm{BX}(2)}} &= t_{_{\Gamma}} - \Delta t_{_{\mathrm{\Pi.M}}} - \Sigma \Delta t_{_{\mathrm{\Pi.CT}(1)}} = 95 - 0.4 - 0.77 = 93.8 \ ^{\mathrm{o}}\mathrm{C}, \\ G_{_{\mathrm{yu}(2)}} &= \frac{7102 \cdot 1.03 \cdot 1.02 \cdot 3.6}{4.19 \left(93.8 - 70 \right)} = 269.4 \ \mathrm{kg/y}, \\ \text{при } t_{_{\mathrm{BX}(2)}} - t_{_{\mathrm{B}}} = 93.8 - 18 = 75.8 \ ^{\mathrm{o}}\mathrm{C}, \qquad q_{_{\mathrm{B}}} = 103 \ \mathrm{Bt/m}, \\ \Delta t_{_{\mathrm{\Pi.CT}(2)}} &= \frac{103 \cdot 2.8 \cdot 1.03 \cdot 1.02 \cdot 3.6}{4.19 \cdot 269.4} = 0.97 \ ^{\mathrm{o}}\mathrm{C}; \end{split}$$

– для третьего прибора

$$\begin{split} t_{\text{вх}(3)} &= t_{\text{г}} - \Delta t_{\text{п.м.}} - \left(\Delta t_{\text{п.ст}(1)} + \Delta t_{\text{п.ст}(2)} \right) = 95 - 0.4 - \left(0.77 + 0.97 \right) = 92.9 \, ^{\text{o}}\text{C}, \\ G_{\text{уч}(3)} &= \frac{4988 \cdot 1.03 \cdot 1.02 \cdot 3.6}{4.19 \left(92.9 - 70 \right)} = 196.6 \, \text{кг/ч}, \\ \text{при } t_{\text{вх}(3)} - t_{\text{в}} &= 92.9 - 18 = 74.9 \, ^{\text{o}}\text{C}, \qquad q_{\text{в}} = 101 \, \text{Вт/м}, \\ \Delta t_{\text{п.ст}(3)} &= \frac{101 \cdot 2.8 \cdot 1.03 \cdot 1.02 \cdot 3.6}{4.19 \cdot 196.6} = 1.3 \, ^{\text{o}}\text{C}; \end{split}$$

для четвертого прибора

$$t_{\text{bx}(4)} = 95 - 0.4 - (0.77 + 0.97 + 1.3) = 91.6 \, ^{\circ}\text{C},$$

$$G_{\text{yu}(4)} = \frac{2874 \cdot 1.03 \cdot 1.02 \cdot 3.6}{4.19(91.6 - 70)} = 120.1 \, \text{kg/u},$$

при
$$t_{\text{вх}(3)} - t_{\text{в}} = 91,6 - 18 = 73,6 \,^{\circ}\text{C}, \qquad q_{\text{в}} = 100 \,\text{BT/M},$$

$$\Delta t_{\text{п.ст}(4)} = \frac{100 \cdot 2,8 \cdot 1,03 \cdot 1,02 \cdot 3,6}{4.19 \cdot 120.1} = 2,1 \,^{\circ}\text{C}.$$

- 4. Вычисляем средний температурный напор в отопительном приборе с учетом понижения температуры воды в подающей магистрали и стояке по формуле (1.40):
 - -для первого прибора

$$\Delta t_{\text{cp(1)}} = 0.5 \left[95 - (0.4 + 0.77) + 70 \right] - 18 = 63.92 \text{ °C};$$

– для второго прибора

$$\Delta t_{\text{cp(2)}} = 0.5[95 - (0.4 + 0.77 + 0.97) + 70] - 18 = 63.43 \text{ °C};$$

- для третьего прибора

$$\Delta t_{cp(3)} = 0.5[95 - (0.4 + 0.77 + 0.97 + 1.3) + 70] - 18 = 62.78 \, {}^{\circ}\text{C};$$

- для четвертого прибора

$$\Delta t_{\text{cp}(4)} = 0.5[95 - (0.4 + 0.77 + 0.97 + 1.3 + 2.1) + 70] - 18 = 61.73 \text{ °C}.$$

- 5. Рассчитываем общее количество воды, циркулирующей в отопительном приборе, с учетом понижения температуры воды в подающих магистралях и стояке по формуле (1.41):
 - для первого прибора

$$G_{\text{np(1)}} = \frac{2533 \cdot 1,03 \cdot 1,02 \cdot 3,6}{4,19 \left[95 - \left(0,4 + 0,77 \right) - 70 \right]} = 95,95 \text{ kg/y};$$

- для второго прибора

$$G_{\text{np(2)}} = \frac{2114 \cdot 1,03 \cdot 1,02 \cdot 3,6}{4,19[95 - (0,4 + 0,97) - 70]} = 80,76 \text{ kg/y};$$

- для третьего прибора

$$G_{\text{np(3)}} = \frac{2114 \cdot 1,03 \cdot 1,02 \cdot 3,6}{4,19[95 - (0,4+1,3) - 70]} = 81,9 \text{ kg/y};$$

- для четвертого прибора

$$G_{\text{пр(4)}} = \frac{2874 \cdot 1,03 \cdot 1,02 \cdot 3,6}{4,19 \left[95 - \left(0,4 + 2,1\right) - 70\right]} = 115,3 \text{ кг/ч}.$$

6. Определяем расчетную плотность теплового потока отопительного прибора по формуле (1.42): - для первого прибора

$$q_{\text{np(l)}} = 700 \left(\frac{63,92}{70}\right)^{1,25} \left(\frac{95,95}{360}\right)^{0,01} = 617 \text{ BT/M}^2;$$

для второго прибора

$$q_{\text{np(2)}} = 700 \left(\frac{63,43}{70}\right)^{1,25} \left(\frac{80,76}{360}\right)^{0,01} = 610 \text{ BT/M}^2;$$

для третьего прибора

$$q_{\text{np(3)}} = 700 \left(\frac{62,78}{70}\right)^{1,25} \left(\frac{81,9}{360}\right)^{0,01} = 602 \text{ BT/M}^2;$$

- для четвертого прибора

$$q_{\text{np}(4)} = 700 \left(\frac{61,73}{70}\right)^{1,25} \left(\frac{115,3}{360}\right)^{0,01} = 592 \text{ BT/M}^2.$$

- 7. Вычисляем полную теплоотдачу труб стояка и подводок, проложенных в помещении, по формуле (1.43) с учетом $t_{\Gamma}-t_{\rm B}$ для каждого участка:
 - для первого прибора

$$Q_{\text{rn}(1)} = 107 \cdot 2.8 + 128 \cdot 0.5 = 364 \text{ BT};$$

– для второго прибора

$$Q_{\text{TD}(2)} = 103 \cdot 2.8 + 125 \cdot 0.5 = 351 \text{ BT};$$

- для третьего прибора

$$Q_{\text{Tp(3)}} = 101 \cdot 2,8 + 123 \cdot 0,5 = 344 \text{ BT};$$

- для четвертого прибора

$$Q_{\text{rn}(4)} = 100 \cdot 2.8 + 121 \cdot 0.5 = 341 \text{ Bt.}$$

- 8. Определяем требуемую теплоотдачу кожуха отопительного прибора в рассматриваемом помещении по формуле (1.44):
 - для первого прибора

$$Q_{\text{np(1)}} = 2533 - 0.9 \cdot 364 = 2205 \text{ Bt};$$

- для второго прибора

$$Q_{\text{np(2)}} = 2114 - 0.9 \cdot 351 = 1798 \text{ BT};$$

- для третьего прибора

$$Q_{\text{np}(3)} = 2114 - 0.9 \cdot 344 = 1804 \text{ BT};$$

- для четвертого прибора

$$Q_{\text{np}(4)} = 2874 - 0.9 \cdot 341 = 2567 \text{ Bt.}$$

- 9. Определяем расчетную наружную площадь отопительного прибора по формуле (1.45):
 - для первого прибора

$$A_{\text{rip}(1)} = \frac{2205}{617} = 3,57 \text{ m}^2;$$

– для второго прибора

$$A_{\text{np(2)}} = \frac{1798}{610} = 2,95 \text{ m}^2;$$

для третьего прибора

$$A_{\text{np(3)}} = \frac{1804}{602} = 3 \text{ m}^2;$$

для четвертого прибора

$$A_{\text{np}(4)} = \frac{2567}{592} = 4{,}34 \text{ m}^2.$$

- 10. Расситываем число секций чугунного радиатора М-90-108:
- для первого прибора

$$N_1 = \frac{A_{\text{np(1)}}}{f_c} = \frac{3.57}{0.187} = 19.1$$
, T. e. 19 IIIT.;

– для второго прибора

$$N_2 = \frac{A_{\text{np}(2)}}{f_c} = \frac{2,95}{0,187} = 15,8$$
, T. e. 16 IIIT.;

- для третьего прибора

$$N_3 = \frac{A_{\text{np(3)}}}{f_c} = \frac{3}{0.187} = 16,04$$
, T. e. 16 IIIT.;

– для четвертого прибора

$$N_4 = \frac{A_{\text{np}(4)}}{f_c} = \frac{4,34}{0,187} = 23,2$$
, T. e. 24 IIIT.

1.3. Воздушное отопление

Воздушное отопление имеет много общего с другими видами централизованного отопления. И воздушное, и водяное отопление основаны на передаче теплоты в отапливаемые помещения от охлаждающегося теплоносителя. В центральной системе воздушного отопления, как и в системах водяного отопления, имеется теплогенератор (центральная установка для нагревания воздуха) и теплопроводы (каналы или воздуховоды для перемещения теплоносителя).

Воздух для отопления подается в помещение нагретым до такой температуры $t_{\rm r}$, чтобы в результате его смешения с внутренним воздухом и теплообмена с поверхностью ограждений поддерживалась заданная температура помещения. Следовательно, количество аккумулированной воздухом теплоты должно быть равно Q_{Π} – максимальной теплопотребности для поддержания в помещении расчетной температуры $t_{\rm B}$ [13, 25]:

$$G_{\text{or}}c\left(t_{\text{r}}-t_{\text{B}}\right)=Q_{\text{II}}.$$
(1.46)

Отсюда расход нагретого воздуха $G_{\text{от}}$, кг/с, для отопления помешения

$$G_{\text{or}} = Q_{\text{II}} / \left(c \left(t_{\text{r}} - t_{\text{R}} \right) \right), \tag{1.47}$$

где с – удельная массовая теплоемкость воздуха, равная 1005 Дж/(кг⋅К).

Для получения расхода воздуха в кг/ч теплопотребность помещения в Вт (Дж/с) следует выразить в Дж/ч, т. е. умножить на 3600 с.

Объем подаваемого воздуха $L_{\rm or}$, м³/ч, при температуре $t_{\rm r}$ нагретого воздуха

$$L_{\rm or} = G_{\rm or}/\rho_{\rm r} \ . \tag{1.48}$$

Воздухообмен в помещении L_{Π} , м³/ч, несколько отличается от $L_{\text{от}}$, т. к. определяется при температуре внутреннего воздуха $t_{\text{в}}$:

$$L_{\rm II} = G_{\rm or}/\rho_{\rm B} \,, \tag{1.49}$$

 $L_{_{\Pi}} = G_{_{\rm OT}}/\rho_{_{\rm B}} \; , \eqno (1.49)$ где $\rho_{_{\rm F}}$ и $\rho_{_{\rm B}}$ – плотность воздуха, кг/м 3 , при его температуре соответственно t_{Γ} и $t_{\rm R}$.

Температура воздуха t_{Γ} должна быть возможно более высокой, как это видно из уравнения (1.47), для уменьшения количества подаваемого воздуха. В связи с этим, соответственно, сокращаются размеры каналов, а также снижается расход электроэнергии при механическом побуждении движения воздуха.

Однако правилами гигиены устанавливается определенный верхний предел температуры — воздух не следует нагревать выше 60 °C, чтобы он не терял своих свойств как среда, вдыхаемая людьми. Эта температура и принимается как предельная для систем воздушного отопления помещений с постоянным или длительным (более 2 ч) пребыванием людей. Отклонения от этого общего правила делают для воздушно-тепловых завес. Для завес у внешних ворот и технологических проемов, выходящих наружу, допускается повышение температуры подаваемого воздуха до 70 °C, а для завес у наружных входных дверей — до 50 °C.

Конкретные значения температуры воздуха при воздушном отоплении связаны со способами его подачи из воздухораспределителей и зависят от того, подается ли воздух вертикально сверху вниз, наклонно в направлении рабочей (обслуживаемой) зоны или горизонтально в верхней зоне помещения. Если люди подвергаются длительному непосредственному влиянию струи нагретого воздуха, его температуру рекомендуется понижать до 25 °C.

По формуле (1.47) определяют количество воздуха, подаваемого в помещение только с целью его отопления, и систему устраивают рециркуляционной. Когда же воздушная система отопления является одновременно и системой вентиляции, количество подаваемого в помещение воздуха устанавливают следующим образом:

-если $G_{\text{от}} \geq G_{\text{вент}}$ (количество воздуха для отопления оказывается равным количеству воздуха, необходимому для вентиляции, или превышает его), то сохраняют количество и температуру отопительного воздуха, а систему выбирают прямоточной или с частичной рециркуляцией;

- если $G_{\text{вент}} > G_{\text{от}}$ (количество вентиляционного воздуха превышает количество воздуха, которое необходимо для отопления), то принимают количество воздуха, потребное для вентиляции, систему делают прямоточной, а температуру подаваемого воздуха вычисляют по формуле

$$t_{\Gamma} = t_{\rm R} + Q_{\Pi} / (cG_{\rm ReHT}),$$
 (1.50)

полученной из уравнения вида (1.47).

Количество воздуха для отопления помещения или его температуру уменьшают, если в помещении имеются постоянные тепловыделения.

При центральной отопительно-вентиляционной системе температура нагретого воздуха, определяемая по формуле (1.50), может оказаться для каждого помещения различной. Подача в отдельные помещения воздуха при различной температуре технически осуществима. Однако проще подавать во все помещения воздух при одинаковой температуре. В этом случае общую температуру нагретого воздуха принимают равной низшей из расчетных для отдельных помещений, а количество подаваемого воздуха пересчитывают по формуле (1.47).

После уточнения воздухообмена определяют теплозатраты на нагревание воздуха по формулам:

- для рециркуляционной системы воздушного отопления

$$Q = G_{\rm or} c \left(t_{\rm r} - t_{\rm B} \right); \tag{1.51}$$

 для частично рециркуляционной отопительновентиляционной системы

$$Q = G_{\text{ot}} c(t_{\text{r}} - t_{\text{b}}) + G_{\text{Beht}} c(t_{\text{b}} - t_{\text{h}}); \qquad (1.52)$$

- для прямоточной отопительно-вентиляционной системы

$$Q = G_{\text{\tiny REHT}} c \left(t_{\text{\tiny L}} - t_{\text{\tiny H}} \right), \tag{1.53}$$

где $G_{\rm or}$ и $G_{\rm Beht}$ — расход воздуха, кг/с, для целей отопления и вентиляции; $t_{\rm H}$ — расчетная температура наружного воздуха для проектирования отопления.

В формуле (1.52) количество рециркуляционного воздуха $G_{\text{рец}} = G_{\text{от}} - G_{\text{вент}}$, т. к. $G_{\text{от}}$ выражает количество смешанного воздуха, нагретого до температуры t_{Γ} с целью отопления.

В системах центрального воздушного отопления в отличие от систем центральной приточной вентиляции перемещается воздух меньшей и переменной плотности по сравнению с плотностью воздуха, окружающего воздуховоды. В связи с этим можно отметить две особенности действия систем центрального воздушного отопления: нагретый воздух заметно охлаждается по пути его движения и количество воздуха, поступающего в помещения, изменяется в течение отопительного сезона, особенно при естественном движении.

В вентиляторных системах воздушного отопления ограниченной длины и высоты эти два фактора обычно во внимание не принимаются. В разветвленных протяженных системах воздушного отопления крупных зданий, особенно высоких, необходимо ограничивать как охлаждение воздуха в воздуховодах, так и перераспределение воздуха, поступающего в помещения под влиянием изменяющегося естественного циркуляционного давления.

Для ограничения и учета охлаждения воздуха выполняют тепловой расчет воздуховодов, устанавливают начальную температуру воздуха и уточняют его расчетный расход.

Тепловой поток через стенки воздуховода длиной l представим как

$$Q_{\text{OVII}} = q_1 l \,, \tag{1.54}$$

где q_1 — тепловой поток через стенки воздуховода длиной 1 м, определяемый по формуле

$$q_1 = kA_1(t_{cp} - t_{_B}) = (t_{cp} - t_{_B})/R_1$$
, (1.55)

 R_1 — сопротивление теплопередаче от нагретого воздуха, имеющего среднюю температуру $t_{\rm cp}$, через площадь A_1 стенок воздуховода длиной 1 м в помещение при температуре $t_{\rm B}$.

Сопротивление теплопередаче находят с учетом дополнений, которые относятся к условиям теплопередачи через 1 м воздуховода, у которого внешняя поверхность может быть значительно больше внутренней и отделяется от последней промежуточными слоями.

Тепловой поток через стенки воздуховода при установившемся состоянии соответствует степени охлаждения потока нагретого воздуха, перемещающегося по воздуховоду. Поэтому можно написать уравнение теплового баланса, выражая q_1 в кДж/ч:

$$q_{\rm l}l = G_{\rm or}c\left(t_{\rm haq} - t_{\rm r}\right),\tag{1.56}$$

где $G_{\text{от}}$ – количество воздуха для отопления помещения, кг/ч; $t_{\text{нач}}$ и $t_{\text{г}}$ – температура нагретого воздуха соответственно в начале воздуховода и выпускаемого в помещение, °C; c – удельная теплоемкость воздуха, кДж/(кг °C).

Уравнение теплового баланса (1.56) дает возможность установить начальную температуру воздуха в воздуховоде по заданной конечной или, наоборот, уточнить температуру воздуха, выпускаемого в помещение, и, при необходимости, расход воздуха.

Температура нагретого воздуха в начале воздуховода на основании формулы (1.50) равна:

$$t_{\text{\tiny HAPI}} = t_{\text{\tiny B}} + ((Q_{\text{\tiny II}} + (1 - \eta)Q_{\text{\tiny OXJI}})/Q_{\text{\tiny II}})(t_{\text{\tiny F}} - t_{\text{\tiny B}}),$$
 (1.57)

где η — доля от $Q_{\text{охл}}$, поступающая в отапливаемое помещение $(Q_{\text{охл}}$ в первом приближении можно определять по формулам (1.56) и (1.57), подставляя известную температуру $t_{\text{г}}$ вместо температуры $t_{\text{сp}}$).

Уточненный расход горячего воздуха в воздуховоде, кг/ч, с учетом формулы (1.47) составит:

$$G_{\text{ot}} = (Q_{\text{II}} + (1 - \eta)Q_{\text{OXJI}}) / (c(t_{\text{cp}} - t_{\text{B}})).$$
 (1.58)

Пример 1.11. Определение количества воздуха для рециркуляционной системы воздушного отопления

Исходные данные

- 1. Температура подаваемого воздуха t_{Γ} = 45 °C.
- 2. Расчетная температура внутреннего воздуха t_B = 21 °C.
- 3. Теплопотери помещения 8100 кДж/ч.

Порядок расчета

1. Массовое количество подаваемого воздуха при t_r = 45 °C составляет по формуле (1.47):

$$G_{\text{ot}} = \frac{8100}{1,005(45-21)} = 335,8 \text{ kg/y}.$$

2. Объемное количество подаваемого воздуха по формуле (1.48) при $\rho_{\Gamma} = \frac{353}{273 + 45} = 1,11 \ \text{кг/м}^3$, равно:

$$L_{\text{or}} = \frac{335.8}{1.11} = 302.5 \,\text{m}^3/\text{y}$$
.

3. Воздухообмен в помещении по формуле (1.49) при $\rho_{_{B}} = \frac{353}{273 + 21} = 1,201 \ \text{кг/m}^{_{3}}, \text{ составляет:}$

$$L_{\rm m} = \frac{335.8}{1.201} = 279.6 \,\mathrm{M}^3/\mathrm{H}$$
.

Пример 1.12. Определение количества воздуха для частично рециркуляционной отопительновентиляционной системы отопления

Исходные данные

- 1. Условия примера 1.11.
- 2. Объемное количество наружного воздуха для вентиляции помещения $L_{\text{вент}}$ =110 м³/ч.
 - 3. Температура наружного воздуха $t_{\rm H}$ = -25 °C.

Порядок расчета

1. Расход тепла в частично рециркуляционной отопительно-вентиляционной системе по формуле (1.52) равен:

$$Q = c \left[G_{\text{ot}} \left(t_{\text{r}} - t_{\text{в}} \right) + L_{\text{вент}} \rho_{\text{в}} \left(t_{\text{в}} - t_{\text{н}} \right) \right] =$$
=1,005[335,8(45 – 21) + 110 · 1,201 (21 + 25)] =14136 кДж/ч.

2. Объем рециркуляционного воздуха составляет:

$$L_{\text{II}} - L_{\text{BeHT}} = 279,6 - 110 = 169,6 \text{ m}^3/\text{ч},$$

так что дополнительный, сверх теплопотерь помещения, расход тепла равен $\Delta Q = 14136 - 8100 = 6036 \ кДж/ч$.

Прямоточная отопительно-вентиляционная система неприменима, т. к. температура горячего воздуха в этом случае превысит допустимую, даже при подаче воздуха в верхнюю зону. В самом деле, по формуле (1.50):

$$t_{\Gamma} = t_{\rm B} + \frac{Q_{\Pi}}{cL_{\rm BeHT}\rho_{\rm B}} = 21 + \frac{8100}{1,005 \cdot 110 \cdot 1,201} = 21 + 61 = 82 \,^{\circ}\text{C} > 70 \,^{\circ}\text{C}$$
.

Пример 1.13. Определение начальной температуры воздуха в воздуховоде

Исходные данные

- 1. Сопротивление теплопередаче металлического воздуховода R_1 = 0,27 (м °C) /Вт.
- 2. Длина воздуховода, проложенного вне отапливаемого помещения $l=15\,\mathrm{m}$.
 - 3. Теплопотери помещения Q_{Π} = 10 кВт.
 - 4. Расчетная температура внутреннего воздуха $t_{\rm B}$ = 18 °C.
 - 5. Температура воздуха для отопления помещения $t_{\rm r}$ = 55 °C.

Порядок расчета

1. Массовое количество воздуха для отопления помещения определяем по формуле (1.47):

$$G_{\text{ot}} = \frac{10 \cdot 3, 6 \cdot 10^3}{1,005 \cdot (55 - 18)} = 968,1 \,\text{kg/y}.$$

2. Ориентировочная величина теплового потока через стенки воздуховода длиной 1 м по формуле (1.55) при $t_{\rm cp} = t_{\rm r}$ составит:

$$q_1 = \frac{55-18}{0.27} = 137 \text{ BT/M}.$$

3. Предварительную температуру воздуха в начале воздуховода находим по формуле (1.57) при $\eta = 0$:

$$t_{\text{\tiny HAH}} = 18 + \frac{10 \cdot 10^3 + 137 \cdot 15}{10 \cdot 10^3} (55 - 18) = 18 + 44,6 = 62,6 \,^{\circ}\text{C}$$
.

4. Уточненную величину теплового потока через стенки воздуховода определяем по формуле (1.54) при $t_{\rm cp}=0.5$ (62,6+55) = $58.8~{\rm ^{\circ}C}$

$$Q_{\text{OXJI}} = \frac{58,8-18}{0,27} 15 = 2267 \,\text{Bt} \,.$$

5. Окончательная температура воздуха в начале воздуховода будет равна:

$$t_{\text{\tiny HAPY}} = 18 + \frac{10 \cdot 10^3 + 2267}{10 \cdot 10^3} (55 - 18) = 18 + 45, 4 = 63, 4 \,^{\circ}\text{C}$$
.

Таким образом, горячий воздух в воздуховоде длиной 15 м при заданном сопротивлении теплопередаче его стенок охлаждается почти на 10 °С. Для уменьшения охлаждения теплоносителя воздуха, если теряемое тепло не используется для отопления, воздуховод вне отапливаемого помещения нужно покрывать тепловой изоляцией.

2. ВЕНТИЛЯЦИЯ

2.1. Аэродинамический расчет систем вентиляции

Аэродинамический расчет вентиляционной системы производят для подбора размеров поперечных сечений воздуховодов по рекомендуемым скоростям движения воздуха и определения потерь давления в системе.

Потери давления в системах вентиляции складываются из потерь давления на трение и потерь давления в местных сопротивлениях, Па [33]

$$\Delta P_{\text{cetu}} = \Delta P_{\text{tp}} + Z. \tag{2.1}$$

Потери давления на трение, Па,

$$\Delta P_{\rm TP} = R \ln n,$$
 (2.2)

где R — удельные потери давления на трение в гидравлически гладком канале, $\Pi a/m$; l — длина участка воздуховода, m; n — поправочный коэффициент, который зависит от абсолютной эквивалентной шероховатости воздуховодов.

Удельные потери давления на трение, Па/м,

$$R = \frac{\lambda_{\Gamma}}{d} P_{\Lambda}, \tag{2.3}$$

где $\lambda_{\rm r}$ – коэффициент гидравлического сопротивления трению для гидравлически гладкого канала; $d_{\rm 9}$ – эквивалентный (гидравлический) диаметр воздуховода, м; $P_{\rm n}$ – динамическое давление, Па.

Коэффициент гидравлического сопротивления трению для гидравлически гладкого канала, при турбулентном режиме течения, рассчитывается по закону Блазиуса:

$$\lambda_{\Gamma} = \frac{0.3164}{\text{Re}^{0.25}},\tag{2.4}$$

где Re – критерий Рейнольдса.

Критерий Рейнольдса:

$$Re = \frac{vd}{v}, \qquad (2.5)$$

где υ — скорость движения воздуха в воздуховоде, м/с; υ — кинематическая вязкость воздуха, м²/с.

Динамическое давление, Па,

$$P_{\rm m} = \frac{\rho v^2}{2} \,. \tag{2.6}$$

Потери давления в местных сопротивлениях, Па,

$$Z = \sum \xi \frac{\rho v^2}{2} = \sum \xi P_{\mu} , \qquad (2.7)$$

где $\sum \xi$ – сумма коэффициентов местных сопротивлений на расчетном участке воздуховода, коэффициенты местных сопротивлений на границе двух участков относят к участку с меньшим расходом и определяют по таблицам местных сопротивлений по прил. 14; ρ – плотность воздуха, кг/м³.

При расчетах можно пользоваться справочными таблицами [33] или номограммами (прил. 11, 12), которые построены на основании формул (2.3) – (2.6) при различных скоростях для различных диаметров круглых металлических воздуховодов (при $\rho = 1,2$ кг/м³, $\nu = 15,06 \cdot 10^{-6}$ м²/с), принимаемыми гидравлически гладкими.

Если пользоваться указанными таблицами и номограммами для воздуховодов из других материалов, необходимо вводить поправочный коэффициент *п*, который зависит от материала воздуховода и скорости движения воздуха и определяется по прил. 13 или по формуле

$$n = \frac{\lambda_{\rm m}}{\lambda_{\rm r}} \,, \tag{2.8}$$

где $\lambda_{\rm m}$ – коэффициент сопротивления трению с учетом шероховатости канала (воздуховода), рассчитывается по формуле Альтшуля:

$$\lambda_{\text{III}} = 0.11 \left(\frac{k_9}{d} + \frac{68}{\text{Re}} \right)^{0.25},$$
 (2.9)

где k_3 — абсолютная эквивалентная шероховатость поверхности воздуховода (прил. 10).

Для воздуховодов прямоугольного сечения за расчетную величину d принимают эквивалентный диаметр $d_{\mathfrak{P}}$ мм, при котором потери давления в круглом воздуховоде при той же скорости будут равны потерям давления в прямоугольном воздуховоде

$$d_{9} = 2ab/(a+b), (2.10)$$

где a, b – стороны прямоугольного воздуховода или канала, мм.

Аэродинамический расчет вентиляционной системы состоит из двух этапов:

- 1) расчет участка основного направления магистрали (наиболее протяженной и нагруженной ветви воздуховодов);
 - 2) увязка всех остальных участков системы.

При невозможности увязки потерь давления по ответвлениям воздуховодов в пределах 10–15 % следует устанавливать диафрагмы. Диафрагма (металлическая пластина с отверстием) – местное сопротивление, на котором гасится избыточное давление. Коэффициент местного сопротивления диафрагмы определяется по формуле

$$\xi_{\text{диафр}} = \Delta P_{\text{неувязки}} / P_{\text{д}} = (\Delta P_{\text{расп}} - \Delta P_{\text{отв}}) / P_{\text{д}},$$
 (2.11)

где $P_{\rm д}$ — динамическое давление на участке, на котором устанавливается диафрагма, Па; $P_{\rm pacn}$ — располагаемые потери давления на ответвлении, Па; $P_{\rm отв}$ — потери давления на увязываемом ответвлении, Па.

По значению ξ и по размерам воздуховода, на котором устанавливается диафрагма, подбирают размер диафрагмы (прил. 14).

Аэродинамический расчет систем вентиляции выполняют после расчета воздухообмена в помещениях и принятия решения по трассировке воздуховодов и каналов и конкретизации местных сопротивлений вдоль них. Для проведения аэродинамического расчета на основе архитектурно-строительной и технологической частей проекта вычерчивают аксонометрическую схему системы вентиляции, по которой определяют протяженность отдельных ее ветвей и размещают элементы сети.

Схему разбивают на отдельные расчетные участки. Расчетный участок характеризуется постоянным расходом воздуха. Потери давления на участке зависят от скорости движения воздуха и складываются из потерь на трение и потерь в местных сопротивлениях.

Намечается основное расчетное направление, представляющее собой цепочку последовательно расположенных участков от начала системы до наиболее удаленного ответвления. При наличии нескольких цепочек, одинаковых по протяженности, за магистральное направление принимается наиболее нагруженное (имеющее больший расход).

Расчет выполняют по методу удельных потерь давления в следующей последовательности:

1. По известному расчетному расходу вентиляционного воздуха L определяют ориентировочное сечение канала (воздуховода), \mathbf{m}^2 , по формуле

$$F' = \frac{L}{3600v_{\rm p}},\tag{2.12}$$

где L — расчетный расход воздуха в воздуховоде, м³/ч; $\upsilon_{\rm p}$ — предварительная скорость движения воздуха, м/с:

- а) в системах естественной вентиляции:
- для горизонтальных каналов 0,5-1,0 м/с;
- для вертикальных каналов 0,5-1,0 м/c;
- для вытяжных шахт 1,0-1,5 м/с.
- б) в системах механической вентиляции:
- для участка с жалюзийной решеткой -2-5 м/с;
- для участка с вентилятором 6–12 м/с;
- для магистральных воздуховодов производственных зданий до 12 м/с;
- для ответвлений воздуховодов производственных зданий
 до 6 м/с.
- 2. Исходя из расчетной площади канала с учетом конструктивных соображений, принимаем стандартные размеры сечения каналов (воздуховодов) по прил. 6–9.

3. Уточняем фактическую скорость движения воздуха по каналам, м/с, по формуле

$$v_{\phi} = \frac{L}{3600F_{cr}},\tag{2.13}$$

где $F_{\rm cr}$ – стандартная площадь канала, м² (прил. 6–9).

- 4. Определяем потери давления на преодоление сил трения по принятому сечению (диаметру) и заданному количеству воздуха по формуле (2.2).
- 5. Определяем гидравлические потери на местные сопротивления по участкам вентиляционной сети по формуле (2.7).
- 6. Определяем суммарные фактические гидравлические потери на всех участках, входящих в расчетную ветвь $\Sigma(Rln+Z)$.
- 7. Производим увязку потерь давления по ответвлениям воздуховодов в пределах 10-15% (10% для естественной системы вентиляции, 15% для принудительной).

2.1.1. Аэродинамический расчет систем вентиляции с естественным побуждением движения воздуха

Цель расчета — подбор геометрических размеров вентиляционных каналов, обеспечивающих действительное гидравлическое сопротивление вентиляционной сети, не большее, чем располагаемое естественное давление.

За расчетное направление в вытяжных системах с естественным побуждением принимают такое, удельные потери давления на котором имеют минимальную величину.

Удельные потери давления, Па/м:

$$R_{\rm yx} = \frac{P_{\rm rp}}{\Sigma I},\tag{2.14}$$

где $P_{\rm rp}$ — гравитационное давление, действующее в вытяжных каналах соответствующих этажей, Π а; l — длина участка, м.

В системах с естественным побуждением требуется увязка действующих гравитационных давлений в каналах соответствующих этажей с потерями давлений на трение и местные со-

противления по пути движения воздуха от места входа его в сеть (вытяжные решетки) до выхода в атмосферу (устье вытяжной шахты), т. е.

$$P_{\rm rp} \ge \Sigma (R \ln + Z), \tag{2.15}$$

где $\Sigma(Rln+Z)$ — потери давления на трение и местные сопротивления на участках в расчетном направлении.

Гравитационное давление, Па, определяется по формуле

$$P_{rp} = h(\rho_{H} - \rho_{B})9,81,$$
 (2.16)

где h – высота воздушного столба, м, принимается:

- а) при наличии в здании только вытяжки от середины решетки до устья вытяжной шахты;
- б) при наличии в здании механического притока от середины высоты помещения до устья вытяжной шахты;
- $\rho_{\rm H}$ плотность наружного воздуха, кг/м³, для общественных зданий при $t_{\rm H}$ = 5°C; $\rho_{\rm B}$ плотность воздуха в помещении.

Порядок аэродинамического расчета систем естественной вентиляции:

- 1. На планах размещают жалюзийные решетки, вертикальные каналы, горизонтальные короба и вытяжные шахты; вычерчивают аксонометрические схемы систем вентиляции. Аксонометрическая схема воздуховодов естественной вентиляции должна быть построена так, чтобы со всех сторон вытяжной шахты было равное число вертикальных каналов и равные расходы воздуха. Количество вентиляционных систем определяется числом вытяжных шахт.
- 2. Расчет начинают от более неблагоприятно расположенной жалюзийной решетки. Обычно наиболее неблагоприятной является решетка, наиболее удаленная от вытяжной шахты. Путь движения воздуха от этой жалюзийной решетки по каналам до вытяжной шахты и сама вытяжная шахта будут являться одной расчетной веткой.
- 3. Для естественной вытяжной вентиляции определяется располагаемое гравитационное давление для расчетной ветви $P_{\rm rp}$ по формуле (2.16).

- 4. По известному расходу вентиляционного воздуха L определяют ориентировочное сечение канала (коробов, шахт) F по формуле (2.12)
- 5. Исходя из расчетной площади канала с учетом конструктивных соображений, принимают стандартные размеры сечения каналов по прил. 6–9.
- 6. После этого уточняют фактическую скорость движения воздуха по каналам $\upsilon_{\scriptscriptstyle \Phi}$ по формуле (2.13).
- 7. Определяют гидравлические потери на преодоление сил трения соответственно по принятому сечению (диаметру) и заданному расходу воздуха по формуле (2.2).
- 8. Определяют гидравлические потери на местные сопротивления по участкам вентиляционной сети по формуле (2.7).
- 9. Определяют суммарные фактические гидравлические потери на всех участках, входящих в расчетную ветвь P_{ϕ} . При этом они не должны превышать располагаемого давления P_{p} .

Если $P_{\phi} > P_{\rm p}$, то необходимо соответственно увеличить сечения отдельных участков вентиляционной сети. Если $P_{\phi} < P_{\rm p}$, то необходимо уменьшить сечения отдельных участков вентиляци-

онной сети. Невязка допускается 10 %:
$$\frac{P_{\rm \varphi} - P_{\rm p}}{P_{\rm \varphi}} 100~\% \leq 10~\%$$
 .

10. После расчета главной расчетной ветви приступают к расчету ответвлений сети. Он производится аналогично расчету главной ветви. Расчет считается законченным, если потери давления в ответвлении не больше располагаемого давления в ответвлении. Невязка потерь в точках смешения потоков не

должна превышать 10 %:
$$\frac{P_{\mbox{\tiny MAT}} - P_{\mbox{\tiny OTB}}}{P_{\mbox{\tiny MAT}}} 100 \% \le 10 \%$$
 .

Пример 2.1. Расчет естественной вытяжной системы вентиляции двухэтажного жилого дома

Исходные данные

1. Рассчитать естественную вытяжную систему вентиляции ванных комнат и санузлов двухэтажного жилого дома (см. рис. 2.1).

- 2. Воздуховодами служат каналы, располагаемые в толще кирпичной стены. Каналы на чердаке объединяются шлакоалебастровыми коробами.
- 3. По нормам воздухообмен (вытяжка) составляет: из ванной комнаты $25 \text{ m}^3/\text{ч}$, из санузла $25 \text{ m}^3/\text{ч}$. Приток воздуха неорганизованный (за счет неплотностей в ограждениях здания). Вытяжка воздуха производится из верхней зоны помещений на высоте 0.5 m от потолка.
 - 4. Расчетная внутренняя температура $t_{\rm B}$ =18 °C.
- 5. Расчетные длины участков 1–8 по рис. 2.1: l_1 = 0,8 м; l_2 = 0,15 м; l_3 = 0,15 м; l_4 = 0,5 м; l_5 = 3,2 м; l_6 = 3,8 м.

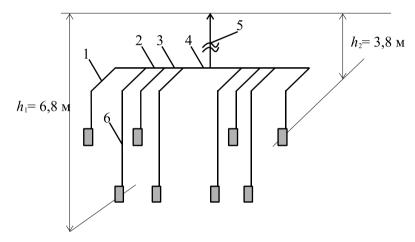


Рис. 2.1. Схема вытяжной естественной вентиляции

Порядок расчета

При определении располагаемого естественного давления вытяжной вентиляции жилых и общественных зданий в качестве расчетной наружной температуры принимается температура наружного воздуха $t_{\rm H}$ = +5 °C.

1. Определяем плотности воздуха по формуле

$$\rho = \frac{353}{273 + t},\tag{2.17}$$

$$\rho_{B(+18)} = 1,213 \text{ kg/m}^3, \ \rho_{H(+5)} = 1,27 \text{ kg/m}^3.$$

2. Определяем главную расчетную ветвь, это ветвь, удельное располагаемое давление в которой будет наименьшее.

Находим располагаемые и удельные давления в ветви через канал первого и второго этажей по формулам (2.14) и (2.16):

$$\Delta P_1 = 6.8 (1.27-1.213) 9.81 = 3.8 \Pi a.$$

 $\Delta P_{vvr1} = 3.8/7.8 = 0.487 \Pi a/m,$

где
$$\Sigma l_{137} = l_6 + l_2 + l_3 + l_4 + l_5 = 3,8 + 0,15 + 0,15 + 0,5 + 3,2 = 7,8$$
 м.

$$\Delta P_2 = 3.8 \ (1,27-1,213) \ 9.81 = 2,124 \ \Pi a.$$

 $\Delta P_{\text{vii}2} = 2,124/4,8 = 0,443 \ \Pi a/\text{M},$

где
$$\Sigma l_{2,\text{ат}} = l_1 + l_2 + l_3 + l_4 + l_5 = 0.8 + 0.15 + 0.15 + 0.5 + 3.2 = 4.8 \text{ м}.$$

Так как $P_{yд2} < P_{yд1}$, то расчетной будет ветвь, идущая через канал второго этажа (при наименьшем удельном располагаемом давлении).

3. Определим потери давления на участках. Для участка 1 определим предварительно сечение канала по рекомендуемой скорости воздуха для горизонтальных и вертикальных каналов от 0,5 до 1,0 м/с по формуле (2.12):

$$F_1' = \frac{25}{3600 \cdot 1} = 0,007 \text{ m}^2.$$

По прил. 6 по найденному значению F_1' находим стандартное сечение кирпичного канала $F = 0.14 \times 0.14 = 0.0196 \text{ м}^2$.

4. Действительная скорость воздуха в канале по формуле (2.13):

$$v_{\phi 1} = \frac{25}{3600 \cdot 0.0196} = 0.354 \text{ m/c}.$$

5. Определим эквивалентный диаметр по формуле (2.10):

$$d_{91} = \frac{2 \cdot 0.14 \cdot 0.14}{(0.14 + 0.14)} = 0.14 \text{ M}.$$

6. Проведем расчет потерь давления на трение по длине канала с учетом его шероховатости. Для этого формулы (2.2) – (2.6) преобразуем к виду, Па,

$$\Delta P_{1} = R l n_{1} = \frac{\lambda_{r}}{d_{2}} \rho_{B} \frac{v_{1}^{2}}{2} l_{1} n_{1}. \qquad (2.18)$$

Сначала определим число Рейнольдса при кинематической вязкости воздуха v(+18) °C=1,5·10⁻⁵ м²/с по формуле (2.5):

$$Re_1 = \frac{0,354 \cdot 0,14}{1.5 \cdot 10^{-5}} = 3304 > 2300,$$

т. е., имеем турбулентный режим течения воздуха в канале.

Коэффициент гидравлического трения по формуле (2.4) для гидравлически гладкого канала при турбулентном режиме течения

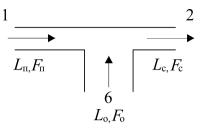
$$\lambda_{r1} = \frac{0.3164}{(3307)^{0.25}} = 0.0417$$
.

Коэффициент гидравлического трения по формуле (2.9) с учетом шероховатости канала

$$\lambda_{\text{III}} = 0.11 \left(\frac{4}{140} + \frac{68}{3307} \right)^{0.25} = 0.0518,$$

где k_9 = 4 мм — коэффициент, учитывающий шероховатость кирпичного канала (прил. 10).

Коэффициент шероховатости по формуле (2.8):


$$n = \frac{0,0518}{0,0417} = 1,24,$$

$$\Delta P_1 = \frac{0,0417}{0.14} 1,213 \frac{(0,354)^2}{2} 0,8 \cdot 1,24 = 0,0225 \,\text{Ha}.$$

Также удельные потери давления на трение R можно определить по справочным таблицам [33] или номограмме (прил. 11). Коэффициент шероховатости n можно определить по прил. 13

- 7. Определим коэффициенты местных сопротивлений на участке 1 по прил. 14:
 - жалюзийная решетка (первое боковое отверстие) $\xi = 3.5$,
 - два колена под углом 90° $\xi = 1, 2 \cdot 2 = 2, 4,$

— тройник на проход $\xi=1$ ($F_0/F_{\rm n}=F_6/F_{\rm l}=0$,02/0,02 = 1, $Q_0/Q_{\rm c}=Q_6/Q_2=25/50=0$,5).

Таким образом, $\Sigma \xi_1 = 3.5 + 2.4 + 1 = 6.9$.

8. Определим потери давления в местных сопротивлениях по формуле (2.7):

$$Z_1 = 6.9 \frac{1.213(0.354)^2}{2} = 0.525 \text{ }\Pi\text{a}.$$

9. Определим суммарные потери давления на участке $P_1 = 0.023 + 0.525 = 0.548 \ \Pi a.$

Потери давления на остальных участках находятся аналогично. Результаты расчета заносятся в табл. 2.2. Коэффициенты местных сопротивлений на участках приведены в табл. 2.1.

Таблица 2.1 **Коэффициенты местных сопротивлений [33]**

Уча- сток	Местное сопротивление на участке	ξ
2	Тройник на проход ($F_0/F_1 = F_0/F_2 = 0.14^2/0.15^2 = 0.87$, $L_0/L_c = L_0/L_3 = 25/75 = 0.33$)	0,55
3	Тройник на проход $F_0/F_1 = F_0/F_3 = 0.14^2/0.15 \times 0.2 = 0.65$, $L_0/L_c = L_0/L_4 = 25/100 = 0.25$)	0,5
4	Тройник на проход $F_0/F_{\Pi} = F_0/F_4 = 0.2^2/0.2^2 = 1$, $L_0/L_c = L_0/L_5 = 100/200 = 0.5$)	1,0
5	Вытяжная шахта с зонтом квадратного сечения	1,3
6	Жалюзийная решетка (первое боковое отверстие) $\xi = 3,5$ Колено под углом 90° $\xi = 1,2$ Тройник на ответвление $\xi = 1,1$ ($F_0/F_n = F_6/F_1 = (0,14 \times 0,14)/(0,14 \times 0,14) = 1,$ $L_0/L_c = L_0/L_2 = 25/50 = 0,5$)	$\Sigma \xi = 3,5+1,2+ \\ +1,1 = 5,8$

Таблица 2.2

И	Суммарная потеря на кинэпага, БП ,X+n/N ээтэсгү		0,5478	0,135	0,1543	0,3154	0,5118	0,8153	8=1,67 Па	P _p =2,124 Πa		ках вент.	эυ. =1 07 П а	P. =2.124 Πa	Невязка: 7,3 %	,	0,5386	<10 %
иляци	Потери давления в местных сопро- тивлениях Z, Па		0,5253	0,1257	0,1447	0,2889	0,3959	0,6163	34+0,5118	$P_{\rm p} =$		ых участ	: на 250×250. Итого: <i>Р</i> .≡1 97]	$P_{\rm m}$	Невяз		0,4416	: 0,15 % <
ы вент	Сумма коэффици- ентов сопротивле- ния ∑Ё	a)	6,9	0,55	0,5	1	1,3	1,3	13+0,315			отдельн	зечение 1	-			5,8	0,5478=
Аэродинамический расчет воздуховодов естественной системы вентиляции	Потери давления на трение с учетом шероховатости <i>Rln,</i> Па	Главная расчетная ветвь (ветвь через канал второго этажа)	0,0225	0,0091	9600,0	0,0265	0,1159	0,199	Mroro: P_{ϕ} =0,5478+0,135+0,1543+0,3154+0,5118=1,67 IIa		Невязка: $(P_p - P_{\phi})/P_p = (2,124-1,67)/2,124 = 21,4\%$	ечение на	сети, чтооы уменьшить невязку, например на участке 3 неооходимо поменять сечение на 220×230 Итого. <i>D</i> = 1				0,097	Невязка в точке пересечения участков 1 и 6: $(\Delta P_{\text{маг}} - \Delta P_{\text{отв}})/\Delta P_{\text{маг}}$ (0,5478–0,5386)/0,5478 = 0,15 % <10 % <10 % = 0,15 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 % <10 %
нной	Коэффициент шероховатости <i>п</i>	ал вто	1,24	1,11	1,124	1,124	1,124	1,13	3478+0		124 = 2	шить с	і омита				1,124	(0,547
гестве	Удельные потери давления на трение <i>R</i> , Па	ез кан	0,0227	0,0549	0,0572	0,0472	0,0322	0,0552	$: P_{\Phi} = 0, :$		1,67)/2,	умены	неоохс			9	0,0226	$)/\Delta P_{\mathrm{Mar}}$
тов ес	Коэффициент трения д _т Трения	твь чер	3307 0,0417 0,0227	0,0357 0,0549	0,0335 0,0572	0,0323 0,0472	0,0295 0,0322	14815 0,0287 0,0552 1,13	Итого		(2,124-	оходимс	тастке э			Ответвление	3306,88 0,0417 0,0226 1,124	$-\Delta P_{ m otb}$
yX0B0Д	Число Рейнольдса	твь (ве	3307	6173	7937	9259	13228	14815			$_{\Phi}$)/ $P_{\rm p}$ =	то нео(ер на уч			Отве	3306,88	$: (\Delta P_{ exttt{Mar}})$
возд	йіантнэпвапая€ мм _« b qтэмвид	ная ве	140	150	171	200	280	250			$(P_{\rm p}-P$	$P_{\phi} < P_{p}$	априм				140	в 1 и 6
расчет	Размеры сечений $a \times b$, мм	ая расчет	140×140	0,617 0,0225 150×150	0,030 200×150	0,694 0,040 200×200	0,0784 280×280	0,0625 250×250			Невязка: (10 %; T. K.	невязку, н				0,02 140x140	и участко
еский	Нлощадь попе- Бечного сечения Бечного сечения	Главн	0,02	0,0225		0,040	0,0784	0,0625			_	делах	ышить					эсечени
амич	Скорость воздуха <i>v</i> , м/с		0,354	0,617	0,694	0,694	0,71	68'0				эди в в	і умен				0,3543	ке пер
один	Длина участка У, м		8,0	0,15	0,15	6,5	3,2	3,2				ходитс	, 4T00E				3,8	а в точ
Аэр	Γ , м 3 /ч		25	90	75	100	200	200				кна на	сети				25	Іевязк
	Участка Участка		1	2	3	4	5	S				ДОПУ					9	F

2.1.2. Аэродинамический расчет систем вентиляции с принудительным побуждением движения воздуха

Расчет выполняют по методу удельных потерь давления, как и расчет естественной вентиляции. Последовательно от конца сети к вентилятору или вытяжной шахте нумеруют участки основного расчетного направления, затем все основные с дальнего ответвления, на схемах указывают номера участков, их длины и расходы воздуха.

Металлические воздуховоды изготавливаются из листовой кровельной, оцинкованной или нержавеющей стали на заводах или в заготовительных мастерских. По форме воздуховоды бывают круглого и прямоугольного сечения. Предпочтение следует отдавать круглым воздуховодам из-за меньшего аэродинамического сопротивления, расхода металла и трудоемкости при изготовлении. Рекомендуются стальные воздуховоды из тонколистовой стали. В каждом конкретном случае выбор материалов для проектирования воздуховодов производится в соответствии с [17].

Потери давления в системе механической вентиляции равны потерям давления в основной расчетной цепи, складывающимся из потерь давления на всех последовательно расположенных участках, составляющих цепь, и потерь давления в вентиляционном оборудовании (калориферах, фильтрах и пр.).

В системах принудительной вентиляции общее сопротивление значительно превышает гравитационное давление и характеризует то давление, которое должен развивать вентилятор. По этому давлению и расходу воздуха подбирается вентилятор по каталогам или справочной литературе.

Пример 2.2. Расчет принудительной вытяжной системы вентиляции промышленного предприятия

Исходные данные

1. Выполнить аэродинамический расчет воздуховодов вытяжной системы принудительной вентиляции промышленного предприятия, схема которой представлена на рис. 2.2.

2. Участки основного расчетного направления, а также все дополнительные участки с дальнего ответвления пронумерованы на рис. 2.2. На схеме указаны длины и расходы воздуха на всех участках.

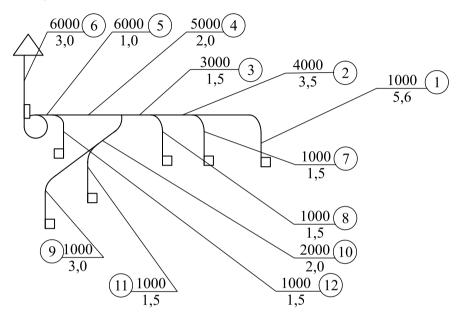


Рис. 2.2. Схема воздуховодов принудительной системы вентиляции

Порядок расчета

Проведем расчет для 1-го участка.

- 1. Дано: L_1 = 1000 м³/ч; l_1 = 5,6 м.
- 2. Примем скорость на 1-м участке в заданном диапазоне: $\upsilon' = 12 \text{ M/c}.$
- 3. По расходу и по принятой скорости определяем предварительное значение площади поперечного сечения воздуховода по формуле (2.12):

$$F_1' = \frac{1000}{3600 \cdot 12} = 0.023 \text{ m}^2.$$

- 4. На основании полученного предварительного значения площади подбираем нормируемые размеры воздуховода по прил. 8: $d_1 = 200 \text{ мм} = 0.2 \text{ м}; F = 0.0314 \text{ м}^2.$
 - 5. Действительная скорость в воздуховоде по формуле (2.13):

$$v_1 = \frac{1000}{3600 \cdot 0.0314} = 8,846 \text{ m/c}.$$

6. Зная d и υ на участке, находим величину удельных потерь давления на трение R и динамическое давление P_{π} по прил. 12:

$$P_{\pi 1}$$
= 46, 956 Π a; R_1 = 4,134 Π a/M.

7. Потери давления на трение по длине для гидравлически гладкого канала из оцинкованной стали (поправочный коэффициент на шероховатость n=1 для стального воздуховода)

$$Rln = 4.134 \cdot 5.6 \cdot 1 = 23.151 \text{ }\Pi a.$$

- 8. Сумма коэффициентов местных сопротивлений на участке:
- жалюзийная решетка (первое боковое отверстие) $\xi = 3.5$,
- скругленное колено $r/d_9 = 0.2$, $\alpha = 90^{\circ}$, $\xi = 0.44$,
- тройник на проход, $\alpha = 30^{\circ} \xi = 0.2$

$$d_{\rm o} < d_{\rm c}$$
: 200< 250 на 2К $d_{\rm n} < d_{\rm c}$: 200< 250 на 2К $d_{\rm n} < d_{\rm c}$: 200< 250 на 2К $d_{\rm n} = 200\,{\rm Mm}$ $d_{\rm c} = 250\,{\rm mm}$, по прил. 14 при $F_{\rm c} = 0.046\,{\rm m}^2$

Таким образом, $\Sigma \xi_1 = 3.5 + 0.44 + 0.2 = 4.14$.

9. Определим потери давления в местных сопротивлениях по формуле (2.7):

$$Z_1 = 4,14 \cdot 46,956 = 194,398 \text{ }\Pi \text{a.}$$

7. Определим суммарные потери давления на участке $P_1 = 23,151+194,398 = 217,549 \, \Pi a.$

Потери давления на остальных участках находятся аналогично. Результаты расчета заносятся в табл. 2.4. Коэффициенты местных сопротивлений на участках занесем в табл. 2.3.

Таблица 2.3 Расчет местных сопротивлений на участках [33]

Участок	Сопротивление	٤	Σξ	
	Тройник на проход, $\alpha = 30^{\circ}$, $L_{o}/L_{c} = 0.3$	7	>	
2	$d_{\rm o} < d_{\rm c}$: 180<325 на 5К	0,2	0,2	
	d _п <d<sub>c: 250<325 на 2К</d<sub>			
	Тройник на проход, $\alpha = 30^{\circ}$, $L_{o}/L_{c} = 0.4$			
3	d _o <d<sub>c: 280<400 на 3К</d<sub>	0,3	0,3	
	d _п <d<sub>c: 325<400 на 2К</d<sub>			
4	Тройник на проход, $\alpha = 30^{\circ}$, $L_{\rm o}/L_{\rm c} = 0.2$	0	0	
4	d _o <d<sub>c: 180<450 на 8К</d<sub>	0	0	
5	d _n <d<sub>c: 400<450 на 1К</d<sub>	0,5	0,5	
	Диффузор перед вентилятором Вытяжная шахта с зонтом круглого сечения			
6		1,3	1,4	
	Переходник на выходе вентилятора Жалюзийная решетка (первое боковое отверстие)	3,5		
	Тройник на ответвление, $\alpha = 30^{\circ}$, $L_{\rm o}/L_{\rm c} = 0.5$	3,3		
7	$d_0 < d_c$: 200<250 на 2К	0	3,5	
	d_0 $< d_c$: 200<250 на 2К d_n $< d_c$: 200<250 на 2К	U		
	Жалюзийная решетка (первое боковое отверстие)	3,5		
	Тройник на ответвление, $\alpha = 30^{\circ}$, $L_{0}/L_{c} = 0.3$	3,3		
8	$d_0 < d_c$: 180<325 ha 5K	0,6	4,1	
	d ₀ < d _c : 250 < 325 на 2К	,,,		
	Жалюзийная решетка (первое боковое отверстие)	3,5		
	Скругленное колено $r/d_3 = 0,2$	0,44		
9	Тройник на проход, $\alpha = 30^{\circ}$, $L_{\rm o}/L_{\rm c} = 0.5$		4,04	
	$d_{\rm o} < d_{\rm c}$: 200<280 на 3К	0,1		
	d _п <d<sub>c: 200<280 на 3К</d<sub>			
	Тройник на ответвление, $\alpha = 30^{\circ}$, $L_{\rm o}/L_{\rm c} = 0.4$			
10	$d_0 < d_c$: 280<400 на 3К	0,4	0,4	
	$d_{\rm H} < d_{\rm c}$: 325<400 на 2К			
	Тройник на ответвление, $\alpha = 30^{\circ}$, $L_{\rm o}/L_{\rm c} = 0.5$	0.5		
11	d _o <d<sub>c: 200<280 на 3К</d<sub>	0,5	4	
11	d _n <d<sub>c: 200<280 на 3K</d<sub>			
	Жалюзийная решетка (первое боковое отверстие)	3,5		
	Жалюзийная решетка (первое боковое отверстие)	3,5		
12	Тройник на ответвление, $\alpha = 30^{\circ}$, $L_{\rm o}/L_{\rm c} = 0.2$	0.0	4,3	
	d _o <d<sub>c: 180<450 Ha 8K</d<sub>	0,8	- ,-	
	d _п <d<sub>c: 400<450 на К</d<sub>			

Расчет невязок:

$$\Delta(1-7): [(Rl+Z)_{1}-(Rl+Z)_{7}]/(Rl+Z)_{1}=72,56\%;$$

$$\Delta(1,2-8): [[(Rl+Z)_{1}+(Rl+Z)_{2}]-(Rl+Z)_{8}]]/[(Rl+Z)_{1}+(Rl+Z)_{2}]=17,36\%;$$

$$\Delta(9-11): [(Rl+Z)_{9}-(Rl+Z)_{11}]/(Rl+Z)_{9}=3,99\%;$$

$$\Delta(9,10-1,2,3): [((Rl+Z)_{9}+(Rl+Z)_{10})-((Rl+Z)_{1}+(Rl+Z)_{2}+(Rl+Z)_{3})]/[(Rl+Z)_{9}+(Rl+Z)_{10}]=16,5\%;$$

$$\Delta(12-1,2,3,4): [(Rl+Z)_{12}-((Rl+Z)_{1}+(Rl+Z)_{2}+(Rl+Z)_{3}+(Rl+Z)_{4})]/[(Rl+Z)_{12}]=12,27\%.$$

Так как невязка участков 7, 8, 9–10-го превышает допустимое значение (15 %), следовательно, на этих участках ставим диафрагмы. Подбор диафрагмы на 7-м участке по формуле (2.11):

$$P_{\text{из6}} = P_1 - P_7 = 217,547 - 170,545 = 47 \text{ Ha},$$

 $P_{\pi 7} = 47 \text{ Ha}.$

Коэффициент местного сопротивления диафрагмы, необходимой для погашения избыточного давления:

$$\xi_{\pi} = P_{\text{M36}}/P_{\pi7} = 47/47 = 1.$$

По прил. 14 определяем, что необходимый размер отверстия диафрагмы составляет d=169 мм для $\xi_{,\rm H}=0.8$ (значение коэффициента сопротивления близкое $\xi_{,\rm H}=1$) при диаметре воздуховода на 7-м участке d=200 мм.

Тогда суммарное значение коэффициента сопротивления на 7-м участке будет:

$$\Sigma \xi_7 = 3.5 + 0 + 0.8 = 4.3.$$

Определим потери давления в местных сопротивлениях:

$$Z_7 = 4.3 \cdot 46.956 = 201.91 \text{ }\Pi \text{a}.$$

Определим суммарные потери давления на участке

$$P_7 = 6,201 + 201,91 = 208,11 \text{ }\Pi \text{a}.$$

В итоге невязка после установки диафрагмы на 7-м участке будет:

$$\Delta(1-7)$$
: $[(Rl+Z)_1-(Rl+Z)_7]/(Rl+Z)_1=[217,547-208,11]/$
 $217,547=4,54\%$.

Аналогично подбираются диафрагмы на 8-м и 9-м (10-м) участках.

Таблица 2.4

Аэролинамический расчет возлуховолов механической системы вентилапии

	> 1 > 1				ו כ					
№ yq.	$L, \mathrm{M}^3/\mathrm{H}$	<i>l</i> , м	d, MM	F , M^2	υ, Μ/c	$\rho v^2/2$	<i>Rln</i> , Па	33	Z, Па	$Rl+Z$, Πa
					P	Расчетная ветвь	9			
_	1000	9,5	200	0,0314	8,846	46,9935	23,151	4,14	194,396	217,547
7	2000	3,4	250	0,049	11,338	76,9942	16,771	0,2	15,426	32,197
3	3000	1,5	325	0,083	10,04	09	4,357	6,0	18,145	22,502
4	2000	2,0	400	0,126	11,023	73,3942	5,378	0	0	5,378
5	0009	1	450	0,159	10,482	66,15	2,121	5'0	32,963	35,084
9	0009	3	200	0,196	8,503	43,35	3,838	1,4	66,739	64,577
					Суммарн	ые потери дав	Суммарные потери давления на главной расчетной ветви, Па	юй расчетн	ой ветви, Па	377,284
					Pac	Расчет ответвлений	ий			
_	1000	1,5	200	0,0314	8,846	46,9935	6,201	3,5	164,344	170,545
							Невязка	в точке пер	Невязка в точке пересечения, %	27,6
∞	1000	1,5	180	0,0255	10,893		10,283	4,1	291,911	302,194
									Сумма 1,2	249,744
							Невязка	в точке пер	Невязка в точке пересечения, %	17,4
6	1000	3	200	0,0314	8,846	46,9935	12,403	4,04	<i>L</i> '681	202,103
10	2000	2	280	0,0615	9,033	77,0213	5,726	6,4	19,585	25,311
										227,414
									Сумма 1,2,3	272,246
							Невязка	в точке пер	Невязка в точке пересечения, %	16,467
11	1000	1,5	200	0,0314	8,846	46,9935	6,201	4	187,822	194,023
							Невязка	в точке пер	Невязка в точке пересечения, %	3,998
12	1000	1,5	180	0,0255	10,893	71,6789	10,283	4,3	306,15	316,433
)	Сумма 1,2,3,4	277,624
							Невязка	в точке пер	Невязка в точке пересечения, %	12,265

2.2. Расчет воздуховодов для равномерной раздачи воздуха

Примером такого воздуховода может служить воздуховод, изображенный на рис. 2.3. Для равномерной раздачи воздуха достаточно постоянства статического давления по всей длине воздуховода

$$P_{\rm cr} = \sum \xi \frac{\rho v^2}{2} = \text{const.}$$
 (2.19)

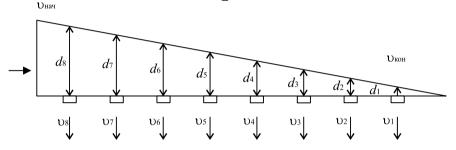


Рис. 2.3. Воздуховод для равномерной раздачи воздуха

Действительно, чтобы выполнилось равенство $\upsilon_8 = \upsilon_7 = \upsilon_6 = \upsilon_5 = \upsilon_4 = \upsilon_3 = \upsilon_2 = \upsilon_1$, необходимо, чтобы $\Delta P_1 = \Delta P_2 = ... = \Delta P_8$,

т. к.
$$\upsilon_i = \sqrt{\frac{2\Delta P_i}{\rho}}$$
 . Следовательно, $\Delta P_i = P_{\rm cr} - P_{\rm atm} = {\rm const}$. Отсюда

следует, что $P_{\text{cr1}} = P_{\text{cr2}} = \dots = P_{\text{cr8}} = \text{const.}$ Из уравнения Бернулли

$$P_{\text{ст.н}} + \frac{v_{\text{н}}^2 \rho}{2} = P_{\text{ст.к}} + \frac{v_{\text{к}}^2 \rho}{2} + \Delta P_{\text{потери}}.$$
 (2.20)

Отсюда при $P_{\text{ст.н}} = P_{\text{ст.к}}$ следует:

$$\Delta P_{\text{потери}} = \frac{\rho v_{\text{H}}^2}{2} - \frac{\rho v_{\text{K}}^2}{2}, \qquad (2.21)$$

где $\upsilon_{\text{н}}$ и $\upsilon_{\text{к}}$ – начальные и конечные продольные (расходные) скорости воздуха в воздуховоде.

С другой стороны, $\Delta P_{\text{потери}} = \Sigma (Rl + Z)$ — общие потери давления на трение по длине и в местных сопротивлениях всех тройников на проход по магистрали.

Таким образом, разность динамических давлений в начале и в конце магистрали равна полным потерям давления на этой длине.

Желательно выбирать скорость из щелей (скорость выхлопа из щелей) наибольшей, а скорость воздуха в воздуховоде — наименьшей. В этом случае магистраль можно принять за камеру постоянного давления.

Считаем, что при выхлопе воздуха из щели теряется полностью динамическое давление

$$P_{\rm m} = \frac{\rho v^2}{2} \,, \tag{2.22}$$

и потери давления вследствие поджатия и выхлопа воздуха струи (статическое давление) составят:

$$P_{\rm cr} = \xi \frac{\rho v^2}{2} = 1.5 \frac{\rho v^2}{2},$$
 (2.23)

где $\xi = 1,5$ — коэффициент на местные сопротивления (на поджатие 0,5 и на выхлоп 1,0).

Для постоянства статического давления по длине магистрали необходимо обеспечить равенство

$$\frac{\rho v_{\text{\tiny H}}^2}{2} - \frac{\rho v_{\text{\tiny K}}^2}{2} = \Sigma (Rl + Z). \tag{2.24}$$

Примем такие величины диаметров магистрали, чтобы скорость после каждого тройника уменьшалась на одну и ту же величину:

$$\Delta \upsilon = (\upsilon_{H} - \upsilon_{K})/n, \qquad (2.25)$$

где n — число щелей в магистрали.

Потери давления в каждом тройнике, согласно теории профессора Д.Тома [6], можно определить по формуле

$$Z_t = 1/3(\frac{\rho v_H^2}{2} - \frac{\rho v_K^2}{2}) = 1/3 \frac{\rho \Delta v^2}{2}.$$
 (2.26)

Поскольку имеем n щелей, то

$$\Sigma Z_i = n \ Z_i = 1/3 \cdot n \ \frac{\rho \Delta v^2}{2} \,. \tag{2.27}$$

Пример 2.3. Расчет воздуховода для равномерной раздачи воздуха

Исходные данные

- 1. Рассчитать равномерную раздачу воздуха из восьми щелей, сделанных в круглом воздуховоде (см. рис. 2.3).
- 2. Количество воздуха, которое необходимо подать в каждую щель $-1000 \text{ m}^3/\text{ч}$.
 - 3. Расстояние между щелями 1,5 м.
 - 4. Скорость выхлопа воздуха из каждой щели 5 м/с.
 - 5. Плотность воздуха $1,2 \text{ кг/м}^3$.

Порядок расчета

1. Динамическое давление в каждой щели определяем по формуле (2.22)

$$P_{\text{M}} = \frac{1,2 \cdot 5^2}{2} = 15 \text{ \Pia}.$$

2. Статическое давление в каждой щели определяем по формуле (2.23)

$$P_{\rm cr} = 1.5 \frac{\rho v^2}{2} = 22.5 \text{ Ha.}$$

3. Примем υ_{H} = 5 м/с; υ_{K} = 4 м/с, тогда располагаемое давление из формулы (2.21) будет:

$$\Delta P_{\text{A}} = \frac{1,2 \cdot 5^2}{2} - \frac{1,2 \cdot 4^2}{2} = 5,4 \text{ IIa.}$$

4. Определим площадь, м², и диаметр, м, начального сечения воздуховодов:

$$f_8 = \frac{L}{v_{_{\rm H}} 3600}; \tag{2.28}$$

$$d_8 = \sqrt{\frac{4f_8}{\pi}} \,. \tag{2.29}$$

Так что

$$f_g = \frac{8 \cdot 1000}{5 \cdot 3600} = 0,444 \text{ m}^2;$$

 $d_8 = \sqrt{\frac{4 \cdot 0,444}{3.14}} = 0,752 \text{ m}.$

5. Уменьшение скорости воздуха в каждом тройнике и потери в местных сопротивлениях по формулам (2.25), (2.26)

$$\Delta \upsilon = (4,5-3)/8 = 0,188 \text{ m/c};$$

$$Z = 1/3 \cdot 8 \frac{1,2(0,188)^2}{2} = 0,05655 \text{ } \Pi \text{a}.$$

6. Определим площадь и диаметр конечного участка по формулам (2.28) и (2.29):

$$f_1 = \frac{1 \cdot 1000}{4 \cdot 3600} = 0,0694 \text{ m}^2;$$

 $d_1 = \sqrt{\frac{4 \cdot 0,093}{3,14}} = 0,297 \text{ m}.$

7. Удельные потери на трение

$$R_8^{\mathrm{ya}} = \frac{\lambda_8}{d_{\mathrm{g}}} \frac{\rho \mathrm{v_H}^2}{2},\tag{2.30}$$

где λ – коэффициент гидравлического трения,

$$\lambda = \frac{0.182}{(\text{Re}_8)^{0.2}},\tag{2.31}$$

где Re – число Рейнольдса:

$$Re_8 = \frac{v_{\scriptscriptstyle H} d}{v}, \qquad (2.32)$$

 $v = 1,5 \cdot 10^{-5} \text{ м}^2/\text{c}$ – коэффициент кинематической вязкости воздуха;

Re₈=
$$5 \cdot 0.752 / (1.5 \cdot 10^{-5}) = 2.507 \cdot 10^{5};$$

 λ_{8} = $0.182 / (2.507 \cdot 10^{5})^{0.2} = 0.015;$

$$R_8^{y\pi} = \frac{0.015}{0.752} \frac{1.2 \cdot 5^2}{2} = 0.302 \,\Pi \text{a/m}.$$
 $Re_1 = 4 \cdot 0.297 / 1.5 \cdot 10^{-5} = 0.792 \cdot 10^5;$
 $\lambda_1 = 0.182 / (0.688 \cdot 10^5)^{0.2} = 0.0191;$
 $R_1^{y\pi} = \frac{0.0191}{0.297} \frac{1.2 \cdot 4^2}{2} = 0.616 \,\Pi \text{a/m}.$

8. Определим средние удельные потери:

$$R_{\rm cp}^{\rm y\pi} = \frac{R_{\rm l}^{\rm y\pi} + R_{\rm g}^{\rm y\pi}}{2},$$
 (2.33)
 $R_{\rm cp}^{\rm y\pi} = (0.616 + 0.302)/2 = 0.459 \, \Pi {\rm a/m}.$

9. Определим общие потери давления на трение по длине и в местных сопротивлениях всех тройников на проход по магистрали из формулы (2.21):

$$\Sigma Rl = 0,459 \cdot 7 \cdot 1,5 = 4,8195$$
 Па;
 $\Delta P_{\text{потери}} = 4,8195 + 0,05655 = 4,876$ Па.

10. Сравним располагаемое давление с общими потерями по магистрали

$$\frac{\Delta P_{\text{pacn}} - \Delta P_{\text{потери}}}{\Delta P_{\text{pacn}}} 100 \%, \qquad (2.34)$$

$$\Delta = \frac{5.4 - 4.876}{5.4} 100 \% = 9.7 \% < 10 \%,$$

следовательно, перерасчета делать не нужно.

Если невязка Δ оказывается больше 10 %, то надо менять значение начальной или конечной скорости и проводить расчет заново до удовлетворения Δ < 10 %.

11. Рассчитаем диаметры отдельных участков воздуховода: $d_7 = d_8 - (d_8 - d_1) / 7 = 0,752 - (0,752 - 0,297) / 7 = 0,687$ м; $d_6 = d_7 - (d_7 - d_1) / 6 = 0,687 - (0,799 - 0,297) / 6 = 0,622$ м; $d_5 = d_6 - (d_6 - d_1) / 5 = 0,622 - (0,723 - 0,297) / 5 = 0,557$ м; $d_4 = d_5 - (d_5 - d_1) / 4 = 0,557 - (0,647 - 0,297) / 4 = 0,492$ м; $d_3 = d_4 - (d_4 - d_1) / 3 = 0,492 - (0,571 - 0,297) / 3 = 0,427$ м; $d_7 = d_3 - (d_3 - d_1) / 2 = 0.362 - (0,495 - 0,297) / 2 = 0.362$ м.

2.3. Расчет воздуховодов для равномерного всасывания воздуха

Для обеспечения равномерного всасывания воздуха необходимо, чтобы вакуум по всей длине магистрали воздуховода был постоянным.

При работе вентилятора полная потеря давления растет по длине воздуховода. Это можно изобразить линией AB. Постоянство вакуума выразится некоторой горизонтальной линией CD (рис. 2.4).

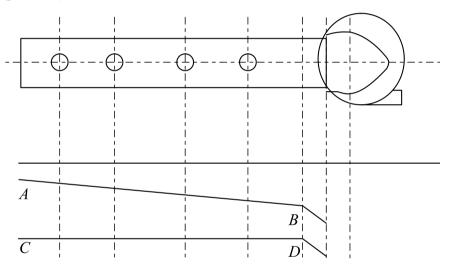


Рис. 2.4. Изменение давления по длине воздуховода

Разница ординат между наклонной линией AB и горизонтальной линией CD будет соответствовать динамическому давлению по длине магистрали $P_{\text{дин}} = \frac{\rho \upsilon^2}{2}$. Поэтому в магистрали скорость по направлению к вентилятору должна уменьшаться, а, следовательно, сечение воздуховода должно расти.

Для упрощения расчета потери давления на местные сопротивления в тройниках по длине магистрали примем условно равными нулю, поскольку они малы в сравнении с потерями на трение, как видно из предыдущей задачи.

Заметим, что чем более постоянна величина вакуума по длине магистрали, тем большей равномерностью всасывания обладает воздуховод.

Пример 2.4. Расчет воздуховода равномерного всасывания

Исходные данные

- 1. Рассчитать воздуховод равномерного всасывания (рис. 2.5), состоящий из тройников с малыми углами ответвлений к магистрали $\alpha = 25^{\circ}$.
- 2. Расходы на всех участках, сообщающихся с атмосферой, одинаковы и равны $L=1000~{\rm m}^3/{\rm q}$.
 - 3. Скорость на первом участке должна быть $v_1 = 6 \text{ м/c}$.
 - 4. Длина каждого участка магистрали и ответвления l = 5 м.
- 5. Температура воздуха t=+15 °C, барометрическое давление $P_{\rm бар}\!\!=745$ мм рт. ст.

Порядок расчета

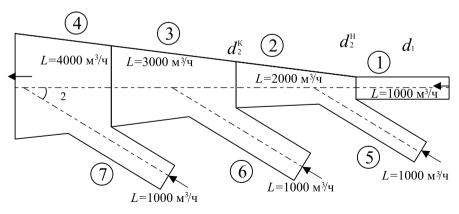


Рис. 2.5. Воздуховод равномерного всасывания воздуха

1. Для 1-го участка.

Сечение воздуховода определяем, м, по формуле

$$d_1 = \sqrt{\frac{4L}{\pi 3600 \,\upsilon_1}},$$

$$d_1 = \sqrt{\frac{4 \cdot 1000}{3,14 \cdot 3600 \cdot 6}} = 0,243 \text{ m}.$$
(2.35)

Потери давления на трение определяем, Па, по формуле

$$Rl_1 = \lambda_1 \frac{l_1}{d_1} \rho \frac{v_1^2}{2}.$$
 (2.36)

Коэффициент гидравлического трения определим по формуле Блесса

$$\lambda_1 = 0.0125 + \frac{0.0011}{d_1},$$
(2.37)
$$\lambda_1 = 0.0125 + \frac{0.0011}{0.248} = 0.017.$$

Расчетную плотность воздуха при заданных параметрах определим, $\kappa \Gamma/M^3$, по формуле

$$\rho = \rho_0 \frac{P}{P_0} \frac{T_0}{T}, \qquad (2.38)$$

где ρ_0 = 1,2 кг/м³ – плотность воздуха при нормальных условиях; t = 20 °C – температура воздуха при нормальных условиях; P = 760 мм рт. ст. – давление воздуха при нормальных условиях;

$$\rho = 1.2 \frac{745}{760} \frac{273 + 20}{273 + 15} = 1.197 \text{ kg/m}^3.$$

Тогда потери давления на трение по формуле (2.36) будут равны:

$$Rl_1 = 0.017 \frac{5}{0.243} 1.197 \frac{6^2}{2} = 7.537 \text{ }\Pi \text{a}.$$

Потери давления на местные сопротивления определим, Па, по формуле

$$Z_1 = \Sigma \xi_1 \frac{\rho v^2}{2}, \qquad (2.39)$$

где ξ =1,15 — коэффициент на местные сопротивления (вход в конус — 0,15; динамическое сопротивление за счет разгона воздуха до нужной величины — 1).

$$Z_1 = 1,15 \frac{1,197 \cdot 6^2}{2} = 24,78 \text{ }\Pi \text{a}.$$

Суммарные потери давления на 1-ом участке:

$$(Rl + Z)_1 = 7,537 + 24,78 = 32,315 \text{ }\Pi a.$$

2. Для 5-го и 2-го участков.

Сечение воздуховода $d_5=d_1=0,243$ м, следовательно, $\upsilon_5=\upsilon_1=6$ м/с.

Найдем скорость после смешения потоков 1 и 5, т. е. скорость в начале второго участка, м/с, по формуле

$$\upsilon_2^{i} = \frac{L_1}{L_2} \upsilon_1 \cos 0^{\circ} + \frac{L_5}{L_2} \upsilon_5 \cos 25^{\circ}, \qquad (2.40)$$

$$v_2^{\text{H}} = \frac{1000}{2000} 6 \cdot 1 + \frac{1000}{2000} 6 \cdot 0,906 = 5,718 \text{ m/c}.$$

Тогда сечение воздуховода по формуле (2.35) будет равно:

$$d_2^{\text{H}} = \sqrt{\frac{4 \cdot 2000}{3,14 \cdot 3600 \cdot 5,718}} = 0,352 \text{ M}.$$

Потери давления на трение по формуле (2.36)

$$Rl_2 = 0.016 \frac{5}{0.352} 1,197 \frac{5,718^2}{2} = 4,447 \text{ }\Pi a,$$

где коэффициент гидравлического трения по формуле (2.37)

$$\lambda_2 = 0.0125 + \frac{0.0011}{d_2} = 0.0125 + \frac{0.0011}{0.352} = 0.016$$
.

Потери давления на местные сопротивления Z_2 = 0, т. к. на этом участке сопротивление только в тройнике, которым мы пренебрегаем.

Если в конце 2-го участка оставить сечение d_2 = 0,352 м, то потери давления в начале смешивания 2-го и 6-го участков будут:

$$(Rl+Z)_1+(Rl+Z)_2=32,315+4,447=36,762 \text{ }\Pi a,$$

что больше $(Rl+Z)_1 = 32,315$ Па, а должно быть равенство (постоянство вакуума). Таким образом, выполняем перерасчет диаметров в соответствии с формулой Дарси-Вейсбаха:

$$\frac{\Delta P_1}{\Delta P_2} = \frac{d_2^5}{d_1^5}; \frac{d_2}{d_1} = \left(\frac{\Delta P_1}{\Delta P_2}\right)^{1/5}; \quad d_2 = d_1 \left(\frac{\Delta P_1}{\Delta P_2}\right)^{1/5}, \qquad (2.41)$$

$$d_2 = d_1 \left(\frac{36,762}{32,315}\right)^{1/5} = d_1 \cdot 1,026,$$

следовательно, в такое количество раз увеличиваем диаметр в начале смешивания 2 и 6 участков, т. е. в конце 2-го участка:

$$d_2^{\text{K}} = d_2^{\text{H}} \cdot 1,026 = 0,352 \cdot 1,026 = 0,361 \text{ M}.$$

Это обеспечит постоянство вакуума по всей длине 2-го участка 32,315 Па.

Скорость в конце 2-го участка, м/с, найдем из условия сохранения расхода:

$$\upsilon_{2}^{\kappa} \frac{\pi (d_{2}^{\kappa})^{2}}{4} = \upsilon_{2}^{H} \frac{\pi (d_{2}^{H})^{2}}{4}; \ \upsilon_{2}^{\kappa} = \upsilon_{2}^{H} \left(\frac{d_{2}^{H}}{d_{2}^{\kappa}}\right)^{2},$$

$$\upsilon_{2}^{\hat{e}} = 5,718 \left(\frac{0,352}{0,361}\right)^{2} = 5,436 \text{ M/c}.$$
(2.42)

3. Для 6-го и 3-го участков.

Сечение воздуховода $d_6=d_1=0,243$ м, следовательно, $\upsilon_6=\upsilon_1=6$ м/с.

Найдем скорость после смешения потоков 2 и 6, т. е. скорость в начале 3-го участка, м/с,

$$\upsilon_{3}^{i} = \frac{L_{2}}{L_{3}} \upsilon_{2}^{\hat{e}} \cos 0^{\circ} + \frac{L_{6}}{L_{3}} \upsilon_{6} \cos 25^{\circ},$$

$$\upsilon_{3}^{i} = \frac{2000}{3000} 5,436 \cdot 1 + \frac{1000}{3000} 6 \cdot 0,906 = 5,436 \text{ m/c}.$$
(2.43)

Тогда сечение воздуховода по формуле (2.35)

$$d_3^{\text{H}} = \sqrt{\frac{4 \cdot 3000}{3,14 \cdot 3600 \cdot 5,436}} = 0,442 \text{ M}.$$

Потери давления на трение по формуле (2.36)

$$Rl_3 = 0.015 \frac{5}{0.442} 1.197 \frac{5.436^2}{2} = 3.001 \text{ }\Pi a,$$

где коэффициент гидравлического трения по формуле (2.37)

$$\lambda_3 = 0.0125 + \frac{0.0011}{0.442} = 0.015$$
.

Потери давления на местные сопротивления $Z_3 = 0$.

Согласно формуле (2.41), определим сечение воздуховода в конце 3-го участка

$$d_3^{\text{K}} = 0,442 \left(\frac{32,315 + 3,001}{32,315} \right)^{1/5} = 0,4499 \text{ M}.$$

Согласно формуле (2.42), определим скорость в конце 3-го участка

$$v_3^{\kappa} = 5,436 \left(\frac{0,442}{0,4499} \right)^2 = 5,247 \text{ m/c}.$$

4. Для 7-го и 4-го участка.

Сечение воздуховода $d_7 = d_1 = 0,243$ м, следовательно, $\upsilon_7 = \upsilon_1 = 6$ м/с.

Найдем скорость после смешения потоков 3 и 7, т. е. скорость в начале 4-го участка, м/с,

$$\upsilon_{4}^{i} = \frac{L_{3}}{L_{4}} \upsilon_{3}^{\hat{e}} \cos 0^{\circ} + \frac{L_{7}}{L_{4}} \upsilon_{7} \cos 25^{\circ} , \qquad (2.44)$$

$$\upsilon_{4}^{\text{H}} = \frac{3000}{4000} 5,247 \cdot 1 + \frac{1000}{4000} 6 \cdot 0,906 = 5,294 \text{ m/c}.$$

Тогда сечение воздуховода по формуле (2.35)

$$d_4^{\text{H}} = \sqrt{\frac{4 \cdot 4000}{3,14 \cdot 3600 \cdot 5,294}} = 0,517 \text{ M}.$$

Потери давления на трение по формуле (2.36)

$$Rl_4 = 0.015 \frac{5}{0.517} 1.197 \frac{5.294^2}{2} = 2.433 \text{ }\Pi \text{a},$$

где коэффициент гидравлического трения по формуле (2.37)

$$\lambda_4 = 0.0125 + \frac{0.0011}{0.517} = 0.015.$$

Потери давления на местные сопротивления $Z_3 = 0$.

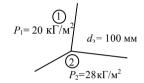
Согласно формуле (2.41) и (2.42), определим сечение воздуховода и скорость в конце 4-го участка

$$d_4^{\text{K}} = 0.517 \left(\frac{32,315 + 2,433}{32,315} \right)^{1/5} = 0.525 \text{ M.}$$

$$v_4^{\hat{e}} = 5,294 \left(\frac{0,517}{0,525} \right)^2 = 5,135 \text{ M/c.}$$

2.3.1. Подбор диаметров ответвлений при расчете воздуховодов

Как говорилось выше, из формулы Дарси-Вейсбаха при условии слабой зависимости λ от d, можно получить:


$$\frac{\Delta P_1}{\Delta P_2} = n = \frac{d_2^5}{d_1^5}$$
 или $\frac{d_2}{d_1} = 5\sqrt{\frac{\Delta P_1}{\Delta P_2}}$. (2.45)

Пример 2.5. Подбор диаметров ответвлений при расчете воздуховодов

Исходные данные

При расчете 1-го участка (см. рис. 2.5) была найдена потеря полного давления ΔP_1 = 20 кГ/м²= 196,2 Па. Потеря полного давления по 2-му участку (d_2 = 100 мм) получилась равной ΔP_2 = = 28 кГ/м²= 274,68 Па.

Как надо изменить диаметр воздуховода 2-го участка, чтобы в нем получить полную потерю давления $\Delta P_2 = 20 \mbox{к} \Gamma/\mbox{m}^2 = 196,2 \ \Pi a.$

Порядок расчета

Найдем *п* по формуле (2.45)

$$n = \frac{28}{20} = 1,4$$
.

2. Определим $n^{1/5}$:

$$n^{1/5} = 1,07.$$

3. Следовательно, диаметр d_2 нужно увеличить в 1,07 раза: $d_2 = d_2 \cdot 1,07 = 100 \cdot 1,07 = 107 \text{ мм}.$

2.4. Закономерности струйного течения

2.4.1. Примеры расчетов устройств воздухораспределения на основе теории свободной изотермической струи

Свободной является струя, не ограниченная стенками. Свободные струи образуются при истечении в пространство, заполненное той же средой, находящейся в относительно спокойном состоянии. Так как струи воздуха движутся в воздушной же струе, с точки зрения гидравлики они являются затопленными. Если плотность струи и окружающего воздуха одина-

кова, то ось струи прямолинейна. При различной плотности ось струи искривляется.

Структура свободной изотермической струи приведена на рис. 2.6. В начальном сечении $A\!-\!B$ скорость потока во всех точках сечения одинакова. Осевая скорость на протяжении длины начального участка l_0 одинакова и равна скорости воздуха в выходном сечении υ_0 . В области треугольника ABC во всех точках струи сохраняется одинаковая скорость $\upsilon_{\text{нач}}$.

Благодаря турбулентному перемешиванию с окружающим воздухом масса приточной струи по мере удаления от приточного отверстия возрастает, а скорость в ней уменьшается. Боковые границы струи соответствуют приблизительно лучам, исходящим из точки, называемой полюсом (точка 0).

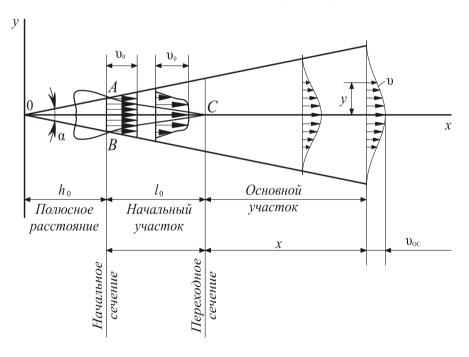


Рис. 2.6. Структура свободной изотермической струи

На структуру струи оказывает влияние начальная турбулентность: чем турбулентнее поток перед выходом из насадка, тем интенсивнее протекает перемешивание его с воздухом атмосферы, тем больше угол расширения струи α, тем короче длина начального участка и тем быстрее уменьшение осевой скорости в основном участке.

Основные параметры свободных струй, вытекающих из круглых и щелевых насадков, можно определить, используя формулы Г.Н. Абрамовича (табл. 2.5 и 2.5a), полученные на основании экспериментальных данных.

Tаблица~2.5 Формулы для расчета свободных осесимметричных струй [27]

№ п/п	Наимено- вание	Обо- зна- чение	Начальный участок струи	Основной участок струи
	Длина начально- го участ- ка струи	l_0	$0,335 \frac{d_0}{a}$ (2.46)	-
2	Осевая скорость	$\frac{v_x}{v_0}$	1	$\frac{0,48}{\frac{ax}{d_0} + 0,145} \tag{2.47}$
3	Расход	$\frac{L_x}{L_0}$	$1+1,52\frac{ax}{d_0}+5,28\left(\frac{ax}{d_0}\right)^2 (2.48)$	$4,36 \left(\frac{ax}{d_0} + 0,145 \right) (2.49)$
4	Средние скорости по пло-щади	$\frac{v_{xF}}{v_0}$	$\frac{1+1,52\frac{ax}{d_0}+5,28\left(\frac{ax}{d_0}\right)^2}{1+13,6\frac{ax}{d_0}+46,24\left(\frac{ax}{d_0}\right)^2} $ (2.50)	$\frac{0,0945}{\frac{ax}{d_0} + 0,145} \tag{2.51}$
5	Средние скорости по расхо-		$\frac{1}{1+1,52\frac{ax}{d_0}+5,28\left(\frac{ax}{d_0}\right)^2} \tag{2.52}$	

Окончание табл. 2.5

№ π/π	Наимено-	Обо- зна- чение	Начальный участок струи	Основной участок струи
5	Средние скорости по расхо-	$\frac{v_{xL}}{v_0}$	$\frac{1}{1+1,52\frac{ax}{d_0}+5,28\left(\frac{ax}{d_0}\right)^2} $ (2.52)	$\frac{0,226}{\frac{ax}{d_0} + 0,145} $ (2.53)
6	Диаметр струи	$\frac{d_x}{d_0}$	$1+6.8\frac{ax}{d_0}$ (2.54)	$6.8 \left(\frac{ax}{d_0} + 0.145 \right) (2.55)$
7	Средний перепад темпера-тур (кон-центра-ций) на оси струи	•0 •В	$\frac{1}{1+1,52\frac{ax}{d_0}+5,28\left(\frac{ax}{d_0}\right)^2} $ (2.56)	$\frac{0,226}{\frac{ax}{d_0} + 0,145} $ (2.57)

Таблица 2.5а

Формулы для расчета свободных плоских струй [27]

	_		F	10
№ п/п	Наимено- вание	Обо- зна- чение	Начальный участок струи	Основной участок струи
1	Длина начально- го участ- ка струи	l_0	$0,515 \frac{b_0}{a}$ (2.58)	-
2	Осевая скорость	$\frac{v_x}{v_0}$	1	$\frac{0,848}{\sqrt{\frac{ax}{b_0} + 0,205}} \tag{2.59}$
3	Расход	$\frac{L_x}{L_0}$	$1 + 0.86 \frac{ax}{b_0} \tag{2.60}$	$\frac{1,7}{\sqrt{\frac{ax}{b_0} + 0,205}} $ (2.61)
4	Средние скорости по пло-щади	$\frac{v_{xF}}{v_0}$	$ \frac{1+0,86 \frac{ax}{b_0}}{1+4,8 \frac{ax}{b_0}} $ (2.62)	$\frac{0,347}{\sqrt{\frac{ax}{b_0} + 0,205}} \tag{2.63}$

Окончание табл. 2.5а

№ п/п	Наимено- вание	Обо- зна- чение	Начальный участок струи	Основной участок струи
5	Средние скорости по расхо-	$\frac{v_{xL}}{v_0}$	$\frac{1}{1+0,86\frac{ax}{b_0}} (2.64)$	$\frac{0,58}{\sqrt{\frac{ax}{b_0} + 0,205}} $ (2.65)
6	Толщина струи	$\frac{b_x}{b_0}$	$4.8(\frac{ax}{b_0}+1)$ (2.66)	$4.8 \left(\frac{ax}{b_0} + 0.205 \right) (2.67)$

Формулы, приведенные в табл. 2.5, 2.5*a*, широко применяются при проектировании и расчете систем вентиляции. Они позволяют определять обеспеченность параметров микроклимата в проектируемом помещении.

В эти формулы для расчета свободных струй входит параметр турбулентности a, характеризующий степень турбулентности потока в насадке.

Параметр турбулентности влияет на структуру струи, зависит от геометрии и формы исполнения насадка. Наиболее используемые конструкции насадка и значения параметра турбулентности для них приведены в табл. 2.6.

Tаблица 2.6 **Параметр турбулентности** a

Конструкция насадка	а
Цилиндрический насадок с поджатием	0,07
Цилиндрический насадок без поджатия	0,08
Щелевидный насадок с поджатием	0,09
Щелевидный насадок без поджатия	0,12
Квадратный насадок	0,09-0,1
Прямоугольный насадок с направляющими лопатками на выходе	0,17-0,2

Обнаружено, что свободная струя, выходящая из прямоугольного отверстия, деформируется, принимая в сечении форму, приближающуюся к кругу.

Пример 2.6. Определение скорости воздуха и диаметра струи

Исходные данные

- 1. Диаметр выходного отверстия цилиндрического насадка с поджатием d_0 = 300 мм.
 - 2. Скорость выхода воздуха $v_0 = 10$ м/с.

Определить скорость воздуха и диаметр струи на расстоянии x = 2 м от начального сечения насадка.

Порядок расчета

1. Определим длину начального участка струи по формуле (2.46)

$$l_0 = 0.335 \frac{0.3}{0.07} = 1.44 \text{ M},$$

где a = 0.07 для цилиндрического насадка с поджатием (табл. 2.6).

Так как x = 2 м > $l_0 = 1,44$ м, то заданное сечение находится на основном участке, следовательно, для расчета используем формулы для основного участка (табл. 2.5a).

2. Определим осевую скорость струи на расстоянии x = 2 м по формуле (2.47)

$$v_x = 10 \frac{0.48}{0.07 \frac{2}{0.3} + 0.145} = 7.85 \text{ m/c}.$$

3. Определим среднюю скорость по расходу и по площади по формулам (2.53), (2.51):

$$\overline{v_{xL}} = 10 \frac{0,226}{0,07 \frac{2}{0,3} + 0,145} = 3,7 \text{ m/c};$$

$$\overline{v_{xF}} = 10 \frac{0,0945}{0,07 \frac{2}{0.3} + 0,145} = 1,54 \text{ m/c}.$$

4. Теоретический диаметр струи на расстоянии x = 2 м по формуле (2.55)

$$d_x = 0.3 \cdot 6.8 \left(0.07 \frac{2}{0.3} + 0.145 \right) = 1.248 \text{ M}.$$

5. Определим количество приточного воздуха, м³/с, по формуле

$$L_0 = v_0 F_0 = v_0 \frac{\pi d_0^2}{4}, \qquad (2.68)$$

$$L_0 = 10 \frac{3,14 \cdot 0,3^2}{4} = 0,7065 \text{ m}^3/\text{c}.$$

6. Расход воздуха на расстоянии x = 2 м по формуле (2.49)

$$L_x = 0,7065 \cdot 4,36 \left(0,07 \frac{2}{0,3} + 0,145 \right) = 1,886 \text{ m}^3/\text{c}.$$

Пример 2.7. Определение скорости воздуха и диаметра струи

Исходные данные

Произвести расчет по условиям примера 2.6, но определить скорость воздуха и диаметр струи на расстоянии x=1 м от начального сечения насадка.

Порядок расчета

Так как x = 1 м $< l_0 = 1,44$ м, то заданное сечение находится на начальном участке, следовательно, для расчета используем формулы для начального участка (табл. 2.5):

$$\overline{\upsilon_{xF}} = 0.3 \left(\frac{1 + 1.52 \frac{0.07 \cdot 1}{0.3} + 5.28 \left(\frac{0.07 \cdot 1}{0.3} \right)^{2}}{1 + 13.6 \frac{0.07 \cdot 1}{0.3} + 46.24 \left(\frac{0.07 \cdot 1}{0.3} \right)^{2}} \right) = 2.45 \text{ m/c};$$

$$\overline{\mathbf{v}_{xL}} = 0.3 \left(\frac{1}{1 + 1.52 \frac{0.07 \cdot 1}{0.3} + 5.28 \left(\frac{0.07 \cdot 1}{0.3} \right)^2} \right) = 6.09 \text{ m/c.}$$

$$d_x = 0.3 \left(6.8 \frac{0.07 \cdot 1}{0.3} + 1 \right) = 0.776 \text{ m;}$$

$$L_x = 0.7065 \left(1 + 1.52 \frac{0.07 \cdot 1}{0.3} + 5.28 \left(\frac{0.07 \cdot 1}{0.3} \right)^2 \right) = 1.06 \text{ m}^3/\text{c.}$$

Пример 2.8. Расчет приточного перфорированного воздуховода, выполненного в виде дырчатого потолка

Исходные данные

- 1. Количество приточного воздуха L_0 = 3000 м³/ч.
- 2. Размеры вентилируемого помещения: длина $l=12\,$ м, ширина $b=6\,$ м, расстояние от пола до потолка $h=4\,$ м.
 - 3. Температура приточного воздуха t = 20 °C.
- 4. Перфорированный потолок изготовлен из гипсовых плит толщиной $\delta = 24$ мм.
 - 5. Относительная площадь живого сечения потолка 60 %.

Порядок расчета

- 1. Примем диаметр одного отверстия d_0 = 6 мм = 0,006 м.
- 2. При истечении воздуха через отверстия перфорированного потолка, согласно исследованиям, турбулентный режим обеспечивается уже при значении критерия Рейнольдса Re=1500. Определим скорость истечения воздуха, м/с, из условия, что $Re=Re_{\kappa p}=1500$:

$$v_0 = \frac{\text{Re} \cdot v}{d_0}, \qquad (2.69)$$

где $v=1,5\cdot 10^{-5}$ м²/с – коэффициент кинематической вязкости воздуха при t=20 °C;

$$v_0 = \frac{1500 \cdot 1,5 \cdot 10^{-5}}{0,006} = 3,75 \text{ m/c}.$$

3. Определим скорость на расстоянии x = 2 м от перфорированного потолка (т. е. 2 м от пола, что соответствует рабочей зоне). Длина начального участка по формуле (2.4.6)

$$l_0 = 0.335 \frac{0.006}{0.07} = 0.029 \text{ M},$$

значит при l_0 = 2 м имеем основной участок, тогда скорость определяем по формуле (2.47):

$$v_x = 3.75 \frac{0.48}{0.07 \frac{2}{0.006} + 0.145} = 0.077 \text{ m/c}.$$

Полученное значение скорости удовлетворяет требованиям микроклимата (табл. 3.2).

4. Найдем число отверстий, шт., в потолке

$$n = \frac{L_0}{3600 f \, \mu \, \nu_0},\tag{2.70}$$

где $f = \frac{\pi d_0^{\ 2}}{4}$ — площадь одного отверстия, м²; $\mu = 0.78$ — коэффициент расхода,

$$n = \frac{3000}{3600 \frac{3,14 \cdot 0,006^2}{4} 0,78 \cdot 3,75} = 10081 \text{ mt.}$$

5. Определим расстояние между отверстиями, м, исходя из условия их равномерного распределения по потолку

$$m = \sqrt{\frac{F_{\pi}}{n}} \,, \tag{2.71}$$

где F_{π} – площадь потолка, м², занятая отверстиями

$$m = \sqrt{\frac{6 \cdot 12 \cdot 0.6}{10081}} = 0.065 \text{ M}.$$

6. Найдем гидравлическое сопротивление, Па, перфорированного потолка

$$P = \sum (Rl + Z), \tag{2.72}$$

где Rl — потери давления на трение, $\Pi a; Z$ — потери на местные сопротивления, $\Pi a.$

Так как потери давления на трение намного меньше потерь давления на местные сопротивления, то ими можно пренебречь, тогда формула (2.72) перепишется в виде:

$$P = Z = \sum \xi \left(\rho \frac{v_0^2}{2} \right), \tag{2.73}$$

где $\xi = 1,5$ — коэффициент на местные сопротивления (на выхлоп и поджатие струи).

$$Z = 1.5 \cdot 1.2 \frac{3.75^2}{2} = 12.7 \text{ }\Pi\text{a}.$$

2.4.2. Движение неизотермической свободной струи

Различие в температурах воздуха, истекающего из отверстия, и окружающей среды вызывает проявление подъемных сил, струя искривляет ось симметрии и в зависимости от соотношения температур окружающей среды и воздуха, истекающего из отверстия, ось будет отклоняться вверх или вниз по отношению к оси изотермической струи. Расчет таких струй покажем на примерах 2.9 и 2.10.

Пример 2.9. Расчет высоты установки воздушного агрегата

Исходные данные

- 1. Производительность воздушного агрегата $L_0 = 1000 \text{ м}^3/\text{ч}$.
- 2. Начальная температура воздуха, выходящего из насадка, t_0 = 40 °C, температура воздуха в помещении t_B = 15 °C.

3. Насадок для подачи воздуха размером $a \times e = 200 \times 300$ мм снабжен направляющими лопатками В.В. Батурина с углом наклона к горизонту $\alpha = 45^\circ$.

На какой высоте от пола следует расположить агрегат воздушного отопления (рис. 2.7), чтобы ось воздушного потока не дошла до пола на 1м.

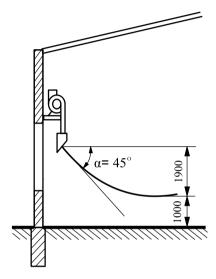


Рис. 2.7. Схема размещения агрегата воздушного отопления

Порядок расчета

1. Определим начальную скорость истечения воздуха, м/с, из насадка

$$\upsilon_0 = \frac{L_0}{3600aB},$$

$$\upsilon_0 = \frac{1000}{3600 \cdot 0, 2 \cdot 0, 3} = 4,63 \text{ m/c}.$$
(2.74)

2. Определим эквивалентный по площади диаметр насадка, м,

$$d_0 = \sqrt{\frac{4F}{\pi}} \,, \tag{2.75}$$

$$d_0 = \sqrt{\frac{4 \cdot 0, 2 \cdot 0, 3}{3,14}} = 0,276 \text{ M}.$$

3. Определим критерий Архимеда по формуле

$$Ar = \frac{g d_0}{v_0^2} \frac{T_0 - T_B}{T_B}, \qquad (2.76)$$

где $g = 9.81 \text{ м/c}^2$ – ускорение свободного падения; T_0 , $T_{\rm B}$ – температура воздуха, К, выходящего из насадка, и окружающего соответственно

Ar =
$$\frac{9,81 \cdot 0,276}{4.63^2} \frac{(273+40) - (273+15)}{273+15} = 0,011.$$

4. Определим безразмерную ординату вершины струи по формуле И.А. Шепелева:

$$\overline{y_{\rm B}} = \frac{y_{\rm B}}{d_0} = 0.350 \sin \alpha \sqrt[3]{\frac{\sin^2 \alpha}{a \cdot {\rm Ar}^2}},$$
 (2.77)

где a = 0,2 – коэффициент, характеризующий начальную турбулентность для прямоугольного насадка с направляющими лопатками на выходе (см. табл. 2.6).

$$\overline{y_{\rm B}} = 0.350 \cdot 0.707 \cdot \sqrt[3]{\frac{0.707^2}{0.2 \cdot 0.011^2}} = 7.$$

Тогда ордината вершины струи, м, получится равной

$$y_{\rm B} = \overline{y_{\rm B}} \cdot d_{\rm 0},$$
 (2.78)
 $y_{\rm B} = 7 \cdot 0.276 = 1.933 \text{ M}.$

5. Центр насадка агрегата воздушного отопления следует расположить по условиям задачи на высоте:

$$H = 1.933 + 1 = 2.933$$
 M.

6. Определим продольную координату вершины струи:

$$\overline{x}_{B} = 0.583 \cos \alpha \cdot \sqrt[3]{\frac{\sin^{2} \alpha}{a \cdot \text{Ar}^{2}}}, \qquad (2.79)$$

$$\overline{x_{\rm B}} = 0.583 \cdot 0.707 \cdot \sqrt[3]{\frac{0.707^2}{0.2 \cdot 0.011^2}} = 11.3.$$

Тогда продольная координата вершины струи, м, будет равна:

$$x_{\rm B} = \overline{x_{\rm B}} d_0$$
. (2.80)
 $x_{\rm B} = 11.3 \cdot 0.276 = 3.1 \text{ M}.$

Пример 2.10. Построение изогнутой оси потока холодного воздуха, поступающего через фрамугу

Исходные данные

- 1. Фрамуга расположена на высоте 5 м от пола ($\alpha = 0^{\circ}$).
- 2. Площадь фрамуги 1×1 м ($d_0 = 1$ м).
- 3. Начальная скорость истечения воздуха в плоскости фрамуги υ_0 = 2 м/с.
- 4. Температура наружного воздуха t_0 = -13 °C, температура воздуха в помещении $t_{\rm B}$ = 27 °C.

Определить скорость и температуру воздуха по оси потока у пола.

Порядок расчета

1. Определим критерий Архимеда по формуле (2.76)

Ar =
$$\frac{9.81 \cdot 1}{2^2} \frac{(273 - 13) - (273 + 27)}{273 + 27} = -0.327$$
.

2. Вычислим безразмерные координаты x и y при горизонтальном истечении воздуха по формуле

$$\overline{y} = \text{Ar} \cdot \overline{x^2} (0.51 a \overline{x} + 0.35),$$
 (2.81)

где a = 0,1 – коэффициент, характеризующий начальную турбулентность для квадратного насадка (табл. 2.6),

$$\overline{y} = -0.327 \overline{x^2} (0.051 \overline{x} + 0.35).$$

Задаваясь различными значениями x, получим соответствующие значения \overline{y} :

$\frac{\overline{x}}{x}$ 1		2	3	4	5	
\overline{y}	-0,136	-0,59	-1,49	-2,9	-4,95	

3. Определим значения x и y по формулам (2.78) и (2.80). Так как в данном примере d_0 = 1 м, то эти значения будут равны значениям x и y. По полученным значениям x и y построим ось потока (рис. 2.8).

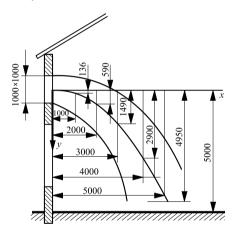


Рис. 2.8. Поступление холодной струи в помещение

4. Определим составляющие скорости в конце струи. Горизонтальная составляющая скорости, м/с, в конце струи:

$$\omega_{x} = 0.48 \frac{\upsilon_{0}}{a \frac{x}{\cos \alpha} + 0.145},$$

$$\omega_{x} = 0.48 \frac{2}{0.1 \frac{5}{1} + 0.145} = 1.49 \text{ m/c}.$$
(2.82)

Вертикальная составляющая скорости в конце струи, м/с,

$$\omega_y = 0.73 \text{ Ar} \cdot \upsilon_0 \frac{x}{\cos \alpha},$$
(2.83)
$$\omega_y = 0.73 \cdot (-0.327) \cdot 2\frac{5}{1} = -2.39 \text{ m/c}.$$

Фактическая скорость, м/с, по оси струи

$$\omega_{\text{oc}} = \sqrt{\omega_x^2 + \omega_y^2} = \sqrt{1,49^2 + (-2,39)^2} = 2,82 \text{ m/c}.$$

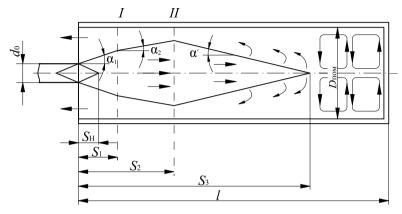
5. Определим температурный перепад и температуру по оси струи, °C, у пола

$$t_{x} - t_{B} = 0.35 \frac{(t_{0} - t_{B})}{a \frac{x}{\cos \alpha} + 0.145},$$

$$t_{x} - t_{B} = 0.35 \frac{(-13 - 27)}{0.1 \frac{5}{1} + 0.145} = -21.7 \,^{\circ}\text{C}.$$
(2.84)

Соответственно температура струи у пола

$$t_x = -21.7 + t_B = -21.7 + 27 = 5.3$$
 °C.


По расчетам получена слишком низкая для рабочей зоны температура воздуха (табл. 3.4), воздух желательно подогревать.

2.4.3. Стесненные струи

Стесненные струи – струи, которые распространяются в пространстве конечных размеров, когда ограждения влияют на развитие струи. Развитие стесненных струй отличается от свободных (рис. 2.9).

Вблизи приточного отверстия струя развивается по закону свободной до тех пор, пока ее сечение не займет 25 % площади поперечного сечения помещения (I критическое сечение). Расширение продолжается до II критического сечения, при котором струя может занять 42–45 % площади поперечного сечения помещения. За II критическим сечением расход воздуха в струе фактически равен нулю. Струя распадается или сужается. При

этом части массы воздуха движутся в обратном направлении (обратные потоки) и удаляются вытяжными устройствами, а частично эжектируются струей на участках расширения.

Puc. 2.9. Схема изотермической круглой осесимметричной струи, вытекающей в тупик:

 $S_{\rm H}$ — начальный участок (аналогичный соответствующему участку свободной струи); S_1 — участок свободного расширения (включает в себя начальный участок); S_2 — S_1 — участок стесненного расширения; S_3 — участок сужения или распада; α_1 — угол свободного расширения; α_2 и α' — углы стесненного расширения и сужения

Расчет стесненных струй производится по формулам Γ .А. Максимова. В табл. 2.7 приведены упрощенные формулы для расчета тупиковой осесимметричной изотермической струи.

Для стесненных струй кроме комплекса, характерного для свободных струй $\frac{ax}{d_0}$, определяющей характеристикой является

степень их стеснения

$$u_0 = \frac{F_0}{F_n} = \frac{d_0^2}{D_n^2},\tag{2.96}$$

где F_0 — площадь выходного отверстия насадка; $F_{\rm n}$ — площадь поперечного сечения помещения; $D_{\rm n}$ — характерный размер помещения.

Таблица 2.7

Формулы для расчета тупиковых осесимметричных струй [27]

Формулы для расчета тупиковых осесимметричных струи [27]	S_3	$\frac{S_3}{d_0} = \frac{0.33}{\text{tgd}} + \frac{1}{a} \left(\frac{0.13}{\sqrt{u_0}} - 0.13 \right)$ (2.88)	от S ₂ до S ₃	$\frac{0,66}{\sqrt{u_0}} + \frac{2\text{tg}\alpha'}{a} \left(\frac{0,13}{\sqrt{u_0}} - 0,13 \right) - \frac{x}{d_0} 2\text{tg}\alpha'$ (2.91)	$\left(\frac{0,66}{\sqrt{u_0}} + \frac{2\tan\alpha'}{a} \begin{pmatrix} 0.13 \\ -0.13 \end{pmatrix} - \frac{x}{d_0} 2\tan\alpha' \\ -0.13 \end{pmatrix}^2 (2.94)$	$\left \frac{1}{13} - \sqrt{u_0}\right < 1 \ (2.95)$		
	S_2	$\frac{S_2}{d_0} = \frac{1}{a} \left(\frac{0.13}{\sqrt{u_0}} - 0.13 \right)$ (2.87)	от S ₁ до S ₂	$0,384 + \frac{0,29}{\sqrt{u_0}} + \frac{1}{4}$ $+2,89 \frac{ax}{d_0}$	$\begin{pmatrix} 0.384 + \frac{0.29}{\sqrt{u_0}} + \\ +2.89 \frac{ax}{d_0} \end{pmatrix}$	$\frac{0,443}{\frac{ax}{d_0} + 0,13}$		
	S_1	$\frac{S_1}{d_0} = \frac{1}{a} \left(\frac{0,0625}{\sqrt{u_0}} - 0,13 \right)$ (2.86)	от $S_{\rm H}$ до $S_{ m I}$	$1+7,52\frac{ax}{d_0}$ (2.89)	$\left(1+7,52\frac{ax}{d_0}\right)^2 (2.92)$	I		
	$S_{\scriptscriptstyle m H}$	$\frac{S_u}{d_0} = \frac{1}{a} \left(\frac{0,025}{\sqrt{u_0}} - 0,13 \right)$ (2.85)	от 0 до Ѕн	1+7,52	(1+7,52			
	Участок струи	Относи- тельная длина участка	Формула действи- тельна	Относительный диаметр $\frac{d_x}{d_0}$	Относительная площадь $\frac{F_x}{F_0}$	Относи- тельная осевая скорость $\frac{v_x}{v_0}$		

Пример 2.11. Расчет стесненной струи

Исходные данные

- 1. Воздух подается и извлекается из помещения со стороны одного и того же торца здания.
 - 2. Диаметр приточного патрубка d_0 = 500 мм.
 - 3. Высота помещения h = 5 м, ширина a = 4.5 м, длина e = 10 м.
- 4. В помещении имеются избытки тепла за счет производственного процесса, составляющие $q_v = 24 \text{ Bt/m}^3$.
 - 5. Температура наружного воздуха t_0 = 21 °C.

Определить диаметр струи на расстоянии x = 4 м от приточного патрубка (в рабочей зоне) и скорость истечения воздуха из приточного патрубка, если в рабочей зоне проводятся работы средней тяжести категории Π a.

Порядок расчета

1. Определим гидравлический диаметр помещения, м, и примем его за расчетный по формуле

$$D_{\rm n} = d_{\rm r} = \frac{4F_{\rm n}}{\Pi_{\rm n}} = \frac{4(ha)}{2(h+a)}, \qquad (2.97)$$

где Π_{Π} – периметр помещения, м,

$$D_{\text{m}} = \frac{2(5 \cdot 4,5)}{5 + 4,5} = 4,74 \text{ M}.$$

2. Определим $\sqrt{u_0}\,$ с использованием формулы (2.96)

$$\sqrt{u_0} = \sqrt{\left(\frac{0.5}{4.74}\right)^2} = 0.1055.$$

3. Определяем длины участков S_1 и S_2 по формулам (2.86) и (2.87)

$$S_1 = \frac{0.5}{0.07} \left(\frac{0.0625}{0.1055} - 0.13 \right) = 3.28 \,\mathrm{m},$$

$$S_2 = \frac{0.5}{0.07} \left(\frac{0.13}{0.1055} - 0.13 \right) = 7.85 \,\mathrm{m},$$

где a=0.07 для цилиндрического насадка с поджатием (см. табл. 2.6).

Таким образом, x = 4 м находится на расчетном участке от S_1 до S_2 .

4. Определим диаметр струи на расстоянии x = 4 м по формуле (2.90)

$$d_x = 0.5 \left(0.384 + \frac{0.29}{0.1055} + 2.89 \cdot 0.07 \frac{4}{0.5} \right) = 2.38 \text{ m}.$$

5. Определим относительную осевую скорость на расстоянии x = 4 м по формуле (2.95):

$$\frac{v_x}{v_0} = \frac{0.443}{0.07 + 0.133} - 0.1055 = 0.534 < 1.$$

Полагая $\upsilon_x = \upsilon_{\text{доп}} = 0,4$ м/с (табл. 3.4), определим скорость истечения воздуха из приточного патрубка

$$v_0 = \frac{v_{\text{доп}}}{0.534} = \frac{0.4}{0.534} = 0.75 \text{ m/c}.$$

6. Определим расход воздуха, м³/ч, для общеобменной вентиляции исходя из допустимой скорости по формуле

$$L_0 = \frac{\pi d_0^2}{4} \, v_0 \, 3600, \qquad (2.98)$$

$$L_0 = \frac{3,14 \cdot 0,5^2}{4} \, 0,75 \cdot 3600 = 530 \, \text{m}^3/\text{ч}.$$

7. Определим температуру уходящего воздуха по формуле (3.5):

$$t_{\rm v} = 26 + (5 - 1.5)1.5 = 31.25$$
 °C,

где grad t = 1,5 °С/м (для $q_{\rm s} = 24$ Вт/м³ по табл. 3.4).

8. Определим количество воздуха, $м^3/ч$, которое необходимо удалить из помещения, из балансового соотношения по теплу в помещении:

$$L_0' c \rho (t_v - t_0) = V q_g,$$
 (2.99)

$$L'_0 = \frac{V q_{\text{R}}}{c \rho (t_{\text{y}} - t_0)} 3600, \qquad (2.100)$$

$$L'_0 = \frac{(5 \cdot 4, 5 \cdot 10) \cdot 24 \cdot 10^{-3}}{1,005 \cdot 1, 2(31,25 - 21)} 3600 = 1580 \text{ M}^3/\text{ч}.$$

Из сравнения полученных результатов ($L_0 < L'_0$) видно, что избыточное технологическое тепло через общеобменную вентиляцию не может быть отведено. Для его отведения необходимо воспользоваться другими техническими средствами, например, местными отсосами.

2.5. Вытяжные зонты

Вытяжные зонты применяются в случаях, когда выделяющиеся вредности легче окружающего воздуха и поток вредных выделений направлен вверх.

Вытяжные зонты являются несовершенным типом местных отсосов вследствие незащищенности пространства между источником выделения вредностей и воздухом помещения. Последний свободно подтекает к зоне всасывающего зонта, тем самым увеличивая объем воздуха, подлежащего удалению.

Пример 2.12. Расчет зонта для улавливания ненаправленного потока

Исходные данные

- 1. Ванна для окраски деталей имеет размеры в× $\Gamma = 1 \times 0.8$ м; высота от борта ванны до зонта $y_1 = 0.7$ м (рис. 2.10).
 - 2. Скорость распространения паров краски $\upsilon_{\rm n} = 0.15$ м/с.
 - 3. Угол раскрытия зонта $\alpha = 60^{\circ}$; высота зонта H = 1,21 м.
- 4. Скорость всасывания паров у поверхности ванны υ_{xy} = 0,25 м/с (скорость следует принимать равной (1,5–1,7) υ_{Π} (у борта в точке A)).

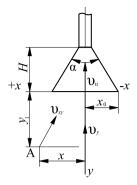


Рис. 2.10. Зонт для улавливания ненаправленного потока

Порядок расчета

- 1. Габариты зонта принимаем на 0,2 м больше габаритов ванны с каждой стороны: $a \times \delta = 1,4 \times 1,2$ м.
 - 2. Эквивалентный диаметр зонта, м:

$$d_{9K} = \frac{2a\delta}{a+\delta},$$

$$d_{\hat{y}\hat{e}} = \frac{2 \cdot 1, 4 \cdot 1, 2}{1, 4+1, 2} = 1,29 \text{ i}.$$
(2.101)

3. Определим относительные величины размеров зонта в долях эквивалентного диаметра:

$$\overline{x}_{0} = \frac{x_{0}}{d_{\hat{y}\hat{e}}} = \frac{0.7}{1.29} = 0.54;$$

$$\overline{\tilde{o}} = \frac{\tilde{o}}{d_{\hat{y}\hat{e}}} = \frac{0.5}{1.29} = 0.38;$$

$$\overline{\dot{o}}_{1} = \frac{\dot{o}_{1}}{d_{\hat{y}\hat{e}}} = \frac{0.7}{1.29} = 0.54;$$

$$\overline{I} = \frac{\dot{I}}{d_{\hat{y}\hat{e}}} = \frac{1.21}{1.29} = 0.95,$$

где $x_0 = \dot{a}/2 = 0.7\,\dot{i}$ — расстояние от оси зонта до его края; $x = \hat{a}/2 = 0.5\,\dot{i}$ — расстояние от оси ванны до ее края.

- 4. По графику (прил. 15) находим для $\ddot{o}_1 = 0.54$ значение относительной скорости по оси зонта: $\upsilon_v/\upsilon_u = 0.26$.
- 5. Определяем скорость в центре зонта υ_{μ} , при которой будет обеспечена скорость υ_{xy} в плоскости источника выделения вредности, м/с:

$$\upsilon_{II} = \frac{\upsilon_{xy}}{\frac{\upsilon_{y}}{\upsilon_{II}} - 0.1 \frac{\frac{-2}{x^{2}}}{\frac{-2}{x_{0}} - (\overline{\nu}_{1} + 0.27)\sqrt{H}}},$$

$$\upsilon_{II} = \frac{0.25}{0.26 - 0.1 \frac{0.38^{2}}{0.54^{2} - (0.54 + 0.27)\sqrt{0.95}}} = 1.02 \text{ m/c}.$$

- 6. Относительная скорость в центре зонта при $\alpha = 60^{\circ}$ по графику (прил. 16) $\eta = \upsilon_0 / \upsilon_{II} = 1$.
 - 7. Средняя скорость всасывания газов под зонт, м/с:

$$\upsilon_0 = \eta \cdot \upsilon_{_{\rm II}},$$
 (2.103)
 $\upsilon_0 = 1 \cdot 1,02 = 1,02 \text{ m/c}.$

8. Объем отсасываемого воздуха, м³/ч, составит:

$$L = F \cdot \upsilon_0 = 3600 \cdot \mathbf{a} \cdot \mathbf{\delta} \cdot \upsilon_0,$$

$$L = 3600 \cdot 1, 4 \cdot 1, 2 \cdot 1, 02 = 6169 \,\mathrm{m}^3 / \mathrm{ч}.$$
(2.104)

Пример 2.13. Расчет зонта-козырька у загрузочных отверстий печи

Исходные данные

- 1. Загрузочное отверстие печи имеет размеры $6 \times h = 1 \times 0.6$ м.
- 2. Температура в печи $t_{\Pi} = 1000$ °C.
- 3. Температура воздуха в помещении $t_{\rm B} = 20 \, {\rm ^oC}$.
- 4. Схема зонта-козырька над загрузочным отверстием печи представлена на рис. 2.11.

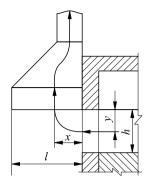


Рис. 2.11. Зонт-козырек над загрузочным отверстием печи

Порядок расчета

1. Эквивалентный диаметр зонта по формуле (2.101) будет равен:

$$d_{_{9K}} = \frac{2 \cdot 1 \cdot 0.6}{1 + 0.6} = 0.75 \,\mathrm{M}.$$

2. Плотности горячего воздуха, выбивающегося из отверстия печи, и воздуха в помещении, $\kappa r/m^3$, равны:

$$\rho_{\scriptscriptstyle T} = \frac{353}{273 + 1000} = 0,2773;$$

$$\rho_{\hat{a}} = \frac{353}{273 + 20} = 1,205.$$

3. Перепад давления, Па, в плоскости загрузочного отверстия печи

$$\Delta P = \frac{2}{3}h(\rho_{\hat{a}} - \rho_{\hat{i}})g, \qquad (2.105)$$

$$\Delta P = \frac{2}{3} \cdot 0.6 (1,205 - 0,2773) 9,81 = 3,64 \text{ \"ia}.$$

4. Средняя скорость выхода горячего воздуха, м/с, из отверстия печи

$$v_{\rm cp} = \mu \sqrt{\frac{2\Delta P}{\rho_{\rm n}}} \,, \tag{2.106}$$

где $\mu = 0,65$ – коэффициент расхода для расчета вытяжных зонтов,

$$v_{\rm cp} = 0.65 \sqrt{\frac{2 \cdot 3.64}{0.2773}} = 3.33 \,\text{m/c}.$$

5. Число Архимеда

$$Ar = \frac{gd_{\hat{y}\hat{c}}}{v_{\hat{n}\hat{\delta}}^2} \frac{T_{\tau} - \dot{O}_{\hat{a}}}{\dot{O}_{\hat{a}}}, \qquad (2.107)$$

где $T_{\rm II}$, $T_{\rm B}$ – температуры в печи и внутреннего воздуха, К,

$$Ar = \frac{9.81 \cdot 0.75}{3.33^2} \frac{1273 - 293}{293} = 2.22.$$

6. Расстояние *x*, м, на котором искривленная ось струи пересекается с плоскостью приемного отверстия зонта-козырька:

$$x = \sqrt[3]{\frac{myd_{\hat{y}\hat{e}}^2}{0.5\text{Ar}}},$$
 (2.108)

где m = 4 – коэффициент затухания скорости в струе (при расчете зонтов); $y = \frac{h}{2}$ (см. рис. 2.11);

$$x = \sqrt[3]{\frac{4 \cdot 0.3 \cdot 0.75^2}{0.5 \cdot 2.22}} = 0.847 \text{ m}.$$

7. Диаметр струи на расстоянии x от печного отверстия, м, по формуле для осесимметричной струи на начальном участке

$$d_x = d_{3K} \left(6.8 \frac{ax}{d_{3K}} + 1 \right), \tag{2.109}$$

a = 0,1 — коэффициент турбулентности для прямоугольного отверстия,

$$d_x = 0.75 \left(6.8 \frac{0.1 \cdot 0.847}{0.75} + 1 \right) = 1.33 \text{ M}.$$

8. Вылет зонта *l*, м, (см. рис. 2.11):

$$l = x + \frac{d_x}{2},\tag{2.110}$$

$$l = 0.847 + \frac{1.33}{2} = 1.51 \text{ m}.$$

9. Количество газов, выходящих из печи:

$$L_{\rm n} = 3600 v_{\rm cp} hb , \, {\rm m}^3/{\rm q};$$

$$G_{\rm n} = L_{\rm n} \rho_{\rm n} , \, {\rm kr}/{\rm q};$$

$$L_{\rm n} = 3,33 \cdot 1 \cdot 0,6 \cdot 3600 = 7193 \, {\rm m}^3 / {\rm q},$$

$$G_{\rm n} = 7193 \cdot 0,2773 = 1995 \, {\rm kr} / {\rm q}.$$

$$(2.111)$$

10. Количество отводимых под зонт газов L_x , м³/ч, с учетом температурного эффекта

$$L_{x} = L_{\text{f}} \left[1 + \left(1,52 \frac{ax}{d_{\text{yê}}} + 5,28 \left(\frac{ax}{d_{\text{yê}}} \right)^{2} \right) \sqrt{\frac{T_{\hat{a}}}{T_{\text{f}}}} \right], \qquad (2.112)$$

$$L_{x} = 7193 \left[1 + \left(1,52 \frac{0,1 \cdot 0,847}{0,75} + 5,28 \left(\frac{0,1 \cdot 0,847}{0,75} \right)^{2} \right) \sqrt{\frac{293}{1273}} \right] = 8018 \,\text{m}^{3}/\text{q}.$$

11. Количество воздуха, подмешиваемого из помещения в струю, кг/ч.

$$G_{\rm B} = \left[1,52 \frac{ax}{d_{\rm 9K}} + 5,28 \left(\frac{ax}{d_{\rm 9K}} \right)^2 \right] \rho_{\rm B} L_{\rm II}; \qquad (2.113)$$

$$G_{\hat{\rm a}} = \left[1,52 \frac{0,1 \cdot 0,847}{0,75} + 5,28 \left(\frac{0,1 \cdot 0,847}{0,75} \right)^2 \right] 1,2 \cdot 7193 = 2065 \,\hat{\rm e}\tilde{\rm a}/\div.$$

12. Температура смеси (газ+воздух), отводимой под зонт, °С:

$$t_{\rm cm} = \frac{G_{\rm n}t_{\rm n} + G_{\rm B}t_{\rm B}}{G_{\rm n} + G_{\rm B}},$$

$$t_{\rm cm} = \frac{1995 \cdot 1000 + 2065 \cdot 20}{1995 + 2065} = 502 \, ^{\circ}\text{C}.$$
(2.114)

13. Так как $t_{\text{см}} > 160$ °C, то увеличиваем количество возду-ха, подмешиваемого в струю газа, кг/ч:

$$G_{\rm B} = \frac{G_{\rm II}(t_{\rm II} - t_{\rm CM})}{t_{\rm CM} - t_{\rm B}},$$
 (2.115)

$$G_{\hat{a}} = \frac{1995(1000 - 160)}{160 - 20} = 11970 \ \hat{e}\tilde{a}/\div.$$

14. Количество газов, отводимых зонтом, кг/ч,

$$G_{\rm cm} = G_{\rm B} + G_{\rm II} \,,$$
 (2.116)

 $G_{\text{см}} = 11970 + 1995 = 13965 \,\text{кг/ч}.$

15. Количество тепла, удаляемого под зонт, кВт,

$$Q = G_{\rm cm} / 3600(t_{\rm cm} - t_{\rm B})c_{\rm cm}, \qquad (2.117)$$

где $c_{\rm cm}$ =1,005 кДж/кг ·°С – удельная теплоемкость воздуха, $Q=13965/3600(160-20)1,005=543{\rm \^eA\`o}$

2.6. Бортовые отсосы

Бортовые отсосы устанавливаются у производственных ванн различного технологического назначения. Как правило, в ванны заливается жидкость, в которую помещаются обрабатываемые изделия, температура жидкости в ванне обычно выше температуры воздуха в помещении. За счет подъемной силы, определяющейся разностью температур, пары жидкости, полые пузырьки и вредные газы без специальных устройств могут распространяться по помещению, что недопустимо с точки зрения обеспечения санитарно-гигиенических норм.

Бортовые отсосы устанавливаются на ваннах прямоугольной формы. Однобортовые отсосы устанавливаются на ваннах шириной до 0,7 м, двухбортовые – шириной до 1 м.

Простым (рис. 2.12) называется такой отсос, когда плоскость щелевого отверстия перпендикулярна зеркалу жидкости в ванне. Простые отсосы применяются при высоком уровне раствора в ванне, когда расстояние от зеркала жидкости ванны до кромки ее борта H от 80 до 150 мм.

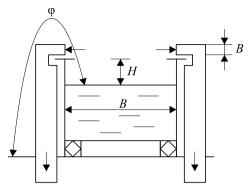
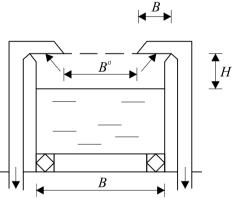
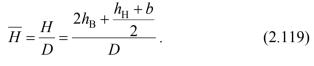
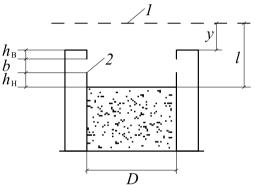


Рис. 2.12. Простой двухбортовой отсос

Опрокинутым (рис. 2.13) отсосом называется такой отсос, у которого плоскость щелевого отверстия параллельна зеркалу жидкости в ванне. Опрокинутые бортовые отсосы применяют при боле низком уровне раствора в ваннах ($H=150\div300$ мм и более) и такие отсосы требуют меньшего расхода отсасываемого воздуха.




Рис. 2.13. Опрокинутый двухбортовой отсос


Для круглой ванны, шахтной печи и т. д. выполняют кольцевые отсосы (рис. 2.14) в виде сплошной щели, расположенной по периметру ванны. Применяют два вида кольцевых отсосов: со щелью у верхней кромки ванны и со щелью, опущенной в ванну. В качестве определяющего геометрического параметра принимается относительная высота:

-для кольцевого отсоса со щелью у верхней кромки ванны:

$$\overline{H} = \frac{H}{D} = \frac{h_{\rm H} + \frac{b}{2}}{D},$$
 (2.118)

-для кольцевого отсоса со щелью, опущенной в ванну:

Puc. 2.14. Кольцевой отсос:

I — граница верхнего уровня вредных выделений, 2 — уровень борта ванны

С целью уменьшения количества отсасываемого воздуха, а также предотвращения распространения вредного воздуха по помещению используются *бортовые активированные отсосы от ванн со сдувом* двух вариантов.

Первый вариант представляет собой схему, когда отсос активируется свободной струей (струями), расположенной на достаточном удалении от зеркала рабочей жидкости при отсутствии существенного влияния восходящих конвективных потоков от нагретой жидкости на экранирующую струю (рис. 2.15).

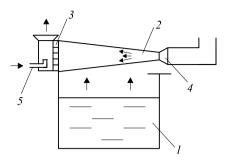
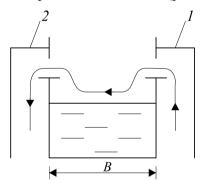



Рис. 2.15. Бортовой активированный отсос от ванны со сдувом:

- 1 ванна с раствором жидкости;
 2 сдувающая струя;
- 3 отсасывающее устройство; 4 сдувающий патрубок;
- 5 эжектор, создающий разряжение в отсасывающем канале

Отсос второго варианта активируется настилающейся струей вблизи зеркала рабочей жидкости (рис. 2.16).

 $Puc.\ 2.16.$ Бортовой активированный отсос от ванны со сдувом: 1- патрубок, формирующий струйное течение над поверхностью жидкости (сдувающее устройство); 2- отсасывающее устройство

Пример 2.14. Расчет простого двухбортового отсоса

Исходные данные

1. Простой двухбортовой отсос установлен по бортам ванны хромирования шириной B = 0.75 м и длиной l = 1.2 м (см. рис. 2.12).

- 2. Температура раствора в ванне $t_{\text{ж}}$ = 60 °C, температура воздуха в помещении $t_{\text{в}}$ = 16 °C.
 - 3. Расстояние от зеркала ванны до кромки ее борта H = 80 мм.
 - 4. Скорость движения воздуха в помещении $\upsilon_{\text{пом}} = 0.4 \text{ м/c}$.

Порядок расчета

Метод М.М. Баранова. Расход воздуха, отсасываемого от щелей отсоса, по этому методу рассчитывается по формуле

$$L = q\sqrt[3]{T_{x} - T_{\hat{a}}} \, l \, K_{V} K_{H}. \tag{2.120}$$

Проводим расчет в следующем порядке:

- 1. Для ванны хромирования принимаем высоту спектра вредных выделений h = 40 мм (прил. 17).
- 2. Удельная величина отсасываемого воздуха на единицу длины борта ванны $q=560~{\rm m}^3/({\rm q\cdot m})$ (прил. 18) при $B=750~{\rm mm}$ и $h=40~{\rm mm}$.
- 3. Поправка на глубину уровня жидкости в ванне K_H = 1 (прил. 18) при B = 750 мм и H = 80 мм.
 - 4. Разность температур $\Delta t = T_{\text{ж}} T_{\text{в}} = 60 16 = 44 \, ^{\circ}\text{C}.$
- 5. Поправка на скорость движения воздуха в помещении K_V = 1,58 (прил. 19) при H = 80 мм, Δt = 44 °C, $\upsilon_{\text{пом}}$ = 0,4 м/с и h = 40 мм.

Расход отсасываемого воздуха по формуле (2.120):

$$L = 560 \cdot \sqrt[3]{44} \cdot 1,2 \cdot 1,58 \cdot 1 = 3748 \text{ m}^3 / \text{ч}.$$

 $Memod\ M.Л.\ Bиварелли.\$ Расход воздуха, отсасываемого от щелей отсоса, по этому методу рассчитывается по формуле

$$L = 3600K_3K_T E l \sqrt{\phi \frac{\Delta t}{3 \cdot T_{\text{nom}}} gB^3}.$$
 (2.121)

Проводим расчет в следующем порядке:

1. В зависимости от токсичности паров и газов коэффициент запаса примем в переделах 1–1,75. Задаем K_3 = 1,75 (для особо вредных K_3 = 1,75–2).

2. Коэффициент для учета подсоса воздуха с торцов ванны для однобортовых отсосов:

$$K_{\rm T} = \left(1 + \frac{B}{4 \cdot l}\right)^2,\tag{2.122}$$

для двухбортовых отсосов:

$$K_{\rm T} = \left(1 + \frac{B}{8 \cdot l}\right)^2.$$

$$K_{\rm T} = \left(1 + \frac{0.75}{8 \cdot 1.2}\right)^2 = 1.16.$$
(2.123)

- 3. Безразмерная характеристика $\mathbf{F} = 0.5$ для двухбортового отсоса, $\mathbf{F} = 0.35$ для однобортового отсоса.
- 4. Угол подсоса между зеркалом ванны и ограждающей плоскостью $\phi = \frac{3}{2} \pi$, рад.

Расход отсасываемого воздуха по формуле (2.121):

$$L = 3600 \cdot 1,75 \cdot 1,16 \cdot 0,5 \cdot 1,2 \sqrt{\frac{3}{2}3,14 \frac{44}{3(273+16)}9,81 \cdot 0,75^{3}} = 3563 i^{3} / \div.$$

Сравним использованные методы по рассчитанным расходам для решаемого примера:

$$\Delta L = \frac{3748 - 3562}{3748} 100 = 4.9 \%.$$

Пример 2.15. Расчет опрокинутого двухбортового отсоса

Исходные данные

Рассчитать по условиям примера 2.14 двухбортовой опрокинутый отсос (см. рис. 2.13).

Порядок расчета

Метод М.М. Баранова

1. Ширину (высоту) щели отсоса b по конструктивным и

технологическим соображениям принимаем равной 0.1B, но не менее 50 мм: $b = 0.1B = 0.1 \cdot 0.75 = 0.075$ м.

2. Расчетная ширина ванны для опрокинутого двухбортового отсоса:

$$B'' = 0.8B = 0.8 \cdot 0.75 = 0.6 \,\mathrm{m}.$$

- 3. Удельная величина отсасываемого воздуха на единицу длины борта ванны $q=485~{\rm m}^3/({\rm u}\cdot{\rm m})$ (прил. 16) при $B=600~{\rm mm}$ и $h=40~{\rm mm}$.
- 4. Поправка на глубину уровня жидкости в ванне K_H =1 (прил. 16) при B=600 мм и H=80 мм.
- 5. Поправка на скорость движения воздуха в помещении K_v = 1,12 (прил. 19) при H = 80 мм, Δt = 44 °C, $\upsilon_{\text{пом}}$ = 0,4 м/с и h = 40 мм.

Расход отсасываемого воздуха по формуле (2.120)

$$L = 485 \cdot \sqrt[3]{44} \cdot 1, 2 \cdot 1, 12 \cdot 1 = 2301 \text{ m}^3/\text{ч}.$$

Сравним расходы отсасываемого воздуха простым и опрокинутым отсосом:

$$\Delta L = \frac{3748 - 2301}{3748} 100 = 38,6 \%.$$

Вывод: опрокинутый отсос более экономичен, т. к. требует меньшего расхода отсасываемого воздуха.

Пример 2.16. Расчет кольцевого отсоса

Исходные данные

- 1. Ванна, оборудованная кольцевым отсосом, имеет диаметр $D=1\,\mathrm{M}$.
- 2. Температура жидкости $t_{\text{ж}}$ = 100 °C, температура воздуха в помещении $t_{\text{в}}$ = 16 °C (см. рис. 2.14).

Порядок расчета

1. Принимаем к устройству кольцевой отсос с параметрами: b = 0.06 м, $h_H = 0.2$ м, $h_B = 0.1$ м, y = 0.08 м (0.04-0.16 м).

Проверяем правильность выбранных параметров.

Должно быть:

$$\begin{split} \frac{H}{D} &\geq 0,054 \; ; \; h_{\rm H} \geq 2b \; ; \; \frac{b}{D} = 0,04 - 0,16; \\ \overline{H} &= \frac{H}{D} = \frac{2 \cdot 0,1 + \frac{0,2 + 0,06}{2}}{1} = 0,33 > 0,054, \\ \bar{b} &= \frac{b}{D} = \frac{0,06}{1} = 0,06 \in (0,04 - 0,16), \\ h_{\rm H} &= 0.2 > 2 \cdot 0.06. \end{split}$$

2. Определяем высоту подъема вредных выделений, м, над поверхностью источника:

$$l = h_{\rm H} + b + h_{\rm B} + y$$
, (2.124)
 $l = 0.2 + 0.06 + 0.1 + 0.08 = 0.44$ M.

3. Определяем количество конвективной теплоты, Вт, в восходящем потоке:

$$Q = \alpha F \Delta t, \qquad (2.125)$$

где $\Delta t = t_{\text{ж}} - t_{\text{в}} = 100 - 16 = 84 \, ^{\circ}\text{C}; \ F$ – площадь поверхности источника выделения вредностей:

$$F = \frac{\pi D^2}{4},$$

$$F = \frac{3,14 \cdot 1^2}{4} = 0,785 \text{ m}^2;$$
(2.126)

 α — коэффициент теплоотдачи конвекцией (когда теплоотдающая поверхность обращена вверх a=2,8):

$$\alpha = a\sqrt[4]{\Delta t}$$
, (2.127)
 $\alpha = 2.8\sqrt[4]{84} = 8.5 \text{ BT/m}^2 \cdot ^{\circ}\text{C}$.
 $Q = 8.5 \cdot 0.785 \cdot 84 = 560.8 \text{ BT}$.

- 4. Определяем относительный расход воздуха $K = L_{\text{отс}}/L_{\text{конв}} =$ =2,4 (прил. 20) при H/D= 0,33 и y/D = 0,08.
- 5. Определяем объем воздуха, отсасываемого кольцевым отсосом:

$$L = 155 \cdot K\sqrt[3]{QF^2l} , \qquad (2.128)$$

$$L = 155 \cdot 2,4 \cdot \sqrt[3]{560,8 \cdot 0,785^2 \cdot 0,44} = 1985,5 \text{ M}^3 / \text{ч}.$$

Пример 2.17. Расчет бортового отсоса от ванн со сдувом

Исходные данные

- 1. Ванна, оборудованная бортовым отсосом со сдувом (см. рис. 2.15), имеет следующие геометрические размеры: ширина B=0.8 м, длина l=1.2 м, высота борта ванны над уровнем жидкости H=0.08 м.
- 2. Воздух подается цилиндрическими насадками с поджатием d_0 = 0,05 м (коэффициент турбулентности a = 0,07).
 - 3. Разница температур $\Delta t = t_{\text{ж}} t_{\text{B}} = 100 18 = 82 \,^{\circ}\text{C}.$

Порядок расчета

1. Диаметр струи на расстоянии x = B по формуле (2.109):

$$d_x = 6,8 \cdot 0,05 \left(\frac{0,07 \cdot 0,8}{0,05} + 0,145 \right) = 0,43 \text{ M}.$$

2. Высота установки насадка, м:

$$H = \frac{d_x}{4}$$
, (2.129) $H = \frac{0.43}{4} \approx 0.1 \text{ m}.$

3. Количество отверстий, шт., для выхода воздуха:

$$n = \frac{l}{d_x},\tag{2.130}$$

$$n = \frac{1.2}{0.43} \approx 3$$
 IIIT.

4. Количество подаваемого воздуха, м³/ч:

$$L_0 = \frac{430 \cdot F \cdot \sqrt[3]{\Delta t^{0.25} H}}{4.36 \left(\frac{aB}{d_0} + 0.145\right) - n},$$
(2.131)

$$L_0 = \frac{430 \cdot 1,2 \times 0,8 \cdot \sqrt[3]{82^{0,25} \cdot 0,1}}{4,36 \left(\frac{0,07 \cdot 0,8}{0,05} + 0,145\right) - 3} = 111 \text{ m}^3/\text{q} = 0,0307 \text{ m}^3/\text{c}.$$

5. Скорость воздуха на выходе из насадка, м/с:

$$\upsilon_0 = \frac{4L_0}{\pi d_0^2},$$

$$\upsilon_0 = \frac{4 \cdot 0,0307}{3,14 \cdot 0,05^2} = 15,7 \text{ m/c}.$$
(2.132)

6. Количество воздуха, удаляемого отсосом по формуле (2.49):

$$L_x = 4,36 \cdot 0,0307 \left(\frac{0,07 \cdot 0,8}{0,05} + 0,145 \right) = 610 \text{ i}^{-3}/\div = 0,17 \text{ m}^3/\text{c}.$$

7. Скорость воздуха, удаляемого отсосом, м/с:

$$v_0 = \frac{4L_x}{\pi d_x^2},$$

$$v_x = \frac{4 \cdot 0.17}{3.14 \cdot 0.43^2} = 1.17 \,\text{m/c}.$$
(2.133)

2.7. Воздушные души

Воздушные души являются примером местной приточной вентиляции, организуемой на фиксированных рабочих местах и обеспечивающей нормируемые параметры микроклимата для воздушного душирования.

Воздушные души устраиваются:

- 1) на рабочих местах у загрузочных отверстий печей с большими тепловыделениями в цех;
- 2) на рабочих местах при обработке раскаленного металла, при ковке и штамповке горячих изделий и т. п.;
- 3) на местах, где рабочие подвергаются одновременным действиям теплоты и пыли или только пыли в большом объеме.

Часто воздушные души в производственных помещениях являются основным способом вентиляции, т. е. обеспечивают нормируемый микроклимат на рабочих местах при одновременном обеспечении нормируемого микроклимата в целом по помещению за счет общеобменной вентиляции.

Расчет воздушных душей обычно предполагает:

- 1. Определить расход воздуха, подаваемого через насадок;
- 2. Определить диаметр струи в рабочей зоне на каком-то расстоянии x от насадка до рабочей зоны;
 - 3. Определить скорость истечения воздуха из насадка;
- 4. Определить необходимую температуру воздуха при выходе из насадка, обеспечивающего нормативные параметры микроклимата на рабочем месте.

2.7.1. Использование теории свободной струи для расчета воздушных душей

Полный диаметр струи в рабочей зоне на расстоянии x от насадка будет определяться по формуле (2.55).

Скорость истечения воздуха, м/с, из насадка

$$v_0 = \frac{v_p}{b} \left(\frac{ax}{d_0} + 0.145 \right),$$
 (2.134)

где $\upsilon_{\rm p}$ – рекомендуемая (нормируемая) скорость воздуха на рабочем месте, м/с (табл. 2.8); b – коэффициент, зависящий от соотношения $\frac{d_{\rm p}}{d_x}$ (прил. 21); $d_{\rm p}$ – диаметр активной части струи на

рабочем месте (диаметр рабочего места), м; d_x – полный диаметр струи на рабочем месте, м; a – параметр турбулентности; x – расстояние от насадка до рабочего места, м; d_0 – диаметр воздушного насадка, м.

Таблица 2.8 Нормы температур и скоростей движения воздуха при воздушном душировании [32]

Категория тяжести работ	Рекомендуемая температура воздуха на рабочем месте <i>t</i> _p , °C	Рекомендуемая скорость движения воздуха $\upsilon_{\rm p}$, м/с	Нормированная температура воздуха в душирующей струе на рабочем месте $t_{\text{норм,}}$ °C, при интенсивности облучения, Вт/м^2			ующей ге <i>t</i> _{норм,} ги об-
			350	700	1400	2100
	28	1	28	24	21	16
Легкая		2	_	28	26	24
Легкая		3	_	_	28	26
		3,5	_	_	_	27
	28	1	27	22	_	_
Средней		2	28	24	21	16
тяжести		3	_	27	24	21
		3,5	_	28	25	22
	26	2	25	19	16	_
Тяжелая		3	26	22	20	18
		3,5	_	23	22	20

Необходимая температура воздуха при выходе из насадка, которая бы обеспечила на рабочем месте нормируемую температуру $t_{\rm p}$, °C:

$$t_0 = t_{\rm B} - \frac{t_{\rm B} - t_{\rm p}}{c} \left(\frac{ax}{d_0} + 0.145 \right),$$
 (2.135)

где $t_{\rm p}$ — рекомендуемая (нормируемая) температура воздуха на рабочем месте, °C (см. табл. 2.8); c — коэффициент, зависящий от соотношения $\frac{d_{\rm p}}{d_x}$ (прил. 21).

Расход воздуха, м³/ч, подаваемого через насадок:

$$L_0 = v_0 F_0 3600 = v_0 \frac{\pi d_0^2}{4} 3600, \qquad (2.136)$$

где F_0 — площадь выходного отверстия насадка.

Пример 2.18. Расчет воздушного душа

Исходные данные

- 1. Рабочее место имеет размер 1×1 м ($d_p = 1$ м).
- 2. Интенсивность теплового облучения работающих $350~\mathrm{Br/m}^2$. Работы относятся к категории тяжелых.
- 3. Расстояние от душирующего патрубка до рабочего места $2,5\,\mathrm{m}.$
 - 4. Температура внутреннего воздуха $t_{\rm B}$ = 28 °C.

Порядок расчета

- 1. Рекомендуемая скорость воздуха на рабочем месте $\upsilon_{_{p}}$ = 2 м/с (см. табл. 2.8).
- 2. Рекомендуемая температура воздуха на рабочем месте t_p = 26 °C (см. табл. 2.8).
- 3. Нормированная температура воздуха в душирующей струе на рабочем месте $t_{\text{норм}}$ = 25 °C (см. табл. 2.8).
- 4. Принимаем к установке цилиндрический патрубок ПДв-3 с диаметром d_0 = 315 мм (задаемся предварительно по прил. 22 по перепаду $t_{\rm p}$ – $t_{\rm hopm}$).
- 5. Коэффициент турбулентности для цилиндрического патрубка без поджатия a=0.08 (см. табл. 2.6).
- 6. Определяем диаметр поперечного сечения струи на расстоянии от душирующего патрубка x = 2.5 м по формуле 2.55:

$$d_x = 6.8(0.08 \cdot 2.5 + 0.145 \cdot 0.315) = 1.67 \text{ M}.$$

7. Найдем соотношение d_p/d_x :

$$d_p/d_x = 1/1,75 = 0,599$$
.

- 8. По графику (прил. 26) при d_p/d_x = 0,599 определяем значения коэффициентов b = 0,25; c = 0,3.
- 9. Определяем начальную скорость воздуха в плоскости душирующего патрубка по формуле (2.134):

$$v_0 = \frac{2}{0.25} \left(\frac{0.08 \cdot 2.5}{0.315} + 0.145 \right) = 6.24 \text{ m/c}.$$

10. Определяем объем воздуха, подаваемого душирующим патрубком по формуле (2.136):

$$L_0 = \frac{3,14 \cdot 0,315^2}{4} 6,24 \cdot 3600 = 2222 \,\mathrm{m}^3/\mathrm{q}.$$

11. Определим начальную температуру воздуха при выходе из душирующего патрубка по формуле (2.135):

$$t_0 = 28 - \frac{28 - 26}{0.3} \left(\frac{0.08 \cdot 2.5}{0.315} + 0.145 \right) = 22.8 \text{ °C}.$$

2.7.2. Метод расчета воздушных душей (горизонтальными и наклонными струями), предложенный П.В. Участкиным

Сначала определяется параметр по отношению разности температур воздуха на рабочем месте:

$$P_{\rm T} = \frac{t_{\rm p.3} - t_{\rm p}}{t_{\rm p.3} - t_{\rm 0}},\tag{2.137}$$

где $t_{p,3}$ — температура воздуха в рабочей зоне действительная (или в помещении в целом), °C.

Если $P_{\rm T}$ < 1, то осуществляют адиабатическое охлаждение воздуха. Если $P_{\rm T}$ > 1, то применяют искусственное охлаждение.

Расчет осуществляется следующим образом:

a)
$$P_{\rm T} < 0.6$$
.

Площадь сечения душирующего патрубка:

$$F_0 = \left(\frac{P_{\rm T} x}{0.6n}\right)^2,\tag{2.138}$$

где x — расстояние от душирующего патрубка до рабочей зоны; n — коэффициент, характеризующий изменение температуры на оси струи (табл. 2.9).

Скорость истечения из душирующего патрубка:

$$v_0 = v_p \frac{x}{0.7 \text{m} \sqrt{F_0}}, \qquad (2.139)$$

где m – коэффициент затухания скорости в струе (табл. 2.9).

Температура на выходе из душирующего патрубка:

$$t_0 = t_{\rm th} + \Delta t_{\rm rr} \,, \tag{2.140}$$

где $t_{\rm \varphi}$ — температура воздуха на выходе из форсуночной камеры; $\Delta t_{\scriptscriptstyle \Pi}$ — нагрев воздуха в вентиляторе.

б)
$$P_{\rm T} = 0.6 - 1$$
.

Площадь сечения душирующего патрубка:

$$F_0 = \left[\left(x + 5.3P_{\rm T} - 3.2 \right) \frac{1}{0.75n} \right]^2. \tag{2.141}$$

Скорость истечения из душирующего патрубка:

$$\upsilon_0 = \frac{\upsilon_p}{0.7 + 0.1 \left(0.8m\sqrt{F_0} - x\right)}.$$
 (2.142)

Температура на выходе из душирующего патрубка определяется по формуле (2.140).

в)
$$P_{\rm T} > 1$$
.

Площадь сечения душирующего патрубка:

$$F_0 = \left(\frac{x}{0.8m}\right)^2. (2.143)$$

Скорость истечения из душирующего патрубка:

$$v_0 = \frac{v_p}{0.7} \,. \tag{2.144}$$

Температура на выходе из душирующего патрубка:

$$t_0 = t_{p.3} - \left(t_{p.3} - t_p\right) \frac{x}{0.6n\sqrt{F_0}}.$$
 (2.145)

Таблица 2.9 **Характеристики типовых душирующих воздухораспределителей [32]**

		Расчетная	Коэффициенты			
Воздухораспределитель	Марка	площадь, F_0 , м ²	m	n	یی	
Универсальный душирующий воздухораспределитель типа УДВ	УДВ–1 УДВ–2 УДВ–3	0,17 0,38 0,68	6	4,9	2,1	
Патрубок поворотный душирующий типа ППД	ППД–5 ППД–6 ППД–8	0,1 0,16 0,26	6,3	4,5	4	
Патрубок душирующий с увлажнением воздуха типа	ПДв-3 ПДв-4 ПДв-5	0,14 0,13 0,36	5,3	4,5	1,6	
ПД с верхним и нижним подводом воздуха	ПДн–3 ПДн–4 ПДн–5	0,14 0,23 0,36	4,5	3,1	3,2	

Пример 2.19. Определение требуемого для душирования расхода воздуха

Исходные данные

- 1. На рабочей площадке d_p = 1 м требуется поддерживать скорость движения воздуха υ_p = 3 м/с и температуру t_p = 22 °C.
 - 2. Температура окружающего воздуха $t_{\text{окр}} = t_{\text{р.3}} = 27 \, ^{\circ}\text{C}$.
- 3. Путем адиабатического охлаждения наружного воздуха можно получить температуру t_{oxn} = 17,5 °C.
- 4. Возможное минимальное расстояние от выходного сечения душирующего патрубка до рабочего места x=2 м.

Порядок расчета

- 1. Нагрев воздуха в вентиляторе и воздуховодах до душирующего патрубка после оросительной камеры принимается не менее 1,5 °C. Принимаем Δt_{Π} = 1,5 °C.
- 2. Температура воздуха на выходе из душирующего патрубка, °C:

$$t_0 = t_{\text{ox}\pi} + \Delta t_{\pi},$$
 (2.146)
 $t_0 = 17.5 + 1.5 = 19 \,^{\circ}\text{C}.$

3. Вычисляем отношение разности температур воздуха по формуле (2.137):

$$P_{\rm T} = \frac{27 - 22}{27 - 19} = 0,625.$$

- 4. Примем к расчету универсальный душирующий воздухораспределитель типа УДВ. Коэффициенты для такого воздухораспределителя: n = 4.9; m = 6 (см. табл. 2.9).
- 5. Определяем площадь сечения душирующего патрубка при P_T = 0,6–1 по формуле (2.141):

$$F_0 = \left\lceil \frac{2 + 5,3 \cdot 0,625 - 3,2}{0,75 \cdot 4,9} \right\rceil^2 = 0,33 \,\mathrm{m}^2.$$

- 6. Принимаем к установке душирующий воздухораспределитель УДВ-2 (см. табл. 2.9) с F_0 = 0,38 м².
- 7. Скорость воздуха на выходе из душирующего воздухораспределителя по формуле (2.142)

$$v_0 = \frac{3}{0.7 + 0.1(0.8 \cdot 6\sqrt{0.38} - 2)} = 3.77 \,\text{m/c}.$$

8. Определяем расход воздуха, подаваемого через душирующий воздухораспределитель, по формуле (2.136):

$$L_0 = 3.77 \cdot 0.33 \cdot 3600 = 4479 \text{ m}^3/\text{ч}.$$

Пример 2.20. Определение требуемого для душирования расхода воздуха

Исходные данные

- 1. На рабочей площадке d_p = 1м требуется поддерживать скорость движения воздуха υ_p = 3 м/с и температуру t_p = 22 °C.
 - 2. Температура окружающего воздуха $t_{\text{окр}} = t_{\text{р.3}} = 30$ °C.
- 3. Путем адиабатического охлаждения наружного воздуха можно получить температуру t_{oxn} = 21 °C.
- 4. Возможное минимальное расстояние от выходного сечения душирующего патрубка до рабочего места x=2 м.

Порядок расчета

- 1. Нагрев воздуха в вентиляторе и воздуховодах до душирующего патрубка после оросительной камеры принимается не менее 1,5 °C. Принимаем $\Delta t_n = 1,5$ °C.
- 2. Температура воздуха на выходе из душирующего патрубка по формуле (2.146):

$$t_0 = 21 + 1.5 = 22.5$$
 °C.

3. Вычисляем отношение разности температур воздуха по формуле (2.137):

$$P_{\rm T} = \frac{30 - 22}{30 - 22.5} = 1,06.$$

- 4. Примем к расчету универсальный душирующий воздухораспределитель типа УДВ. Коэффициенты для такого воздухораспределителя: n = 4.9; m = 6 (см. табл. 2.9).
- 5. Определяем площадь сечения душирующего патрубка при $P_T > 1$ по формуле (2.143):

$$F_0 = \left(\frac{2}{0.8 \cdot 6}\right)^2 = 0.17 \text{ m}^2.$$

- 6. Принимаем к установке душирующий воздухораспределитель УДВ-1 (см. табл. 2.9) с F_0 = 0,17 м².
- 7. Скорость воздуха на выходе из душирующего воздухораспределителя по формуле (2.144):

$$v_0 = \frac{3}{0.7} = 4.3 \text{ m/c}.$$

8. Определяем температуру воздуха, выходящего из душирующего воздухораспределителя, по формуле (2.145):

$$t_0 = 30 - \frac{(30 - 22)2}{0.6 \cdot 4.9\sqrt{0.17}} = 16.8 \,^{\circ}\text{C}.$$

Следовательно, воздух, подаваемый в душирующий патрубок, надо охладить предварительно до температуры $t_0 - \Delta t_{\rm n} = 16.8 - 1.5 = 15.3$ °C. Адиабатическое охлаждение по ус-

ловиям задачи позволяет получить температуру $t_{\text{охл}}$ = 21 °C. Следовательно, для того, чтобы получить температуру воздуха $t_{\text{охл}}$ =15,3 °C, необходимо применить искусственное охлаждение.

9. Определяем расход воздуха, подаваемого через душирующий патрубок, по формуле (2.136):

$$L_0 = 4.3 \cdot 0.16 \cdot 3600 = 2477 \text{ m}^3 / \text{ y}.$$

2.7.3. Расчет воздушных душей для уменьшения концентрации вредных выделений

В этом случае вычисляется параметр по отношению разности концентраций газов

$$P_{\rm K} = \frac{K_{\rm p.3} - K_{\rm p}}{K_{\rm p.3} - K_{\rm 0}},\tag{2.147}$$

где $K_{\rm p.3}$ – концентрация газов в воздухе рабочей зоны, действительная (или в помещении в целом), мг/м³; $K_{\rm p}$ – рекомендуемая концентрация газов в воздухе на рабочем месте, мг/м³; K_0 – концентрация газов в воздухе на выходе из душирующего патрубка, мг/м³.

a)
$$P_{\rm K} < 0.4$$
.

Площадь сечения душирующего патрубка вычисляется по формуле

$$F_0 = \left(\frac{P_{\rm K} x}{0.4n}\right)^2. \tag{2.148}$$

Скорость истечения из душирующего патрубка

$$v_0 = \frac{v_p}{0.7m\sqrt{F_0}} \,. \tag{2.149}$$

Температура на выходе из душирующего патрубка

$$t_0 = t_{p.3} - \left(t_{p.3} - t_p\right) \frac{x}{0.45n\sqrt{F_0}}.$$
 (2.150)

6) $0.4 \le P_{K} \le 1$.

Площадь сечения душирующего патрубка

$$F_0 = \left(\frac{x + 3.7P_{\rm K} - 1.4}{0.75n}\right)^2. \tag{2.151}$$

Скорость истечения из душирующего патрубка

$$v_0 = \frac{v_p}{0.55 + 0.14(0.8m\sqrt{F_0} - x)}.$$
 (2.152)

Температура на выходе из душирующего патрубка

$$t_0 = t_{p,3} - \frac{\left(t_{p,3} - t_p\right)}{0,45 + 0,25\left(0,75n\sqrt{F_0} - x\right)}.$$
 (2.153)

Пример 2.21. Определение F_0 , t_0 , υ_0 , L_0 для поворотного душирующего патрубка типа ППД

Исходные данные

- 1. Концентрации вредностей (пыли): K_p = 22 мг/м³, K_0 = 0, $K_{p,3}$ = 40 мг/м³.
- 2. Температура и скорость движения воздуха на рабочей площадке: t_p = 22 °C, υ_p = 3 м/с.
 - 3. Температура окружающего воздуха $t_{\text{окр}} = t_{\text{р.з}} = 28 \, ^{\circ}\text{C}$.
- 4. Минимальное расстояние от выходного сечения душирующего патрубка до рабочего места x = 1,5 м.

Порядок расчета

- 1. Коэффициенты для поворотного душирующего патрубка ППД: n = 4.5; m = 6.3 (см. табл. 2.9).
- 2. Вычисляется параметр по отношению разностей концентраций по формуле (2.147):

$$P_{\rm K} = \frac{40-22}{40-0} = 0,45 > 0,4$$
.

3. Определяется площадь сечения душирующего патрубка

по формуле (2.151):

$$F_0 = \left\lceil \frac{1,5+3,7\cdot 0,45-1,4}{0,75\cdot 4,5} \right\rceil^2 = 0,24 \text{ m}^2.$$

Принимаем к установке душирующий патрубок ППД-8 (см. табл. 2.9) с F_0 = 0,26 м².

4. Скорость воздуха на выходе из душирующего патрубка по формуле (2.152):

$$v_0 = \frac{3}{0.55 + 0.14(0.8 \cdot 6.3\sqrt{0.26} - 1.5)} = 4.3 \text{ m/c}.$$

5. Температура воздуха на выходе из душирующего патрубка по формуле (2.153):

$$t_0 = 28 - \frac{28 - 22}{0,45 + 0,25(0,75 \cdot 4,5\sqrt{0,26} - 1,5)} = 16 \,^{\circ}\text{C}.$$

6. Производительность душа по формуле (2.136):

$$L_0 = 4.3 \cdot 0.26 \cdot 3600 = 4025 \text{ м}^3 / \text{ч}.$$

2.8. Воздушные завесы

Воздушная или воздушно-тепловая завеса (с подогревом воздуха) — это вентиляционное устройство, предотвращающее резкое проникновение (врывание) наружного воздуха в помещение через открытые проемы (двери, ворота). Завесы применяют также для защиты от перетекания воздуха из одного помещения в другое.

2.8.1. Завесы шиберующего типа

Принцип действия таких завес основан на использовании плоских воздушных струй, уменьшающих количество проходящего через проем наружного воздуха, частично шибируя его либо полностью его перекрывая.

При установке воздушно-тепловых завес шибирующего типа для уменьшения потерь тепла с частью струи завесы, уходящей наружу, рекомендуется (особенно при односторонних завесах) устраивать тамбур, имеющий боковые стенки и перекрытие. Воздух выпускается через щелевидные насадки под углом 30° к плоскости проема с направлением наружу. Двусторонние боковые завесы по сравнению с односторонними более надежны в эксплуатации. Завесы с нижней подачей воздуха применяются при ширине проема, значительно большей, чем высота. Они более надежно предохраняют нижнюю зону помещения от поступления холодного воздуха.

Завесы следует рассчитывать на параметры наружного воздуха Б. Метод расчета строится на теории струйных течений с учетом экспериментальных коэффициентов.

Общий расход воздуха завесы, кг/ч, определяется по формуле

$$G_3 = 5100\overline{q}\mu_{\rm np}F_{\rm np}\sqrt{\Delta P\rho_{\rm cm}}, \qquad (2.154)$$

где q — отношение расхода воздуха завесы к расходу воздуха, проходящего через проем (при работе боковой завесы рекомендуется принимать 0,6—0,7, при работе нижней завесы — 1,0); $\mu_{\rm пp}$ — коэффициент расхода проема при работе завесы (табл. 2.10); $F_{\rm np}$ — площадь открываемого проема оборудованного завесой, M^2 ; ΔP — разность давлений воздуха с двух сторон наружного ограждения на уровне проема, оборудованного завесой, Π_a ; $\rho_{\rm cm}$ — плотность смеси подаваемого завесой и наружного воздуха, кг/ M^3 .

Расчетная разность давлений, Па, составит:

$$\Delta P = 9.8 h_{\text{pac}_{\text{H}}} (\rho_{\text{H}} - \rho_{\text{B}}) + k_{1} c \frac{\rho_{\text{H}} v_{\text{B}}^{2}}{2}, \qquad (2.155)$$

где $h_{\text{расч}}$ — расчетная высота, т. е. расстояние по вертикали от центра проема, оборудованного завесой, до уровня нулевых давлений, где давления снаружи и внутри здания равны (высота нейтральной зоны), м; ρ_{H} — плотность воздуха при температуре наружного воздуха (параметры Б), кг/м³; ρ_{B} — то же, при средней

по высоте помещений температуре внутреннего воздуха, кг/м³; $\upsilon_{\rm B}$ — расчетная скорость ветра, значение которой принимается при параметрах Б для холодного периода года; c — расчетный аэродинамический коэффициент [14]; k_1 = 0,2 — поправочный коэффициент на ветровое давление (табл. 2.11).

Таблица 2.10 Коэффициенты расхода проемов для завес шиберного типа [32]

Тип завесы	Относительная пло-	$-$ Значения $\mu_{ m np}$ при q					
	щадь $\overline{F} = F_{np}/F_{m}$	0,5	0,6	0,7	0,8	0,9	1
	10	0,42 0,36 0,35	$\frac{0,38}{0,32}$	$\frac{0,35}{0,31}$	0,33 0,28	$\frac{0,31}{0,26}$	$\frac{0,29}{0,25}$
Боковая	20	0.3	0,38 0,32 0,32 0,27	0,3 0.26	0,33 0,28 0,29 0,25	0,31 0,26 0,29 0,25	$\frac{0,29}{0,25}$
	30	$\frac{0.31}{0.27}$	0,29 0,25	0,29 0,25	0,29 0,25	0,29 0,25	0,29 0,25
	40	0,31 0,27 0,29 0,25	0,29 0,25 0,29 0,25	0,29 0,25 0,29 0,25	0,29 0,25	0,29 0,25 0,29 0,25	0,29 0,25 0,29 0,25 0,29 0,25 0,29 0,25
Нижняя	10	0,5 0,42	0,45 0,38	0,4 0,36	0,37 0,32	0,34 0,3	0,31 0,27 0,23 0,21
	20	0,4 0,34	0,35 0,3	0,3 0,28	0,28 0,25	$\frac{0.25}{0.23}$	$\frac{0,23}{0,21}$
	30	$\frac{0.35}{0.31}$	0,3 0,26	$\frac{0.27}{0.24}$	0,24 0,21	$\frac{0,22}{0,2}$	0,2 0,18
	40	$\frac{0.31}{0.27}$	0,27 0,24	<u>0,24</u> 0,21	0,21 0,19	0,2 0,17	0,18 0,15

Примечание. Над чертой приведены значения μ_{np} для раздвижного проема, под чертой – для распашного.

Таблица 2.11 Поправочный коэффициент на ветровое давление [32]

Здание	k_1
Без аэрационных проемов	0,2
С аэрационными проемами, закрытыми в холодный период года	0,5
То же, открытыми в холодный период года	0,8

Отношение площади открываемого проема, оборудованного завесой, к суммарной площади воздуховыпускных щелей $\overline{F} = F_{\rm np}/F_{\rm m}$ рекомендуется принимать 20–30.

Температура воздуха завесы, °С, находится по формуле

$$t_3 = t_{\rm H} + \frac{t_{\rm CM} - t_{\rm H}}{\overline{q}(1 - \overline{Q})},$$
 (2.156),

где \overline{Q} — отношение количества тепла, теряемого с воздухом, уходящим через открытый проем наружу, к тепловой мощности калориферов завесы.

Суммарная тепловая мощность калориферов воздушнотепловой завесы, Вт, определяется по формуле

$$Q_3 = 0.28G_3(t_3 - t_{\text{\tiny HAM}}), \tag{2.157}$$

где $t_{\text{нач}}$ — температура воздуха, забираемого для завесы, °С (на уровне всасывающего отверстия вентилятора $t_{\text{нач}}$ принимается равной температуре смеси воздуха, поступающего в помещение; из верхней зоны — равной температуре воздуха в верхней зоне; снаружи — равной температуре наружного воздуха для холодного периода года, соответствующей параметрам Б).

Если в результате расчета t_3 окажется меньше $t_{\text{нач}}$, то следует использовать завесы без калориферных секций.

Пример 2.22. Расчет боковой двухсторонней завесы

Исходные данные

- 1. В одноэтажном производственном здании высотой 8,4 м, имеющем зенитные фонари, установлены раздвижные ворота размером $F_{\rm пр}=3,6\times3,6=12,96$ м².
- 2. Механическая вытяжка и механический приток сбалансированы. Забор воздуха для завесы происходит на уровне всасывающего отверстия вентилятора.
- 3. Расчетная температура и плотность наружного воздуха для холодного периода года по параметрам Б $t_{\rm H}\!\!=\!-20$ °C, $\rho_{\rm H}\!\!=\!1,39~{\rm kr/m}^3$.
- 4. Температура и плотность воздуха в помещении $t_{\rm B}$ = 18 °C, $\rho_{\rm B}$ = 1,21 кг/м³.
- 5. При работе завесы температура и плотность смеси воздуха $t_{\rm cm}$ = 14 °C, $\rho_{\rm cm}$ = 1,23 кг/м³ (в районе завесы выполняются легкие работы).

- 6. Расчетная скорость ветра $v_{R} = 5.5 \text{ M/c}$.
- 7. Расчетный аэродинамический коэффициент c = 0.8 [14].

Порядок расчета

- 1. Принимаем относительную площадь $\overline{F} = F_{\rm пp}/F_{\rm m} = 20$ и относительный расход $\overline{q} = 0,7$ (рекомендуемая величина для боковых завес).
- 2. Коэффициент расхода μ_{np} = 0,3 для раздвижных ворот (см. табл. 2.10).
- 3. Расчетная высота, т. е. расстояние по вертикали от центра проема, оборудованного завесой, до уровня нулевых давлений, где давления снаружи и внутри здания равны $h_{\text{расч}}$ = 2,4 м для принятых размеров ворот и высоте здания (прил. 23).
 - 4. Расчетная разность давлений по формуле (2.155) составит:

$$\Delta P = 9.8 \cdot 2.4(1.39 - 1.21) + 0.2 \cdot 0.8 \frac{1.39 \cdot 5.5^2}{2} = 7.64 \text{ }\Pi\text{a},$$

где $k_1 = 0,2$ — поправочный коэффициент на ветровое давление (см. табл. 2.11).

5. Общий расход воздуха завесы определяем по формуле (2.154):

$$G_3 = 5100 \cdot 0.7 \cdot 0.3 \cdot 12.96 \sqrt{7.64 \cdot 1.23} = 39500$$
 кг / ч.

6. Принимаем к установке (прил. 24) завесу типа 3BT1.00.000-03 суммарной производительностью по воздуху G_3 = 40800 кг/ч. Для принятого типа завесы из формулы (2.154) вычислим относительный расход (уточненный):

$$\overline{q} = \frac{40800}{5100 \cdot 0.3 \cdot 12.96 \cdot \sqrt{7.64 \cdot 1.23}} = 0.67.$$

7. Температуру воздуха завесы находим по формуле (2.156):

$$t_3 = -20 + \frac{14 + 20}{0.67(1 - 0.1)} = 36.4$$
 °C,

где \overline{Q} = 0,1 — отношение количества тепла, теряемого с воздухом, уходящим через открытый проем наружу, к тепловой мощности калориферов завесы (прил. 25) по \overline{F} = 20 и \overline{q} = 0,67.

8. Суммарную тепловую мощность калориферов воздушно-тепловой завесы определяем по формуле (2.157):

$$Q_3 = 0.28 \cdot 40800(36.4 - 14) = 255900 \text{ BT},$$

где $t_{\text{\tiny Haч}} = t_{\text{\tiny CM}} = 14\,^{\circ}\text{C}$ при заборе воздуха для завесы на уровне всасывающего отверстия вентилятора.

Поскольку суммарная тепловая мощность принятой типовой конструкции, согласно прил. 20, составляет 511700 Вт, т. е. вдвое больше требуемой, то в данном случае целесообразно в одном из агрегатов завесы не устанавливать калориферную секцию.

2.8.2. Завесы смесительного типа

У входных дверей встроено-пристроенных помещений различного назначения рекомендуется устраивать боковые двусторонние завесы смесительного типа, обеспечивающие заданную температуру воздуха в помещении.

Принцип действия таких завес основан на смешивании наружного воздуха, поступающего через открытый проем, с воздухом завесы.

Разность давлений ΔP , обеспечивающая движение воздуха через проем, определяют с учетом ветрового давления по формуле (2.155). При отсутствии полных исходных данных ΔP рекомендуется рассчитывать приближенно по формуле, Π a:

$$\Delta P = 9.8 h_{\text{pacy}} (\rho_{\text{H}} - \rho_{\text{B}}),$$
 (2.158)

где значение $h_{\text{расч}}$ вычисляют, м, в зависимости от этажности здания по следующим формулам:

– для зданий с числом этажей три и меньше:

$$h_{\text{pac}_{\text{Ч}}} = h_{\text{л.к}} - 0.5 h_{\text{дв}},$$
 (2.159)

– для зданий с числом этажей больше трех:

$$h_{\text{pacy}} = 0.5(h_{\pi K} + 2h_{\text{TT}} - h_{\pi B}),$$
 (2.160)

где $h_{\text{л.к}}$ – высота лестничной клетки от планировочной отметки земли, м; $h_{\text{дв}}$ – высота створки входных дверей, м; $h_{\text{эт}}$ – полная (от уровня пола предыдущего до уровня пола последующего этажа) высота одного этажа, м.

Расход воздуха, кг/ч, для воздушно-тепловой завесы смешивающего типа определяется по формуле

$$G_3 = 5100k_2\mu_{\rm BX}F_{\rm BX}(t_{\rm cm} - t_{\rm H})\sqrt{\Delta P\rho_{\rm H}}/(t_3 - t_{\rm cm}),$$
 (2.161)

где $\mu_{\rm Bx}$ — коэффициент расхода входа, зависящий от его конструкции (табл. 2.12); k_2 — поправочный коэффициент, который учитывает число проходящих людей, место забора воздуха для завесы и тип вестибюля (прил. 26); $F_{\rm Bx}$ — площадь одной открываемой створки наружных входных дверей, ${\rm M}^2$.

Tаблица 2.12 **Коэффициент расхода для завес смесительного типа [32]**

Конструкция входа	$\mu_{\scriptscriptstyle BX}$
Одинарные двери	0,7
Двойные двери с тамбуром, прямой проход	0,65
Тройные двери с тамбуром, прямой проход	0,6
Двойные двери с тамбуром, зигзагообразный проход	0,55
Тройные двери с тамбуром, зигзагообразный проход	0,4
Вращающиеся двери	0,1

Пример 2.23. Расчет воздушно-тепловой завесы для главного входа в административное здание

Исходные данные

- 1. Забор воздуха происходит из открытого вестибюля. Входные двери вращающиеся.
 - 2. Параметры наружного воздуха: $t_H = -25$ °C; $\rho_H = 1,42$ кг/м³.
 - 3. Параметры внутреннего воздуха: $t_B = 16 \, ^{\circ}\text{C}$; $\rho_B = 1,22 \, \text{кг/м}^3$.
 - 4. Температура смеси воздуха t_{cm} = 12 °C.
- 5. Высота лестничной клетки $h_{\text{л.к}}$ = 60 м; высота створки входных дверей $h_{\text{дв}}$ = 2,5 м; высота этажа $h_{\text{эт}}$ = 3,3 м.

6. Площадь створки наружных входных дверей $F_{\text{вx}} = 0.8 \times 2.5 \approx 2\text{м}^2$; количество проходящих людей n = 2500 чел/ч.

Порядок расчета

1. Находим величину $h_{\text{расч}}$ по формуле (2.160):

$$h_{\text{pacy}} = 0.5(60 + 2 \cdot 3.3 - 2.5) = 32.1 \text{ M}.$$

2. Определяем величину ΔP по формуле (2.158):

$$\Delta P = 9.8 \cdot 32.1(1.42 - 1.22) = 62.9 \text{ }\Pi a.$$

- 3. Находим поправочный коэффициент k_2 , который учитывает число проходящих людей, место забора воздуха для завесы и тип вестибюля k_2 по прил. 26. Так как число людей, проходящих в здание, превышает 1500 чел/ч, то расчетное число людей для одной створки составит n=2500/2=1250 чел/ч. При заборе воздуха из открытого вестибюля, вращающихся дверях и числе людей, проходящих через одну створку 1250 человек за 1 час, получим $k_2=0,46$.
- 4. Коэффициент расхода входа для вращающихся дверей (по табл. 2.12) $\mu_{\text{вx}}$ = 0,1.
- 5. Определяем расход воздуха для воздушно-тепловой завесы с учетом того, что люди проходят одновременно через две створки и температура t_3 = 50 °C по формуле (2.8.8):

$$G_3 = 5100 \cdot 0.46 \cdot 0.1 \cdot 2 \cdot 2(12 + 25)\sqrt{62.9 \cdot 1.42} / (50 - 12) = 8630 \text{ Ke}/\text{y}.$$

6. Суммарную тепловую мощность калориферов воздушно-тепловой завесы определяем по формуле (2.161):

$$Q_3 = 0.28 \cdot 8630(50 - 12) = 91820 \text{ Bt.}$$

2.9. Обработка приточного воздуха

2.9.1. Калориферы

Нагревание воздуха в приточных камерах вентиляционных систем производится в теплообменных аппаратах, называемых калориферами. В качестве греющей среды может использоваться горячая вода, пар, электроэнергия.

Широко применяются калориферы биметаллические со спирально-накатным оребрением: КСк3 и КСк4, КП3–СК и КП4–СК. В качестве теплоносителя в калориферах КСк3 и КСк4 используется перегретая вода с рабочим избыточным давлением до 1,2 МПа и температурой до 180 °C. Теплоноситель в калориферах КП3–СК и КП4–СК – пар с избыточным давлением до 1,2 МПа.

Технические характеристики калориферов КСк3 приведены в табл. 2.13. Ширина одного калорифера КСк3 (глубина по ходу воздуха) – 180 мм.

Таблица 2.13 Технические характеристики калориферов КСк3

Обозначение	$F_{\rm H}$, ${ m M}^2$	$f_{\scriptscriptstyle \mathrm{B}},\mathrm{m}^2$	$f_{ m Tp}$, ${ m M}^2$	A	Размер калорифера: длина×высота, м
КСк 3-5	10,20	0,21	0,0008	11,20	0,42×0,5
КСк 3–6	13,26	0,27	0,000846	12,12	0,53×0,5
КСк 3-7	16,34	0,33	0,000846	12,97	0,65×0,5
КСк 3-8	19,42	0,39	0,000846	13,83	0,78×0,5
КСк 3–9	22,50	0,46	0,000846	14,68	0,9×0,5
КСк 3–10	28,66	0,58	0,000846	16,39	1,15×0,5
КСк 3-11	83,12	1,66	0,00258	34,25	1,7×1,0
КСк 3-12	125,27	2,49	0,0030	64,29	1,7×1,5

Установка калориферов по отношению к проходящему через них воздуху может быть параллельной и последовательной. При последовательной схеме увеличивается скорость воздуха, что приводит к повышенной теплоотдаче калориферов, но при этом возрастает сопротивление калориферной установки.

Присоединение трубопроводов к многоходовым калориферам осуществляется по двум схемам — параллельной и последовательной. Оптимальная скорость движения воды в трубках 0,2—0,5 м/с. При теплоносителе воде в основном применяют по-

следовательное соединение калориферов по воде и параллельное – по воздуху.

В результате расчета калориферов определяется их тип, номер, количество, схемы соединения по воздуху и теплоносителю, аэродинамическое и гидравлическое сопротивление.

Расчет проводят в следующем порядке.

1. Расход теплоты для нагревания воздуха, Вт, определяют по формуле

$$Q = 0.28 \cdot L \cdot \rho_{\kappa} \cdot c(t_{\kappa} - t_{\mu}), \qquad (2.162)$$

где L — расход нагреваемого воздуха (для холодного периода года), м³/ч; $\rho_{\rm k}$ — плотность воздуха, кг/м³, при температуре $t_{\rm k}$, °C; c — удельная теплоемкость воздуха — 1,005 кДж/(кг·°С); $t_{\rm h}$ — температура воздуха до калорифера, °C, принимают равной $t_{\rm h}^{\rm E}$ для холодного периода года; $t_{\rm k}$ — температура воздуха после калорифера, °C.

- 2. Задаются предварительной массовой скоростью воздуха в живом сечении калорифера $\upsilon \rho'$ в пределах 3–8 кг/(м²·с).
- 3. Определяют живое (фронтальное) сечение для прохода воздуха, ${\rm M}^2$, по формуле

$$f_{\rm\scriptscriptstyle B}' = \frac{L \cdot \rho_{\rm\scriptscriptstyle K}}{3600 \cdot \upsilon \rho'} \,. \tag{2.163}$$

- 4. По справочным данным (см. табл. 2.13), исходя из полученного значения $f_{\rm B}'$, подбирают тип, номер и число устанавливаемых параллельно по воздуху и последовательно по теплоносителю калориферов, суммарная площадь живого сечения которых $\sum f_{\rm B}$ приблизительно равна $f_{\rm B}'$. Выписывают табличные данные: поверхность нагрева одного калорифера $F_{\rm H}$, м², живое сечение для прохода воды $f_{\rm TD}$, м².
 - 5. Находят действительную массовую скорость, кг/(м²·с): $\upsilon \rho = L \cdot \rho / (3600 \cdot \sum f_{_{\rm B}}) \ . \eqno(2.164)$
 - 6. Находят массовый расход воды, кг/ч:

$$G_{\rm m} = \frac{Q}{0.28 \cdot c_{\rm m} (t_{\rm rop} - t_{\rm ofp})},$$
 (2.165)

где $c_{\text{ж}}$ — удельная теплоемкость воды, равная 4,19 кДж/(кг·°С); $t_{\text{гор}}$ — температура горячей (подающей) воды, °С; $t_{\text{обр}}$ — температура обратной воды, °С.

7. Находят скорость воды в трубках калориферов, м/с:

$$v_{\rm Tp} = \frac{G_{\rm m}}{f_{\rm TD} \cdot 1000 \cdot 3600}.$$
 (2.166)

- 8. По массовой скорости $\upsilon \rho$ и скорости воды $\upsilon_{\tau p}$ находят коэффициент теплопередачи k, $Bt/(m^2 \cdot {}^{\circ}C)$, (прил. 27).
- 9. Находят требуемую площадь поверхности нагрева калориферов, M^2 :

$$F_{\rm rp} = \frac{1,1 \cdot Q}{k(t_{\rm op}^{\rm T} - t_{\rm op}^{\rm B})},\tag{2.167}$$

где Q — расход теплоты для нагревания воздуха, Вт; $t_{\rm cp}^{\rm T}$ — средняя температура теплоносителя, °C (для воды $t_{\rm cp}^{\rm T} = (t_{\rm rop} + t_{\rm obp})/2$, для пара давлением до 0,03 МПа $t_{\rm cp}^{\rm T} = 100$ °C, для пара давлением свыше 0,03 МПа $t_{\rm cp}^{\rm T}$ равна температуре насыщенного пара, соответствующая его давлению) [32]; $t_{\rm cp}^{\rm B} = (t_{\rm H} + t_{\rm K})/2$ — средняя температура нагреваемого воздуха, °C; k — коэффициент теплопередачи калорифера, Вт/(м 2 -°C).

10. Определяют общее число устанавливаемых калориферов, шт.:

$$n' = \frac{F_{\rm rp}}{F_{\rm r}}. (2.168)$$

Округляя число калориферов до ближайшего целого n, находят действительную площадь поверхности нагрева, $F_{\rm д}$, м 2 , калориферной установки:

$$F_{\pi} = F_{\mathrm{H}} \cdot n \,. \tag{2.169}$$

11. Определяют запас поверхности нагрева калориферной установки, %:

$$\varphi = \frac{(F_{_{\rm T}} - F_{_{\rm Tp}})100}{F_{_{\rm Tp}}}.$$
 (2.170)

Запас поверхности нагрева должен быть не более 10 %. При избыточной тепловой мощности калориферной установки более 10 % следует применить другую модель или номер калорифера и произвести повторный расчет.

- 12. Определяют аэродинамическое сопротивление калорифера по массовой скорости воздуха (прил. 27). В зависимости от схемы установки калориферов по воздуху определяют их общее аэродинамическое сопротивление ΔP_{κ} . Па (при последовательной по воздуху установке калориферов потерю давления определяют умножением потери давления одного ряда калориферов на число рядов).
- 13. Гидродинамическое сопротивление калорифера проходу воды $\Delta P_{\text{тр}}$, кПа,

$$\Delta P_{\rm TD} = A \cdot v_{\rm TD}^2, \tag{2.171}$$

где A — коэффициент, принимаемый по табл. 2.13.

Гидравлическое сопротивление установки определяют умножением сопротивления одного калорифера на число калориферов, подключенных последовательно по воде.

Пример 2.24. Подбор калорифера

Исходные данные

- 1. Объемный расход воздуха для нагревания $L=6800~{\rm m}^3/{\rm q}$.
- 2. Теплоноситель перегретая вода с параметрами $t_{\rm rop} = 150$ °C; $t_{\rm oбp} = 70$ °C.
 - 3. Температура приточного воздуха $t_{nn} = 13$ °C.
 - 4. Проектируемое здание расположено в г. Минске.

Порядок расчета

Расчётная температура наружного воздуха в холодный период для г. Минска $t_{_{\rm H}}^{^{\rm B}}=-24$ °C.

Учитывая нагрев воздуха в вентиляторе на 1 °C, воздух в калориферах необходимо подогревать до температуры $t_{\rm k} = t_{\rm np} - 1 = 13 - 1 = 12$ °C.

1. Расход теплоты, необходимой для нагревания приточного воздуха, определяем по формуле (2.162):

$$Q = 0,28.6800.1,005.1,238(12+24) = 85280$$
 Bt.

Плотность воздуха при $t_{\rm K}$ = 12 °C ρ = 353/(273+12) = 1,238 кг/м³.

2. Задаемся массовой скоростью $\upsilon \rho' = 7 \ \kappa r/(m^2 \cdot c)$ и находим площадь фронтального сечения калориферной установки для прохода воздуха по формуле (2.163):

$$f_{\rm B}' = 6800 \cdot 1,238/(3600 \cdot 7) = 0,32 \text{ M}^2.$$

3. Принимаем к установке один калорифер марки КСк 3–7 (см. табл. 2.13) с параметрами

$$f_{\rm R} = 0.33 \,\text{m}^2; f_{\rm TP} = 0.000846 \,\text{m}^2; F_{\rm H} = 16.34 \,\text{m}^2.$$

4. Находим действительную массовую скорость по формуле (2.164) при установке одного калорифера:

$$υρ = 6800 \cdot 1, 2/(3600 \cdot 0, 33) = 6,9 \text{ kg/(m}^2 \cdot c).$$

5. Находим расход воды в калориферной установке по формуле (2.165):

$$G_{\text{x}} = \frac{85280}{0,28 \cdot 4,19(150 - 70)} = 909 \text{ kg/y}.$$

6. Находим скорость воды в трубках калориферов по формуле (2.166):

$$v_{TP} = \frac{909}{0,000846 \cdot 1000 \cdot 3600} = 0,3 \text{ m/c}.$$

7. По найденным значениям $\upsilon \rho$ и $\upsilon_{\tau p}$ по прил. 27 находим коэффициент теплопередачи калорифера:

$$k = 55 \text{ BT/(M}^2 \cdot ^{\circ}\text{C}).$$

8. Определяем требуемую поверхность нагрева и средние температуры теплоносителя и воздуха:

$$F_{\text{Tp}} = \frac{1.1 \cdot 85280}{55(110 + 6)} = 14.7 \text{ m}^2;$$

$$t_{\text{Cp}}^{\text{T}} = (150 + 70)/2 = 110 \text{ °C};$$

$$t_{\text{Cp}}^{\text{B}} = (-24 + 12)/2 = -6 \text{ °C}.$$

9. Определяем общее число устанавливаемых калориферов и действительную площадь поверхности нагрева:

$$n' = \frac{F_{\text{Tp}}}{F_{\text{H}}} = \frac{14.7}{16.34} = 0.89;$$

 $F_{\text{H}} = 16.34 \cdot 1 = 16.34 \text{ M}^2.$

10. Запас площади поверхности нагрева калорифера

$$\varphi = \frac{(F_{\pi} - F_{\tau p})100}{F_{\tau p}} = \frac{(16,34 - 14,7)100}{14,7} = 11 \%.$$

11. Аэродинамическое сопротивление калорифера определяем по прил. 27 при $\upsilon \rho = 6.9 \text{ кг/(м}^2 \cdot \text{c})$:

$$\Delta P_{\rm K} = 208 \; \Pi a$$
.

12. Гидравлическое сопротивление калорифера определяем при $\upsilon_{\text{тр}} = 0.3 \text{ м/c}; A = 12,97 (см. табл. 2.13):$

$$\Delta P_{\text{TD}} = 12,97 \cdot 0,3^2 = 1,17 \text{ K}\Pi a.$$

2.9.2. Фильтры

Воздушные фильтры представляют собой устройства для очистки приточного, а в ряде случаев и вытяжного воздуха.

Начальную запыленность очищаемого воздуха следует принимать по опытным данным. При отсутствии таких данных можно воспользоваться обобщенными показателями запыленности атмосферного воздуха (см. табл. 2.14).

Степень очистки (эффективность) фильтра, %, определяется отношением количества уловленной пыли к количеству поступающей:

$$E = \frac{G_{\rm H} - G_{\rm K}}{G_{\rm u}} 100\%, \qquad (2.172)$$

где $G_{_{\rm H}}$ — количество пыли до фильтра, г/ч; $G_{_{\rm K}}$ — количество пыли после фильтра, г/ч.

Конструкция фильтра определяется характеристиками улавливаемой пыли и условиями эксплуатации.

Таблица 2.14 Показателями запыленности атмосферного воздуха [32]

Степень загрязнения воздуха	Характеристика местности	Среднесуточная концентрация пыли в воздухе, мг/м ³ , до
Чистый	Сельские местности и непромышленные поселки	0,15
Слабо загрязненный	Жилые районы промышленных городов	0,5
Сильно загрязнен- ный	Индустриальные районы промышленных городов	1
Чрезмерно загряз- ненный	Территории промышленных предпри- ятий с большими пылевыми выбросами	3 и более

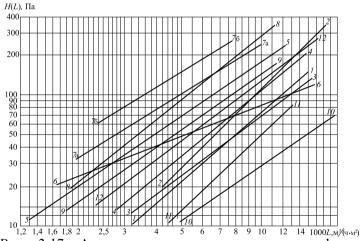
При необходимости очистки воздуха объемом более 20 тыс. ${\rm M}^3/{\rm H}$ рекомендуется применять сухие рулонные фильтры типа ΦP . При очистке меньших объемов воздуха (до 20 тыс. ${\rm M}^3/{\rm H}$) целесообразно применять ячейковые унифицированные фильтры типа $\Phi {\rm M}$ (прил. 28).

Замена фильтра или его регенерация осуществляется при превышении допустимой величины его аэродинамического сопротивления.

Пример. 2.25. Подбор фильтров

Исходные данные

- 1. Объем наружного воздуха, подаваемого в производственные помещения предприятия, расположенного в индустриальном районе промышленного города, $L = 6000 \,\mathrm{m}^3/\mathrm{q}$.
 - 2. Располагаемое давление вентиляционной системы 150 Па.
 - 3. Режим работы двухсменный $-\tau = 16$ ч.
 - 4. Фильтры должны быть регенерируемыми.


Порядок расчета

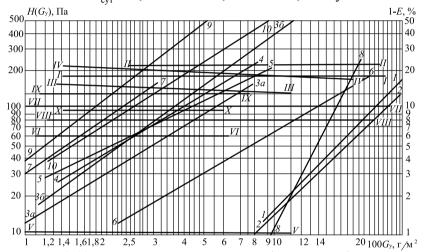
- 1. По табл. 2.14 примем начальную среднесуточную концентрацию пыли в атмосферном воздухе $c_{cc} = 1$ мг/м³ = 0,001 г/м³.
- 2. Для проектируемого объекта можно применить фильтры грубой очистки. Учитывая небольшой объем очищаемого воздуха, примем для установки ячейковые фильтры типа ФяР с площадью рабочего сечения f = 0.22 м² и удельной воздушной нагрузкой L' до 10000 м³/(ч·м²) каждый (прил. 28).
- 3. Для очистки подаваемого воздуха в количестве $L = 6000 \text{ м}^3/\text{ч}$ установим четыре фильтра. Тогда действительная удельная воздушная нагрузка одного фильтра, $\text{м}^3/(\text{ч}\cdot\text{м}^2)$, составит:

$$L' = \frac{L}{4f},$$

$$L' = \frac{6000}{4 \cdot 0,22} = 6818 \text{ m}^3/(\text{q} \cdot \text{m}^2).$$
(2.173)

4. По рис. 2.17 при $L' = 6818 \text{ м}^3/(\text{ч·м}^2)$ определим начальное сопротивление фильтра: H = 38 Па.

Рис. 2.17. Аэродинамические характеристики фильтров и фильтрующих материалов: $1 - \Phi$ яРБ; $2 - \Phi$ яВБ; $3 - \Phi$ яУБ, Φ яУК, Φ РУ, Φ Э; $4 - \Phi$ яПБ;


1 – ФяРБ; 2 – ФяВБ; 3 – ФяУБ, ФяУК, ФРУ, ФЭ; 4 – ФяПБ; 5 – ФяЛ; 6 – ФяКП; 7а – ФНИ-3; 7б – ИФП; 8 – ФВНР; 9 – ФРНК; 10 – ФРС; 11 – Кд, КТ

- 5. Эффективность фильтров можно принять в среднем равной E = 80 % ($\eta = 0.8$) (прил. 28 или рис. 2.18).
- 6. Расчетная пылеемкость фильтров при увеличении сопротивления до 150 Па, т. е. на H=150-38=112 Па по сравнению с начальным, определяется по рис. 2.18 и составляет $G_{\rm y}=2420~{\rm r/m}^2$.

Количество пыли, оседающей на фильтрах ФяР за 1 сутки, г/сут, составит:

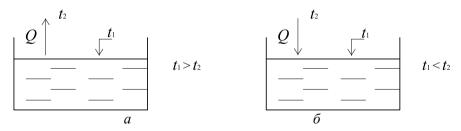
$$G_{\rm cyr} = c_{\rm cc} L \eta \tau \,, \tag{2.174}$$

 $G_{\text{cyt}} = 0,001 \cdot 6000 \cdot 0,80 \cdot 16 = 76,8 \text{ r/cyt.}$

Рис. 2.18. Пылевая характеристика фильтра и фильтрующих материалов:

 $I,\ I$ — ФяРБ; $2,\ II$ — ФяВБ; 3а, III — ФяУБ, ФяУК, ФРУ при L' =7000 м³/(ч·м²); 3б, III — то же, при L' =10000 м³/(ч·м²); $4,\ IV$ — ФяПБ; $5,\ V$ — ФяЛ; $6,\ VI$ — ФяКП; $7,\ VII$ — ФНИ-3; $8,\ VIII$ — ФЭ; $9,\ IX$ — ФВНР; $10,\ X$ — ФРНК

8. Продолжительность работы фильтра, сут, без регенерации составит:


$$\tau_{\phi} = \frac{G_{y}f}{G_{\text{cyr}}}, \qquad (2.175)$$

$$\tau_{\phi} = \frac{2420}{76.8} = 31.5 \text{ cyr.}$$

Таким образом, регенерацию фильтра следует производить через 31,5 сут.

2.10. Определение влаговыделений и тепловыделений при испарении жидкости

Влага, выделяющаяся в помещение с открытой водной поверхности, может быть исходной величиной при определении воздухообмена. Дальтоном (1803) экспериментально установлено, что скорость испарения воды с открытой поверхности пропорциональна разности между давлением пара у поверхности воды при температуре испаряющейся жидкости и 100%-м насыщении P_1 и парциальном давлении пара в воздухе P_2 . Жидкость испаряется при температурах ее поверхности выше и ниже температуры окружающей среды. В первом случае поток теплоты, необходимой для испарения, направлен от поверхности жидкости в окружающую среду рис. 2.19, a, во втором — из окружающей среды к поверхности жидкости рис. 2.19, b.

Рис. 2.19. Тепломассообмен поверхности жидкости с окружающей средой

Уравнение теплообмена имеет вид (уравнение для плотности теплового потока):

$$q = \alpha \left(t_1 - t_2 \right), \tag{2.176}$$

где $\alpha = \alpha_{\rm K} + \alpha_{\rm J} -$ коэффициент теплообмена конвекцией и лучеиспусканием, ${\rm BT/m^2\cdot K};\ t_1$ – температура поверхности жидкости, °C; t_2 – температура окружающей среды, °C.

Масса испаряющейся жидкости в единицу времени, кг/с, определяется по формулам

$$w = \beta_{p} (P_{1} - P_{2})$$
 или $w = \beta_{c} (c_{1} - c_{2}),$ (2.177)

где P_1 и c_1 , P_2 и c_2 — парциальные давления водяных паров и концентраций у поверхности жидкости, соответствующие условию насыщения ($\phi = 100$ %), и в окружающем воздухе, Па и кг/м³, соответственно; β_p и β_c — коэффициенты массообмена, определяемые по P и c, м/с и с/м, соответственно.

Коэффициенты α и β определяются на основе критериальных соотношений Nu и Nu'. А.В. Нестеренко и Л.В. Петров на основе экспериментальных исследований предложили формулы для расчета смешанного режима (вынужденного и свободноконвективного) тепломассообмена над поверхностью жидкости:

при $\text{Re} < 2 \cdot 10^4$, $\text{Ar Pr} > 6 \cdot 10^7$

Nu = 0,113
$$\left(1+0.5\text{Lo}^{-0.5}\right)\left(\text{Ar Pr}\right)^{1/3}$$
, (2.178)

при $Re > 2 \cdot 10^4$, $Lo \le Pr^{1/3}$

$$Nu = 0.0337 \Big\lceil 1 + 0.18 \Big(1 + Lo^{0.5} \Big) Lo^{0.25} \Big\rceil \ Re^{0.8} \ Pr^{1/3}, \ \ (2.180)$$

$$Nu' = 0.0398 \Big[1 + 0.18 \Big(1 + Lo^{0.5} \Big) Lo^{0.25} \Big] Re^{0.8} Pr'^{1/3}, \quad (2.181)$$

где $Nu = \frac{\alpha_{\kappa}l}{\lambda}$ — тепловой Нуссельт или число Нуссельта для те-

плообмена; $Nu' = \frac{\beta_c l}{D}$ – диффузионный Нуссельт или число

Нуссельта для массообмена; $\alpha_{\rm K}$ — коэффициент конвективного теплообмена; λ — коэффициент теплопроводности воздуха, определяемый по средней температуре $t_{\rm cp} = (t_1 + t_2)/2$; D — коэф-

фициент диффузии водяных паров; l – характерный линейный размер (при естественной конвекции $l = \sqrt{F}$; F – площадь поверхности тепло- и массообмена).

Критерий Архимеда определяется как

$$Ar = \frac{gl^3}{v^2} \frac{\rho_1 - \rho_2}{\rho_1}, \qquad (2.182)$$

где g — ускорение силы тяжести, ν — коэффициент кинематической вязкости, ρ_1 и ρ_2 — плотность воздуха в пограничном слое и в окружающем воздухе.

Критерий Рейнольдса

$$Re = \frac{vl}{v}, \qquad (2.183)$$

где υ – скорость движения воздуха.

Тепловой критерий Прандтля

$$\Pr = \frac{v}{a}, \ a = \frac{\lambda}{\rho c_p}, \tag{2.184}$$

где a — коэффициент температуропроводности; ρ — плотность воздуха, кг/м³; λ — коэффициент теплопроводности, $B\tau/м^2\cdot K$; c_p — удельная изобарная теплоемкость воздуха, Дж/кг $\cdot K$

Диффузионный критерий Прандтля

$$\Pr' = \frac{v}{D}$$
. (2.185).

Критерий Ломоносова, учитывающий соотношение тепловой и вынужденной конвекции:

$$Lo = \frac{Ar}{Re^2} = \frac{gl}{v^2} \frac{\rho_1 - \rho_2}{\rho_1}.$$
 (2.186)

Количество теплоты и массы (воды), участвующее в процессе тепло- и массообмена над поверхностью ванны, можно определить как

$$Q_{\kappa} = qF = \alpha_{\kappa} \left(t_1 - t_2 \right) F, \tag{2.187}$$

 $W=wF=eta_{
m p}\left(P_{
m l}-P_{
m 2}
ight)F$ или $W=wF=eta_{
m c}\left(c_{
m l}-c_{
m 2}
ight)F$, (2.188) F- площадь зеркала ванны.

Коэффициент конвективного теплообмена определяют с учетом геометрического фактора

$$\alpha_{\kappa} = \frac{\lambda}{I} \operatorname{Nu} \overline{H}^{0,25}, \qquad (2.189)$$

$$\overline{H} = 1 + \frac{\Delta h}{l}, \qquad (2.190)$$

где Δh — расстояние по вертикали от поверхности жидкости до кромки сосуда (ванны), l — характерный размер сосуда (длина по направлению движения воздуха).

Количество теплоты, отдаваемой поверхностью воды лучеиспусканием:

$$Q_{\pi} = c_{\text{np}} F \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right] \psi,$$
 (2.191)

где $c_{\rm np}$ — приведенный коэффициент излучения; T_1 и T_2 — абсолютные температуры поверхности жидкости и окружающего воздуха; ψ — угловой коэффициент излучения.

Пример 2.26. Определение количества явной теплоты, поступающей в помещение с открытой поверхности ванны

Исходные данные

- 1. Размер ванны $b \times l = 1,2 \times 1$ м.
- 2. Температура воды в глубине жидкости $t_{\text{ж}}$ = 35 °C, уровень воды находится на глубине $\Delta h = 0.08$ м от кромки ванны.
 - 3. Параметры окружающей среды: t_B = 18 °C, ϕ = 50 %.
- 4. Направление потока воздуха вдоль борта ванны длиной 1 м, скорость движения воздуха над поверхностью $\upsilon = 1$ м/с.

Порядок расчета

1. Определяем температуру на поверхности ванны $t_{\rm n}$ = 35 – 2 = 33 °C, $t_{\rm cp}$ = (33+18)/2 = 25,5 °C.

Здесь принято, что поверхность жидкости в ванне на 2 °C ниже температуры жидкости в ее глубине.

2. Находим значение теплопроводности, температуропроводности и кинематической вязкости воздуха по теплофизическим таблицам [31]

$$\lambda(t_{\rm cp}) = 2,63 \cdot 10^{-2} \,\mathrm{BT/(M \cdot K)},$$

 $a(t_{\rm cp}) = 0,222 \cdot 10^{-4} \,\mathrm{m^2/c},$
 $v(t_{\rm cp}) = 15,57 \cdot 10^{-6} \,\mathrm{m^2/c}.$

3. Характерный геометрический размер l=1 м. Поправка на высоту борта ванны по формуле (2.190)

$$\overline{H} = 1 + 0.08/1 = 1.08$$
.

- 4. Вычисляем парциальное давление насыщенного воздуха у поверхности жидкости при t_n = 33 °C:
 - по теплофизическим таблицам [31]

$$P_{\text{н.п}} = 5029 \; \Pi \text{а};$$

– по формуле [30]

$$P_{\text{H.II}} = 479 + (11,52 + 1,62t_{\text{II}})^2,$$
 (2.192)
 $P_{\text{H.II}} = 479 + (11,52 + 1,62 \cdot 33) = 4701 \text{ Ha};$

– по формуле [26]

при
$$T = 303...343$$
 К $P_{\text{н.п}} = 4276, 29 \cdot e^{\frac{5201,3(\frac{1}{303} - \frac{1}{T})}{1}},$ (2.193) $P_{\text{н.п}} = 4276, 29 \cdot e^{\frac{5201,3(\frac{1}{303} - \frac{1}{306})}{1}} = 5058$ Па.

5. Определяем плотность влажного воздуха над поверхностью жидкости из уравнения состояния

$$\begin{split} \rho_{_{\Pi}} &= \rho_{_{\Pi_{\text{nap}}}} + \rho_{_{\Pi_{\text{c,B}}}} = \frac{P_{_{\text{c,B}}} \cdot M_{_{\text{c,B}}}}{RT_{_{\Pi}}} + \frac{P_{_{\Pi}} \cdot M_{_{\Pi}}}{RT_{_{\Pi}}} = \\ &= \frac{BM_{_{\text{c,B}}}}{RT_{_{\Pi}}} - \frac{M_{_{\text{c,B}}} - M_{_{\Pi}}}{R} P_{_{\Pi}}, \end{split}$$

где $T_{\rm II}$ – абсолютная температура у поверхности жидкости, K; R – универсальная газовая постоянная, равная $8314\cdot10^3$ Дж/моль·K; $\rho_{\rm II_{\rm nap}}$, $\rho_{\rm II_{\rm c.a}}$ – плотности сухого воздуха и пара соответственно, $\kappa \Gamma / {\rm M}^3$; B – барометрическое давление влажного воз-

духа, Па; $P_{\rm c.B}$ — парциальное давление сухого воздуха, Па; $P_{\rm п}$ — парциальное давление пара, Па; $M_{\rm c.B}$, $M_{\rm п}$ — молекулярные массы сухого воздуха и водяного пара, кг/кмоль.

При $M_{\text{с.в}}$ = 29 кг/кмоль, $M_{\text{п}}$ = 18 кг/кмоль, B = 101325 Па:

$$\rho_{\pi} = \frac{353}{T_{\pi}} - 1,32 \cdot 10^{-3} \frac{P_{\pi}}{T_{\pi}}, \qquad (2.194)$$

где
$$\frac{M_{_{\text{C,B}}} - M_{_{\Pi}}}{R} = \frac{29 - 18}{8314} \cong 1,32 \cdot 10^{-3}$$
.
 $\rho_{_{\Pi}} = \frac{353}{306} - 1,32 \cdot 10^{-3} \frac{5038}{306} = 1,1536 - 0,02182 = 1,132 \text{ кг/м}^3$.

6. Определяем парциальное давление воздуха окружающей среды (при определении по *I-d*-диаграмме влажного воздуха выходим за границы) из выражения для влагосодержания:

$$d_{\rm B} = 0,623 \frac{P_{\rm B}}{B - P_{\rm D}},\tag{2.195}$$

где $M_{\Pi}/M_{cB} = 18/29 = 0,623$.

По *I-d*-диаграмме влажного воздуха $d_{\rm B}$ = 6,5 г/кг при $t_{\rm B}$ = 18 °C и ϕ = 50%.

$$P_{\rm\scriptscriptstyle B} = \frac{d_{\rm\scriptscriptstyle B} \cdot B}{0,623 + d_{\rm\scriptscriptstyle B}} = \frac{0,0065 \cdot 101325}{0,623 + 0,0065} = 1046 \, \Pi a.$$

7. Плотность воздуха найдем из выражения

$$\rho_{\rm B} = \frac{353}{T_{\rm B}} - 1,32 \cdot 10^{-3} \frac{P_{\rm B}}{T_{\rm B}}, \qquad (2.196)$$

$$\rho_{\rm B} = \frac{353}{291} - 1,32 \cdot 10^{-3} \frac{1046}{291} = 1,208 \text{ kg/m}^3.$$

- 8. Найдем необходимые для расчета числа подобия:
- критерий Архимеда по формуле (2.182)

Ar =
$$\frac{9,81 \cdot 1^3}{\left(15,57 \cdot 10^{-6}\right)^2} \frac{1,132 - 1,208}{1,132} = 2,717 \cdot 10^9;$$

число Рейнольдса по формуле (2.183)

$$Re = \frac{1 \cdot 1}{15.57 \cdot 10^{-6}} = 6.7 \cdot 10^{4}.$$

- число Ломоносова по формуле (2.186)

Lo =
$$\frac{2,717 \cdot 10^9}{\left(6,7 \cdot 10^4\right)^2} = 0,605$$
.

число Прандтля по формуле (2.184)

$$Pr = \frac{15,57 \cdot 10^{-6}}{0.222 \cdot 10^{-4}} = 0,702.$$

9. Так как $Re > 2 \cdot 10^4~$ и $Lo < Pr^{1/3}$, то Nu определяем по выражению (2.180):

$$Nu = 0,0337 \Big[1 + 0,18 \Big(1 + 0,605^{0,5} \Big) 0,605^{0,25} \Big] \Big(6,7 \cdot 10^4 \Big)^{0,8} \ 0,702^{1/3} = 278,7 \ .$$

10. Определим коэффициент теплообмена по формуле (2.189)

$$\alpha_{\kappa} = \frac{2,63 \cdot 10^{-2}}{1} 278,7 \cdot 1,08^{0,25} = 7,47 \text{ BT/} (\text{m}^2\text{K}).$$

11. Количество теплоты, отдаваемой поверхностью воды конвекцией, по формуле (2.187) составит:

$$Q_{K} = 7,47 \cdot 1,2(33-18) = 134,5 \text{ BT}.$$

12. Количество теплоты, отдаваемой поверхностью воды излучением, по формуле (2.191) составит:

$$Q_{\text{II}} = 5, 6.1, 2 \left[\left(\frac{273 + 33}{100} \right)^4 - \left(\frac{273 + 18}{100} \right)^4 \right] 0, 9 = 96, 6 \text{ Bt},$$

здесь принято $c_{np} = 5.6 \text{ Br/m}^2 \cdot \text{K}^4$, $\Psi = 0.9$.

13. Общее количество теплоты, отдаваемой поверхностью воды, составит:

$$Q = Q_{\kappa} + Q_{\pi} = 134, 5 + 96, 6 = 231, 1 \text{ BT}.$$

Пример 2.27. Определение количества испаряющейся в помещение влаги с открытой поверхности ванны

Исходные данные

- 1. Размер ванны $b \times l = 1,2 \times 1$ м.
- 2. Температура воды в глубине жидкости $t_{\text{ж}}$ = 35 °C, уровень воды находится на глубине $\Delta h = 0.08$ м от кромки.

- 3. Параметры окружающей среды: $t_{\rm B}$ = 18 °C, ϕ = 50 %, $P_{\rm G}$ = B = 745 мм рт. ст.
- 4. Направление потока воздуха вдоль борта ванны длиной 1 м, скорость движения воздуха над поверхностью $\upsilon = 1$ м/с.
- 5. Основные теплофизические параметры и числа подобия принять из примера 2.26.

Порядок расчета

1. Коэффициент диффузии определяется по эмпирическому соотношению

$$D = 0,0754 \left(\frac{T_{\rm cp}}{273}\right)^{1,89} \frac{760}{B}, \qquad (2.197)$$

$$D = 0,0754 \left(\frac{274 + 25,5}{273}\right)^{1,89} \frac{760}{745} = 0,091 \text{ m}^2/\text{ч}.$$

2. Определяем диффузионный критерий Прандтля по выражению (2.185)

$$Pr' = \frac{15,57 \cdot 10^{-6}}{0,091/3600} = 0,616,$$

$$Pr'^{\frac{1}{3}} = 0,616^{\frac{1}{3}} = 0,851.$$

3. В соответствии с полученными параметрами $Re > 2 \cdot 10^4$, $Lo \le Pr^{1/3}$ для расчета Nu' воспользуемся формулой (2.181).

$$Nu' = 0.0398 \left[1 + 0.18 \left(1 + 0.605^{0.5} \right) 0.605^{0.25} \right] \left(6.7 \cdot 10^4 \right)^{0.8} 0.616^{\frac{1}{3}} = 315.$$

4. Определим коэффициент массообмена

$$\beta_{c} = \frac{D}{l} \text{Nu'} \overline{H}, \qquad (2.198)$$

$$\beta_{c} = \frac{0,091}{1} 315 \cdot 1,08 = 31,0 \text{ m/y}.$$

5. Концентрация водяных паров у поверхности воды составит:

$$c_{\Pi} = \rho_{\Pi_{\text{map}}} = \frac{P_{\Pi} M_{\Pi}}{R T_{\Pi}} \approx 2,16 \cdot 10^{-3} \frac{P_{\Pi}}{T_{\Pi}},$$

$$c_{\Pi} = 2,16 \cdot 10^{-3} \frac{5058}{306} = 3,57 \cdot 10^{-2} \text{ KG/M}^{3}.$$
(2.199)

6. Концентрация водяных паров в окружающем воздухе

$$c_{\rm B} = \rho_{\rm B_{\rm map}} = \frac{P_{\rm B} M_{\rm B}}{R T_{\rm B}} \approx 2,16 \cdot 10^{-3} \frac{P_{\rm B}}{T_{\rm B}},$$

$$c_{\rm B} = 2,16 \cdot 10^{-3} \frac{1050}{291} = 0,7794 \cdot 10^{-2} \text{ K} \Gamma / \text{M}^3.$$
(2.200)

7. Определим количество влаги, испаряющейся с поверхности ванны, по выражению (2.188):

$$W = 31 \cdot 1, 2(3,57-0,7794)10^{-2} = 1,038 \text{ K}\Gamma/\Psi.$$

8. Удельная теплота парообразования составит:

$$r = 2500 - 2{,}38t_{_{\rm II}}, \tag{2.201}$$

$$r = 2500 - 2,38 \cdot 33 = 2422$$
 кДж/кг.

9. Количество скрытого тепла можно определить из выражения

$$Q_{c} = r \cdot W , \qquad (2.202)$$

$$Q_{\rm c} = 2422 \cdot 1,038 = 2514 \ {\rm кДж/ч} \ {\rm или} \ Q_{\rm c} = 0,7 \ {\rm кВт.}$$

Пример 2.28. Определение количества воды, испаряющейся с поверхности пола мокрого цеха

Исходные данные

- 1. Температура воздуха помещения $t_{\rm B}$ = 18 °C, барометрическое давление P_6 = B = 745 мм рт. ст., относительная влажность ϕ = 70 %.
 - 2. Площадь пола $F = 15 \times 24 = 360 \text{ м}^2$.
 - 3. Вода покрывает пол тонким слоем.

Порядок расчета

1. Вода, длительное время находящаяся на полу, принимает температуру мокрого термометра, и процесс испарения воды

с пола протекает при постоянстве энтальпии (I = const). По I-d-диаграмме при $t_{\text{в}} = 18$ °C и $\phi = 70$ % определяем температуру мокрого термометра, которую принимаем за температуру поверхности жидкости на полу

$$t_{\rm n} = 15 \,{\rm ^{o}C}$$
.

2. Средняя температура составит величину

$$t_{\rm cp} = (15+18)/2 = 16,5 \, {\rm ^{o}C}.$$

3. Характерный геометрический размер:

$$l = \sqrt{F} = \sqrt{360} = 19 \text{ M}.$$

4. Кинематическая вязкость воздуха по теплофизическим таблицам [31]

$$v(t_{\rm cp}) = 14,75 \cdot 10^{-6} \,\mathrm{m}^2/\mathrm{c}$$
.

5. Парциальное давление насыщенного воздуха у поверхности пола при $t_{\rm n}$ = 15 °C и ϕ = 100 % по I-d-диаграмме

$$P_{\text{н.п}}$$
= 1694 Па.

Парциальное давление не насыщенного воздуха при $t_{\rm n}$ = 18 °C и ϕ = 70 % по *I-d*-диаграмме

$$P_{\rm B}$$
=1446 Π a.

6. Плотность влажного воздуха над поверхностью жидкости составит по формуле (2.194)

$$\rho_{_\Pi} = \frac{353}{288} - 1,32 \cdot 10^{-3} \, \frac{1694}{288} = 1,218 \, \, \text{kg / M}^3 \, .$$

7. Плотность влажного воздуха над поверхностью жидкости составит по формуле (2.196)

$$\rho_{_B} = \frac{353}{291} - 1,32 \cdot 10^{-3} \frac{1446}{291} = 1,206 \text{ kg/m}^3.$$

8. Критерий Архимеда по формуле (2.182) будет равен:

$$Ar = \frac{9,81 \cdot 19^3}{\left(14,74 \cdot 10^{-6}\right)^2} \ \frac{1,218 - 1,206}{1,218} = 3,04 \cdot 10^{12} \,.$$

9. Коэффициент диффузии определяется по эмпирическому соотношению (2.197)

$$D = 0,0754 \left(\frac{274 + 16.5}{273}\right)^{1.89} \frac{760}{745} = 0,0859 \text{ m}^2 / \text{ч}.$$

10. Диффузионное число Прандтля по формуле (2.185) будет равно:

$$Pr' = \frac{14,75 \cdot 10^{-6}}{0,0859/3600} = 0,618.$$

11. Для естественной конвекции при ArPr'= $3 \cdot 10^6 - 2 \cdot 10^8$

$$Nu = 5(Ar Pr)^{0.104};$$
 (2.203)

Nu' =
$$0.66 (Ar Pr')^{0.26}$$
, (2.204)

Nu' =
$$0,66(3,04\cdot10^{12}\cdot0,618)^{0,26} = 1025$$
.

12. Определим коэффициент массообмена

$$\beta_{c} = \frac{D}{l} \operatorname{Nu'}, \qquad (2.205)$$

$$\beta_c = \frac{0.0859}{16} 1025 = 27.9 \text{ M/y}.$$

13. Концентрация водяных паров у поверхности воды по формуле (2.10.24) составит величину

$$c_{\text{II}} = 2,16 \cdot 10^{-3} \frac{1694}{288} = 1,27 \cdot 10^{-2} \text{ K}\Gamma / \text{M}^3.$$

14. Концентрация водяных паров в окружающем воздухе по формуле (2.199)

$$c_{\rm B} = 2,16 \cdot 10^{-3} \, \frac{1446}{291} = 1,07 \cdot 10^{-2} \, \text{ K} \Gamma \, / \, \text{M}^3$$
.

15. Определим количество влаги, испаряющейся с поверхности мокрого пола, по формуле (2.200)

$$W = 27,9 \cdot 360(1,27-1,07)10^{-2} = 3,34 \text{ K}\Gamma/\text{ }\text{ }\text{Y}\text{ }.$$

2.11. Аэрация промышленного здания

Аэрацией называют организованный естественный воздухообмен в помещении. Ее осуществляют через специально предусмотренные регулируемые отверстия в наружных ограждениях с использованием естественных побудителей движения воздуха – гравитационных сил и ветра. Аэрация может обеспечивать весьма интенсивное проветривание помещений.

Учитывая сложность процесса аэрации, практические расчеты ее проводят при определенных допущениях. Основные из этих допущений следующие:

- 1) тепловой и воздушный режимы помещения считают установившимися во времени;
- 2) под температурой рабочей зоны понимают среднюю по объему зоны температуру воздуха;
- 3) изменение температуры по вертикали принимают по линейному или линейно-ступенчатому закону;
- 4) стеснения конвективных струй над нагретым оборудованием не учитывают;
- 5) энергию приточных струй не учитывают, считая, что она полностью рассеивается в объеме рабочей зоны;
- 6) при определении расходов через проемы не учитывают их высоту, пренебрегая изменением разности давлений по вертикали;
- 7) при составлении баланса воздуха в помещении не учитывают неорганизованный естественный воздухообмен.

В зависимости от удельной теплонапряженности помещения, высоты помещения (здания), температуры наружного воздуха и скорости ветра применяют один из трех вариантов расчета. Основным условием, определяющим вариант расчета, является соотношение между значениями ветрового и гравитационного давлений.

Аэрация под действием только гравитационных сил. Действием ветра можно пренебречь, если $P_{v1} \leq 0.5H\Delta \rho g$, т. е. избыточное ветровое давление меньше половины максимального значения гравитационного давления. Здесь P_{v1} — ветровое давление на уровне нижнего ряда аэрационных отверстий; H — расстояние по вертикали между центрами приточных и вытяжных аэрационных отверстий.

Для изолированного помещения, в котором аэрация происходит через открытые проемы, расположенные на одном из фасадов, при любой скорости ветра будет иметь место рассматриваемый случай.

Аэрация под действием только ветра при $P_{v1} \ge 10 H \Delta \rho g$. Этот случай наблюдается в помещениях без тепловыделений (склады химикатов, оборудования, некоторые производственные помещения с влаговыделениями и др.).

Аэрация при совместном действии гравитационных сил и ветра при $0.5H\Delta \rho g < P_{v1} < 10H\Delta \rho g$.

Варианты расчета аэрации различаются в основном способом определения расчетных перепадов давлений.

При расчете аэрации возможна прямая или обратная задача (деление на эти две задачи условно).

Прямая задача — определение площади открытых проемов, необходимой для обеспечения аэрации помещения. Эту задачу приходится решать в случае, когда площадь аэрационных проемов заведомо меньше площади остекления, определенной из условия освещения помещения.

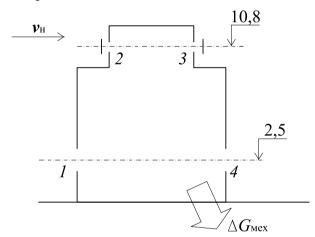
При этом обычно задаются значением P_0 (давлением в помещении) и по заданным расходам $L_{\rm п.a}$ и $L_{\rm y.a}$ определяют площади аэрационных проемов $F_{\rm п.a}$ и $F_{\rm y.a}$.

Обратная задача — расчет фактического воздухообмена при заданных площадях $F_{\text{п.а}}$ и $F_{\text{у.a}}$ аэрационных приточных и вытяжных отверстий. В цехах, где площадь открывающихся световых проемов недостаточна для организации аэрации, в наружных ограждениях необходимо предусматривать устройство специальных аэрационных проемов. Цель расчета — определение минимальной площади этих проемов. Задачу решают подбором: задаваясь площадями $F_{\text{п.а}}$ и $F_{\text{у.a}}$, определяют такое значение P_0 , при котором осуществляется расчетный воздухообмен.

Для обеспечения устойчивой аэрации при решении как прямой, так и обратной задачи следует выполнять следующую рекомендацию: эквивалентная площадь приточных отверстий $\Sigma F_{\rm n}\mu_{\rm n}$ должна превышать эквивалентную площадь вытяжных отверстий $\Sigma F_{\rm v}\mu_{\rm v}$, т. е.

$$\Sigma F_{\Pi} \mu_{\Pi} \approx a \Sigma F_{y} \mu_{y},$$
 (2.206)

где a — коэффициент, равный 1,2—1,3.


Выполнение этого условия предотвращает «опрокидывание» потока в вытяжных отверстиях.

Основные расчетные соотношения и порядок расчета приведены в [30].

Пример 2.29. Расчет аэрации однопролетного промышленного здания

Исходные данные

1. Схема аэрации однопролетного промышленного здания представлена на рис. 2.20.

Puc. 2.20. Вертикальный разрез здания и схема связей помещения с наружным воздухом:

1 и 4 — приточные отверстия, 2 и 3 — вытяжные отверстия, $\Delta G_{\text{мех}}$ — дебаланс воздуха, создаваемый вентиляционными системами с механическим побуждением движения воздуха

- 2. Теплоизбытки $\Delta Q = 5,3 \cdot 10^6 \, \text{кДж/ч}.$
- 3. Расстояние по вертикали между центром приточных и вытяжных отверстий $h=8,3\,\mathrm{m}$.

- 4. Температура наружного воздуха $t_{\rm H}$ = 18 °C.
- 5. Скорость ветра v_H = 3 м/с; эмпирический коэффициент m = 0.65 (величина обратная коэффициенту воздухообмена).
- 6. Приточная система механической вентиляции подает $G_{\rm n2}$ = 40000 кг/ч воздуха с температурой $t_{\rm n2}$ = 17 °C; вытяжная система удаляет $G_{\rm y2}$ = 290000 кг/ч воздуха с температурой $t_{\rm y2}$ = $t_{\rm p,3}$ = 23 °C.
- 7. Аэродинамические коэффициенты $k_{\text{аэр1}} = + 0.8$, $k_{\text{аэр2}} = k_{\text{аэр3}} = -0.42$ (фонарь с ветрозащитными щитами), $k_{\text{аэр4}} = -0.39$;
- 8. Коэффициенты расхода $\mu_{\rm H}$ = 0,51, $\mu_{\rm y}$ = 0,45 (I естественная вентиляция (аэрация); 2 механическая вентиляция.)

Порядок расчета

1. Определяем температуру удаляемого воздуха:

$$t_{y1} = t_{H} + \frac{t_{D.3} - t_{H}}{m}$$
, (2.207)
 $t_{y1} = 18 + \frac{23 - 18}{0.65} = 25,7$ °C.

2. Определяем среднюю по высоте помещения температуру внутреннего воздуха:

$$t_{\rm B} = 0.5(t_{\rm p.3} + t_{\rm yl}),$$
 (2.208)
 $t_{\rm B} = 0.5(23 + 25.7) = 24.3 \, {\rm ^{o}C}.$

3. Определяем плотность воздуха, соответствующую температурам t_H = $t_{\Pi 1}$ = 18 °C, t_{V1} = 25,7 °C, t_{B} = 24,3 °C:

$$\rho_{H} = \frac{353}{273 + t},$$

$$\rho_{H} = \frac{353}{273 + 18} = 1,213 \text{ KF/M}^{3};$$

$$\rho_{V} = 1,186 \text{ KF/M}^{3}; \quad \rho_{B} = 1,189 \text{ KF/M}^{3}.$$
(2.209)

4. Определяем вариант расчета аэрации:

$$\frac{P_{v1}}{h\Delta\rho g} = \frac{\left(k_{\text{app1}} - k_{\text{app }min}\right)\rho_{\text{H}}v_{\text{H}}^{2}}{2h(\rho_{\text{H}} - \rho_{\text{B}})g}, \qquad (2.210)$$

$$\frac{P_{v1}}{h\Delta\rho g} = \frac{\left(0.8 + 0.42\right)1.213 \cdot 3^{2}}{2 \cdot 8.3(1.213 - 1.189)8.9} = 3.4.$$

Так как 0.5 < 3.4 < 10, то при расчете аэрации следует учитывать совместное действие ветра и гравитационных сил.

5. Определяем расчетные наружные давления, приняв за нуль давление на уровне середины верхних проемов:

$$P = \left(k_{\text{asp1,4}} - k_{\text{asp2}}\right) \frac{\rho_{\text{H}} v_{\text{H}}^2}{2} + h\Delta \rho g, \qquad (2.211)$$

$$P_1 = (0.8 + 0.42) \frac{1.213 \cdot 3^2}{2} + 8.3(1.213 - 1.189) 9.8 = 8.6 \text{ Ha};$$

$$P_4 = (-0.39 + 0.42) \frac{1.213 \cdot 3^2}{2} + 8.3(1.213 - 1.189) 9.8 = 2.11 \text{ }\Pi \text{a};$$

$$P_2 = P_3 = 0.$$

6. Определяем дебаланс механической вентиляции:

$$\Delta G_{\text{mex}} = G_{\text{n2}} - G_{\text{y2}}, \qquad (2.212)$$

$$\Delta G_{\text{mex}} = 40000 - 290000 = -0,25 \cdot 10^6 \,\text{kg/y}.$$

7. Определяем требуемые аэрационные расходы (решаем систему уравнений балансов тепла и воздуха):

$$\begin{cases} \Delta Q + G_{n1}I_{n1} + G_{n2}I_{n2} - G_{y1}I_{y1} - G_{y2}I_{y2} = 0, \\ G_{n1} + G_{n2} - G_{y1} - G_{y2} = 0. \end{cases}$$
 (2.213)

Здесь $G_{\Pi 1}$, G_{y1} — расход приточного и удаляемого аэрационной системой воздуха; $G_{\Pi 2}$, G_{y2} — производительность соответствующих систем механической вентиляции. Решение системы имеет следующий вид:

$$G_{y1} = \frac{\Delta Q + G_{n2}c_{p}(t_{n2} - t_{n1}) - G_{y2}c_{p}(t_{y2} - t_{n1})}{c_{p}(t_{y1} - t_{n1})}, \quad (2.214)$$

$$G_{n1} = G_{v1} + G_{v2} - G_{n2},$$
 (2.215)

$$G_{\rm yl} = \frac{5,3\cdot 10^6 + 40000\cdot 1(17-18) - 290000\cdot 1(23-18)}{1(25,7-18)} = 0,505\cdot 10^6\,{\rm kg}\,/\,{\rm y};$$

$$G_{\rm rl} = 0.505 \cdot 10^6 + 0.25 \cdot 10^6 = 0.755 \cdot 10^6 \,\mathrm{kg} / \mathrm{y}.$$

8. Определяем избыточное относительно условного нуля внутреннее статическое давление:

$$1 + \Delta G_{\text{Mex}}^* = \frac{1}{a} \sqrt{\frac{\rho_y}{\rho_n}} \frac{\sqrt{P_0 - P_2} + \sqrt{P_0 - P_3}}{\sqrt{P_1 - P_0} + \sqrt{P_4 - P_0}}.$$
 (2.216)

Принимаем a = 1,3 и вычисляем

$$\Delta G_{\text{MeX}}^* = \frac{\Delta G_{\text{MeX}}}{G_{\text{nl}}} = \frac{-0.25 \cdot 10^6}{0.755 \cdot 10^6} = -0.331,$$

$$1 - 0.331 = \frac{1}{1.3} \sqrt{\frac{1.186}{1.213}} \frac{\sqrt{P_0 - 0} + \sqrt{P_0 - 0}}{\sqrt{8.6 - P_0} + \sqrt{2.11 - P_0}},$$

$$0.875 = \frac{2\sqrt{P_0}}{\sqrt{8.6 - P_0} + \sqrt{2.11 - P_0}}.$$

Решаем это уравнение подбором, задаваясь значениями P_0 : при P_0 = 2 Па и при P_0 = 1,5 Па правая часть уравнения:

$$\frac{2 \cdot \sqrt{2}}{\sqrt{6,6} + \sqrt{0,11}} = 0,97 > 0,875;$$
$$\frac{2 \cdot \sqrt{1,5}}{\sqrt{7,1} + \sqrt{0,61}} = 0,71 < 0,875.$$

Интерполируя, находим:

$$P_0 = 1.5 + \frac{2 - 1.5}{0.97 - 0.71} (0.875 - 0.71) = 1.82 \text{ }\Pi \text{a}.$$

Проверка подстановкой в исходное уравнение:

$$0,875 \approx \frac{2 \cdot \sqrt{1,82}}{\sqrt{8,6-1,82} + \sqrt{2,11-1,82}} = 0,86.$$

Принимаем P_0 = 1,8 Па.

9. Определяем площади аэрационных проемов:

$$F_{1} = F_{4} = \frac{G_{\pi 1}/3600}{\mu_{\pi} \sqrt{2\rho_{\pi}} \left(\sqrt{P_{1} - P_{0}} + \sqrt{P_{4} - P_{0}}\right)},$$
 (2.217)

$$F_2 = F_3 = \frac{G_{y1}/3600}{\mu_y \sqrt{2\rho_y} \left(\sqrt{P_0 - P_2} + \sqrt{P_0 - P_3}\right)},$$
 (2.218)

$$F_1 = F_4 = \frac{0,755 \cdot 10^6 / 3600}{0,51\sqrt{2 \cdot 1,213} \left(\sqrt{8,6-1,8} + \sqrt{2,11-1,8}\right)} = 85 \text{ m}^2;$$

$$F_2 = F_3 = \frac{0.505 \cdot 10^6 / 3600}{0.45 \sqrt{2 \cdot 1.186} \left(\sqrt{1.8 - 0} + \sqrt{1.8 - 0}\right)} = 75 \text{ m}^2.$$

10. Проверяем условие устойчивости аэрации согласно выражению (2.206):

$$a = \frac{\mu_{\pi}}{\mu_{V}} \frac{F_{1} + F_{4}}{F_{2} + F_{3}},$$
 (2.219)

$$a = \frac{0.51}{0.45} \frac{2.85}{2.75} = 1,28$$
 (допустимое значение).

3. КОНДИЦИОНИРОВАНИЕ ВОЗДУХА

3.1. Производительность систем вентиляции и кондиционирования воздуха (СКВ)

3.1.1. Определение воздухообмена в помещении

Определение воздухообмена является одной из главных задач, возникающих при устройстве систем вентиляции и кондиционирования воздуха.

Воздухообменом называется количество воздуха, необходимое для обеспечения нормативных санитарно-гигиенических параметров воздушной среды помещений и одновременно удовлетворяющее (если помещение производственное) технологическим требованиям к воздушной среде производственных помещений. Воздухообмен определяется из уравнений балансов вредностей (избытки тепла, влаги, вредные газы, пыль).

Расход приточного воздуха, кг/ч, в помещениях зданий, где отсутствуют местные отсосы, определяется для теплого, холодного периодов и переходных условий по формулам, в зависимости от удаляемых вредностей:

- по избыткам полного тепла

$$G_{1} = \frac{3.6Q_{\text{изб}}^{\text{пол}}}{c(I_{y} - I_{\Pi})},$$
(3.1)

по избыткам явного тепла

$$G_2 = \frac{3.6Q_{\text{H36}}^{\text{RBH}}}{c(t_{\text{y}} - t_{\text{fi}})},$$
 (3.2)

- по избыткам влаги

$$G_3 = \frac{W}{\left(d_{\rm v} - d_{\rm n}\right)},\tag{3.3}$$

- по массе выделяющихся вредных веществ

$$G_{4i} = \frac{\rho M_i}{\left(c_{vi} - c_{ni}\right)},\tag{3.4}$$

где $Q_{\text{изб}}^{\text{явн}}$, $Q_{\text{изб}}^{\text{пол}}$ — избытки явной и полной теплоты в помещении, Вт; ρ — плотность воздуха, кг/м³; c — теплоемкость воздуха, c=1,005 кДж/(кг °C); $t_{\text{у}}$ — температура воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, °C; $t_{\text{п}}$ — температура приточного воздуха, °C; W — избытки влаги в помещении, г/ч; $d_{\text{у}}$ — влагосодержание воздуха, удаляемого из помещения за пределами обслуживаемой или рабочей зоны, г/кг; $d_{\text{п}}$ — влагосодержание приточного воздуха, г/кг; M_i — расход каждого из вредных или взрывоопасных веществ, поступающих в воздух в помещения, г/ч; $c_{\text{у}i}$ — концентрация вредного или взрывоопасного вещества в воздухе, удаляемом за пределами обслуживаемой зоны помещения, г/м³; $c_{\text{п}i}$ — концентрация вредного или взрывоопасного вещества в воздухе, подаваемом в помещение, г/м³.

Допустимые концентрации CO_2 , г/м³, в помещениях: с постоянным пребыванием детей, больных – 1,28; с периодическим пребыванием людей (учреждения) – 2,3; с кратковременным пребыванием людей (залы заседаний, зрительные залы и т. п.) – 3,7.

Содержание CO_2 в наружном воздухе, г/м³: в сельской местности – 0,6; в поселках и небольших городах – 0,73; в крупных городах – 0,91.

Избытки явной, полной теплоты, а также влаги определяются на основе составления тепловлажностного баланса помещения. Одними из составляющих такого баланса являются поступление вредностей от человека, которые определяются согласно табл. 3.1.

За расчетный воздухообмен принимается большая из величин, полученных по формулам (3.1) - (3.4). Полученный расчетный воздухообмен сопоставляется с нормативной кратностью, определяемой из справочников, либо для общественных зданий с нормативными параметрами воздухообмена для одного человека [32]:

- общественные здания $-40 \text{ м}^3/\text{чел}\cdot\text{ч}$;
- кинотеатры, клубы $-20 \text{ м}^3/\text{чел}\cdot\text{ч}$;
- спортзалы 80 м 3 /чел·ч.

Таблица 3.1 Количество теплоты и влаги, выделяемое взрослым человеком (мужчиной)

Температура воз-	Количество теплоты, Вт		Количество	Количе-
духа в помеще-	явной	полной	влаги,	ство СО2,
нии, $t_{\text{в}}$, $^{\circ}$ С	$q_{{\scriptscriptstyle ЯВH}.\mathtt{JI}}$	$q_{\scriptscriptstyle{\Pi O \Pi. \Pi}}$	<i>w</i> л, г/ч	т, г/ч
		яние покоя		
15	116	145	40	
20	87	116	45	
25	58	93	50	40
30	41	93	75	
35	12	93	120	
	Леги	кая работа		
15	122	157	55	
20	99	151	75	
25	64	145	110	45
30	41	146	140	
35	6	146	180	
Работа средней тяжести				
15	135	210	110	
20	105	205	140	
25	70	200	185	60
30	40	200	230	
35	5	200	280	

3.1.2. Определение параметров наружного воздуха

Расчетные параметры наружного воздуха при проектировании вентиляции следует принимать в соответствии с [15] для теплого периода по параметрам А, для холодного периода — по параметрам Б. На холодный период года для систем кондиционирования воздуха (СКВ) всех классов в качестве расчетных

следует принимать параметры воздуха Б. На теплый период года: для СКВ первого класса — параметры Б; для СКВ второго класса — параметры Б, сниженные на 2 °C; для СКВ третьего класса — параметры А.

3.1.3. Определение параметров внутреннего воздуха

Под параметрами внутреннего воздуха понимают параметры воздуха в *обслуживаемой или рабочей зоне помещения*. В верхней зоне помещения, где обычно нет людей, параметры не нормируются.

Параметры внутреннего воздуха назначаются раздельно для теплого и холодного периодов года. При расчетах вентиляции ориентируются на допускаемый диапазон параметров (табл. 3.2, 3.3), а при расчетах кондиционирования — на оптимальный диапазон параметров внутреннего воздуха по [4, 5, 17]. Относительная влажность принимается в пределах 40–60 %.

Таблица 3.2 Допустимые нормы параметров внутреннего воздуха в обслуживаемой зоне жилых и общественных зданий (для людей, находящихся в помещении более 2 ч непрерывно)

Период года	Температура, °С	Относительная влажность ф, %, не более	Подвижность воздуха υ, м/с
Теплый	Не более чем на 3 °C выше расчетной температуры наружного воздуха (параметры A) Не выше 28 °C * для общественных и административно-бытовых помещений с постоянным пребыванием людей	65***	0,5
Холодный и переходный	18** = 22	65	0,2

Примечания:* Для районов с $t_{\rm H}$ = 25 °C и выше следует принимать температуру не выше 33 °C. **Для общественных зданий с пребыванием людей в уличной одежде следует принимать температуру 14 °C. *** В районах с расчетной относительной влажностью наружного воздуха более 75% допускается принимать влажность внутреннего воздуха 75 %.

Таблица 3.3 Расчетные параметры воздуха на постоянных и непостоянных рабочих местах производственных помещений

		Допустимые нормы			
Период года	Категория работ	темпер	атуры, °С	скорости	
		на постоян- ных рабочих местах	на непостоян- ных рабочих местах	движения воздуха, м/с, не более	относительной влажности, %, не более
T×	Легкая: Іа Іб Средней	28/31 28/31	30/32 30/32	0,2 0,3	
Теплый	тяжести: IIa IIб Тяжелая III	27/30 27/30 26/29	29/31 29/31 28/30	0,4 0,5 0,6	75
Холодный и переходный	Легкая: Іа Іб Средней тяжести:	21–25 20–24	18–26 17–25	0,1 0,2	
переходный	ІЗЖЕСТИ: IIa IIб Тяжелая III	17–23 15–21 13–19	15–24 13–23 12–20	0,3 0,4 0,5	75

Примечание. Допустимые нормы внутреннего воздуха приведены в виде дроби: в числителе для районов с расчетной температурой наружного воздуха (параметры A) ниже 25 °C, в знаменателе – выше 25 °C.

3.1.4. Определение параметров удаляемого воздуха

Температуру воздуха, удаляемого системами вентиляции и СКВ, в помещениях высотой более 4 м можно определить, °С, по уравнению:

$$t_{\rm V} = t_{\rm B} + (H - h) \text{ grad } t,$$
 (3.5)

где H — высота помещения, м; h — высота рабочей зоны помещения, м. Высота рабочей зоны h = 2 м, если работы выполняются стоя; h = 1,5 м, если работы выполняются сидя; grad t — градиент температуры по высоте помещения выше рабочей зоны, °С/м.

Градиент температуры по высоте помещения определяют в зависимости от удельных избытков явного тепла в помещении по табл. 3.4.

Рекомендуемые значения градиента температуры в помещениях общественных зданий

Теплонапряженность помещения (удель-	Градиент температуры
ные избытки явного тепла) $q_{\rm s}$, ${\rm Br/m}^3$	grad t , °C/M
Более 23	0,8–1,5
11,6–23	0,3–1,2
Менее 11,6	0-0,5

Примечание. Меньшие значения градиента следует принимать для холодного периода года, а большие – для теплого периода года.

Удельные выделения явной теплоты определяют по уравнению

$$q_{\rm g} = \frac{Q_{\rm H36}^{\rm BBH}}{V_{\rm r}},\tag{3.6}$$

где $V_{\rm п}$ – объем помещения по внутреннему обмеру, м³.

Для общественных зданий при высоте помещения менее 4 м можно принимать:

$$t_{\rm V} = t_{\rm B}, d_{\rm V} = d_{\rm B},$$
 (3.7)

где $t_{\rm B}$ — температура воздуха в рабочей зоне помещения, °C; $d_{\rm B}$ — влагосодержание воздуха в рабочей зоне помещения, г/кг.

Влагосодержание уходящего воздуха можно определить по формуле, г/кг,

$$d_{y} = d_{H} + \frac{W}{G} 10^{3}, \qquad (3.8)$$

где $d_{\rm H}$ – влагосодержание наружного воздуха, г/кг; G – расчетный воздухообмен в весовых единицах, кг/ч, вычисляется по формулам (3.1) – (3.4).

3.1.5. Определение параметров приточного воздуха

Температуру приточного воздуха $t_{\rm n}$ можно определить по формуле

$$t_{\rm II} = t_{\rm B} - \Delta t_{\rm JOII}, \tag{3.9}$$

где $\Delta t_{\text{доп}}$ – допустимый перепад температур, °C, зависящий от выбора принципиальной схемы воздухораспределения.

Для расчета воздухообмена принимают при подаче воздуха:

- непосредственно в рабочую зону

$$\Delta t_{\text{доп}} = 2 \, ^{\circ}\text{C};$$

– на высоте 2,5 м и выше

$$\Delta t_{\text{non}} = (4-6) \, ^{\circ}\text{C};$$

- на высоте более 4 м от пола

$$\Delta t_{\text{non}} = (6-8) \, ^{\circ}\text{C};$$

- воздухораспределителями (плафонами)

$$\Delta t_{\text{доп}} = (8-15) \, ^{\circ}\text{C}.$$

3.2. Построение процессов СКВ на *I-d*-диаграмме влажного воздуха

3.2.1. Построение луча процесса

Положение луча процесса в I-d-диаграмме (прил. 29) определяют угловым коэффициентом ε . Этот параметр называют также тепловлажностным отношением, τ . κ . он показывает величину приращения количества полной теплоты на $1~\kappa$ г полученной (или отданной) воздухом влаги. Коэффициент ε имеет размерность $\kappa Д$ ж/ κ г:

$$\varepsilon = \frac{3.6 \cdot \Sigma Q_{\text{\tiny H35}}^{\text{\tiny non}}}{W},\tag{3.10}$$

где $\Sigma Q_{\text{изб}}^{\text{пол}}$ – поток полной теплоты, $\mathrm{Bt};\,W$ – расход влаги, кг/ч.

Линии процесса наносятся на I-d-диаграмму несколькими способами [24]. Ниже рассмотрен способ с использованием углового масштаба на I-d-диаграмме.

3.2.2. Прямоточная схема СКВ для теплого периода

Предлагается следующий порядок построения процесса на I-d-диаграмме влажного воздуха [1]:

а) нахождение на *I-d*-диаграмме положения точек H и B, характеризующих состояние наружного и внутреннего воздуха;

- б) проведение через точку В луча процесса с учетом величины углового коэффициента ϵ ;
 - в) определение положения других точек:
- точка Π (т. е. состояния приточного воздуха), которая лежит на пересечении изотермы t_{Π} с лучом процесса;
- точка Π' (т. е. состояния приточного воздуха на выходе из второго воздухонагревателя ВН2), для чего от точки Π вертикально вниз откладывают отрезок в 1 °C;
- точка O (т. е. состояния воздуха на выходе из оросительной форсуночной камеры (ОКФ)), для чего от точки Π вниз по линии d = const проводят линию до пересечения с ϕ = 90 %;
- точки У (т. е. состояния воздуха, уходящего из помещения), лежащей на пересечении изотермы $t_{\rm y}$ с лучом процесса; если $t_{\rm y}=t_{\rm B}$, то точка У соответствует положению точки В и при построении ее не указывают на I-d-диаграмме.

Все базовые точки найдены. Их соединяют прямыми линиями (рис. 3.1).

Рис. 3.1. Прямоточная схема СКВ для теплого периода

Физический смысл найденных отрезков следующий: НО – процесс осушки и охлаждения воздуха в ОКФ, ОП' – нагрев воздуха во втором воздухонагревателе, П'П – нагрев воздуха в воздуховодах и вентиляторе, ПВУ – процесс изменения состояния воздуха в помещении.

Расход теплоты во втором воздухонагревателе, кДж/ч, определяют по уравнению

$$Q_{\rm BH2} = G_{\rm TII}(I_{\rm II} - I_{\rm o}). \tag{3.11}$$

Расход холода в ОКФ, кДж/ч, определяют по формуле:

$$Q_{\text{XOI}} = G_{\text{TII}}(I_{\text{H}} - I_{\text{O}}).$$
 (3.12)

Количество сконденсированных паров воды из воздуха в $OK\Phi$, кг/ч, равно:

$$W_{\rm K} = G_{\rm TII}(d_{\rm H} - d_{\rm O}) \ 10^{-3}. \tag{3.13}$$

3.2.3. Прямоточная схема СКВ для холодного периода

Предлагается следующий порядок построения процесса на *I-d*-диаграмме:

- а) нахождение на *I-d*-диаграмме положения базовых точек В и Н;
- б) проведение через точку В луча процесса с учетом величины углового коэффициента ϵ ;
 - в) определение положения точек П, У, О, К:
- точки У, расположенной на пересечении изотермы $t_{\rm y}$ с лучом процесса;
- точки Π , расположенной на пересечении изоэнтальпы I_{Π} с лучом процесса; численное значение энтальпии I_{Π} приточного воздуха для холодного периода года вычисляют предварительно из уравнения

$$I_{\rm n} = I_{\rm y} - \frac{\Sigma Q_{\rm xn}^{\rm non}}{0.278 \cdot G_{\rm rn}},$$
 (3.14)

где $I_{\rm y}$ – энтальпия воздуха, уходящего из помещения в холодный период года, которую определяют по положению точки У на I-d-диаграмме, кДж/кг; $\Sigma Q_{\rm xn}^{\rm non}$ – суммарные полные теплоизбытки в помещении в холодный период года, Вт; $G_{\rm TN}$ – производительность СКВ в теплый период года, кг/ч;

- точки О, расположенной на пересечении линии $d_{\rm n}$ с линией $\varphi = 90$ %;
- точки K, расположенной на пересечении линии $d_{\scriptscriptstyle \rm H}$ с изоэнтальпой $I_{\scriptscriptstyle 0}$.

Все базовые точки найдены. Их соединяют прямыми линиями (рис. 3.2).

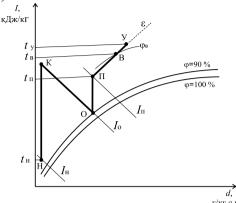


Рис. 3.2. Прямоточная схема СКВ для холодного периода

Физический смысл отрезков следующий: НК — нагрев воздуха в воздухонагревателе первой ступени, КО — адиабатическое охлаждение воздуха, ОП — нагрев воздуха в воздухонагревателе второй ступени, ПВУ — процесс изменения состояния воздуха в помещении.

Расход теплоты в первом воздухонагревателе, кДж/ч, определяют по уравнению

$$Q_{\rm BH1} = G_{\rm TII}(I_{\rm o} - I_{\rm H}).$$
 (3.15)

Расход теплоты во втором воздухонагревателе, кДж/ч, определяют по формуле

$$Q_{\text{BH2}} = G_{\text{TII}}(I_{\text{II}} - I_{\text{O}}).$$
 (3.16)

Количество воды, кг/ч, испарившейся при адиабатическом увлажнении воздуха в ОК Φ :

$$W_{\text{HCII}} = G_{\text{TII}}(d_{\text{o}} - d_{\text{K}}) \ 10^{-3}. \tag{3.17}$$

3.2.4. Схема СКВ с первой рециркуляцией для теплого периода

Предлагается следующий порядок построения процесса на I-d-диаграмме:

- определение положения точек Н, В, П, П', О, У;
- определение положения точки У' (т. е. состояния рециркуляционного воздуха перед его смешиванием с наружным воздухом), для чего от точки У по линии d = const откладывают вверх отрезок в 0,5 °C;
- точка C (то есть состояние воздуха после смешения рециркуляционного воздуха с наружным воздухом). Точки У' и H соединяют прямой.

Отрезок У'Н характеризует процесс смешивания рециркуляционного и наружного воздуха. Точка С находится на прямой У'Н (на пересечении с I_c).

Энтальпию $I_{\rm c}$, кДж/кг, точки С вычисляют по уравнению

$$I_{c} = \frac{G_{H} \cdot I_{H} + G_{1p} \cdot I_{y'}}{G_{TU}}, \qquad (3.18)$$

где G_{1p} – расход воздуха первой рециркуляции, кг/ч:

$$G_{1p} = G_{TII} - G_{H}.$$
 (3.19)

Точки С и О соединяют прямой. Получившийся отрезок СО характеризует политропический процесс тепловлажностной обработки воздуха в оросительной камере. Все базовые точки найдены. Их соединяют прямыми линиями (рис. 3.3).

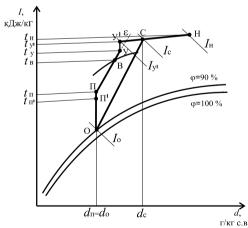
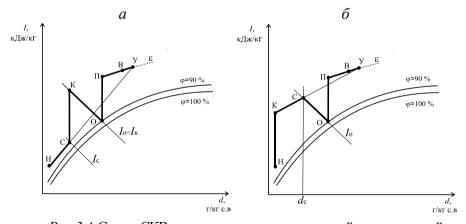


Рис. 3.3. Схема СКВ для теплого периода с первой рециркуляцией

Расход теплоты в воздухонагревателе, кДж/ч, определяют по уравнению (3.11), расход холода в ОКФ определяют по уравнению

$$Q_{\text{xon}}^{\text{peu}} = G_{\text{rn}} \left(I_{\text{c}} - I_{\text{o}} \right). \tag{3.20}$$


Количество сконденсированных паров воды из воздуха в $OK\Phi$, кг/ч, равно:

$$W_{\kappa} = G_{\text{TII}}(d_{\text{c}} - d_{\text{o}}) \ 10^{-3}.$$
 (3.21)

3.2.5. Схема СКВ с первой рециркуляцией для холодного периода

Для холодного периода года возможно применение двух вариантов схем с рециркуляцией воздуха: I вариант — смешивание наружного и рециркуляционного воздуха производят до первого воздухонагревателя (рис. 3.4, a) и II вариант — смешивание наружного и рециркуляционного воздуха производят после первого воздухонагревателя (3.4, δ .).

Рассмотрим І вариант.

 $Puc.\ 3.4.$ Схемы СКВ для холодного периода с первой рециркуляцией: a- смешивание наружного и рециркуляционного воздуха осуществляется до первого воздухонагревателя; $\delta-$ смешивание наружного и рециркуляционного воздуха осуществляется после первого воздухонагревателя

Предлагается следующий порядок построения процесса смешивания воздуха на *I-d*-диаграмме влажного воздуха [1]:

- определение положения точек Н, В, У, П, О;
- определение положения точки C (т. е. состояния воздуха после смешивания наружного воздуха с рециркуляционным).

Точки Н и У соединяют прямой.

Отрезок НУ характеризует процесс смешивания рециркуляционного и наружного воздуха. Точка С находится на прямой НУ (на пересечении с изоэнтальпой $I_{\rm c}$). Величину $I_{\rm c}$ определяют по уравнению

$$I_{c} = \frac{G_{H} \cdot I_{H} + G_{1p} \cdot I_{y}}{G_{rrr}}.$$
 (3.22)

Величину G_{1p} определяют по уравнению (3.19);

— определение положения точки K, характеризующей состояние воздуха на выходе из первого воздухонагревателя ВН1 и находящейся на пересечении линии $d_{\rm c}$ = const c изоэнтальпой $I_{\rm o}$.

Таким образом, отрезок НУ определяет процесс смешивания наружного и рециркуляционного воздуха, СК – нагрев воздуха в воздухонагревателе первой ступени, КО – обработку воздуха в оросительной камере, ОП – нагрев воздуха в воздухонагревателе второй ступени, ПВУ – процесс изменения состояния воздуха в помещении.

Рассмотрим *II вариант* (наружный и рециркуляционный воздух смешиваются после первого воздухонагревателя).

Предлагается следующий порядок построения процессов на I-d-диаграмме:

- определение положения точек Н, В, У, П, О;
- определение положения точки C (т. е. состояния воздуха после смешивания наружного воздуха, прошедшего нагрев в первом воздухонагревателе BH1, с уходящим из помещения воздухом), расположенной на пересечении изоэнтальпы $I_{\rm o}$ с линией $d_{\rm c}$ = const; численное значение $d_{\rm c}$ вычисляют из уравнения

$$d_{c} = \frac{G_{H} \cdot d_{H} + G_{lp} \cdot d_{y}}{G_{rp}}; \qquad (3.23)$$

— определение положения точки K, находящейся на пересечении линии $d_{\rm H}$ = const с продолжением прямой УС.

Таким образом, отрезок НК определяет процесс нагрева наружного воздуха в первом воздухонагревателе, КУ – процесс смешивания нагретого наружного и рециркуляционного воздуха, СО – процесс адиабатического увлажнения воздуха в оросительной камере, ОП – процесс нагрева воздуха во втором воздухонагревателе, ПВУ – процесс в помещении.

Пример 3.1. Определение параметров приточного и удаляемого воздуха в зрительном зале кинотеатра

Исходные данные

- 1. Зал кинотеатра имеет площадь 400 м^2 и высоту 6 м.
- 2. Температура воздуха $t_{\rm B} = 18$ °C, относительная влажность воздуха $\phi_0 = 60$ %.
- 3. Выделения полной теплоты в помещение составляют 55000 Вт, количество явной теплоты 51000 Вт, влаговыделения $12~\rm kr/ч$.
- 4. Параметры приточного и удаляемого воздуха необходимо определить для двух вариантов: а) если воздух подается через плафоны; б) если воздух подается непосредственно в рабочую зону (на высоту 1,5 м от пола).

Порядок расчета

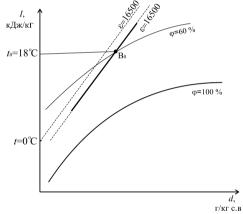
- 1. В соответствии с подразд. 3.1.5 параметры приточного воздуха могут быть определены по уравнению (3.9):
 - a) $t_{\text{II}} = 18 10 = 8 \, ^{\circ}\text{C}$.
 - б) $t_{\Pi} = 18 2 = 16$ °С.
- 2. Определим удельные выделения явной теплоты по формуле (3.6)

$$q_{\text{H}} = \frac{51000}{400 \cdot 6} = 21,25 \text{ BT/M}^3.$$

Согласно уравнению (3.5) и табл. 3.4 температура удаляемого воздуха составит:

– для теплого периода года

$$t_v = 18 + 1,2(6 - 1,5) = 23,4 \,^{\circ}\text{C},$$


– для холодного периода

$$t_v = 18 + 0.3(6 - 1.5) = 19.4$$
 °C.

3. Определим численное значение углового коэффициента луча процесса. В соответствии с уравнением (3.10)

$$\varepsilon = \frac{3,6.55000}{12} = 16500 \,\mathrm{кДж} \,/\,\mathrm{кг}.$$

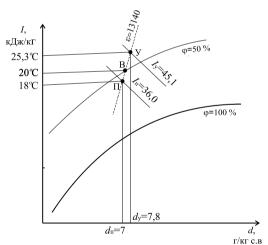
На *I-d*-диаграмме влажного воздуха определим точку B_0 , отвечающую начальному состоянию воздуха (рис. 3.5).

Рис. 3.5. К примеру 3.1

Затем определяем положение линии, соответствующей значению $\varepsilon=16500$ кДж/кг (на рисунке пунктирная линия), проходящей через точку (0 °C, d=0), соединяя точку 0 °C на оси I с линией 16500 на шкале угловых коэффициентов, нанесенных по периметру I-d-диаграммы влажного воздуха.

Через точку B_0 проводим линию, параллельную пунктирной. Эта линия является лучом процесса изменения состояния воздуха в помещении.

Пример 3.2. Определение производительности СКВ для зала заседаний на 200 мест


Исходные данные

- 1. Теплопоступления в помещение извне (за счет солнечной радиации, включающей и конвективный теплообмен) составляют 6 кВт.
- 2. Температура внутреннего воздуха $t_{\rm B} = 20$ °C, относительная влажность воздуха $\phi_{\rm B} = 50$ %.
- 3. Высота зала -5 м, объем зала -540 м³, приточный воздух подается в рабочую зону.

Порядок расчета

Произведем построение луча процесса на I-d-диаграмме (рис. 3.6).

1. Определим точку В (20 °C, 50 %), соответствующую состоянию внутреннего воздуха на I-d-диаграмме.

Рис. 3.6. К примеру 3.2

2. Определим теплопоступления, влагопоступления и поступление улекислого газа от людей из выражений

$$Q_{_{\Pi}}^{_{\mathrm{BBH}}} = n_{_{\Pi}} \cdot q_{_{\Pi}}^{_{\mathrm{BBH}}}, \mathrm{BT}, \qquad (3.24)$$

$$Q_{_{\Pi}}^{\text{пол}} = n_{_{\Pi}} \cdot q_{_{\Pi}}^{\text{пол}}, \text{BT}, \qquad (3.25)$$

$$W_{\pi} = n_{\pi} \cdot w_{\pi}, \Gamma / \Psi, \qquad (3.26)$$

$$M_{_{\mathrm{I}}} = n_{_{\mathrm{I}}} \cdot m_{_{\mathrm{CO}}}, \, \mathrm{BT}, \qquad (3.27)$$

где $n_{\rm л}$ – число людей; $q_{\rm л}^{\rm явн}$, $q_{\rm л}^{\rm пол}$, $w_{\rm л}$, $m_{{\rm CO}_2}$ – удельные тепловыделения, влаговыделения и выделения углекислого газа от людей, принимаемые по табл. 3.1. [1].

$$\begin{split} Q_{_{\Pi}}^{_{\mathrm{BBH}}} &= 200 \cdot 87 = \! 17400 \, \mathrm{BT} \, , \\ Q_{_{\Pi}}^{^{_{\mathrm{DO}\Pi}}} &= 200 \cdot \! 116 = \! 23200 \, \mathrm{BT} \, , \\ W_{_{\Pi}} &= 200 \cdot 40 = \! 8000 \, \mathrm{g} \, / \, \mathrm{g} = \! 8 \, \, \mathrm{kg}/\mathrm{g} , \\ M_{_{\Pi}} &= 200 \cdot 40 = \! 8000 \, \mathrm{g} \, / \, \, \mathrm{g} = \! 8 \, \, \mathrm{kg}/\mathrm{g} . \end{split}$$

3. Определим луч процеса є по формуле (3.10):

$$\epsilon = \frac{3,6 \left(23200+6000\right)}{8} = 13140 \, \text{кДж} \, / \, \text{кг} \; .$$

- 4. Проведем луч процесса для помещения через точку В (см. рис. 3.6).
- 5. Определим температуру приточного воздуха $t_{\rm n}$ по формуле (3.9):

$$t_{\rm II} = 20 - 2 = 18 \, {\rm ^{\circ}C}$$
.

6. Определим температуру удаляемого воздуха t_y по формуле (3.5):

$$t_v = 20 + 1.5 (5 - 1.5) = 25.3 \,^{\circ}\text{C}$$

где 1,5 °C/м – градиент температуры, определен по табл. 3.4, исходя из удельных выделений явной теплоты в помещении.

Удельные выделения явной теплоты определяют по формуле (3.6)

$$q_{\text{\tiny H}} = \frac{17400 + 6000}{540} = 43,33 \,\text{BT} \,/\,\text{M}^3$$
.

7. Определяем точки П, У на луче процесса (см. рис. 3.6).

8. Определяем для приточного и удаляемого воздуха их энтальпии ($I_{\text{п}}, I_{\text{v}}$) и влагосодержания ($d_{\text{п}}, d_{\text{v}}$) (см. рис. 3.6):

$$I_{\text{п}} = 36 \text{ кДж/кг}, I_{\text{y}} = 45,1 \text{ кДж/кг}, d_{\text{п}} = 7 \text{ г/кг}, d_{\text{y}} = 7,7 \text{ г/кг}.$$

- 9. Определяем массовую производительность СКВ (объемная производительность СКВ определяется при $\rho_{+20\,^{\circ}C} = 1,2~\mathrm{kr}\,/\,\mathrm{m}^3$):
 - а) по избыткам полного тепла по формуле (3.1)

$$G_1 = \frac{3.6(23200 + 6000)}{45.1 - 36} = 11552 \text{ кг/ч (9627 м}^3/\text{ч});$$

б) по избыткам явного тепла по формуле (3.2)

$$G_2 = \frac{3.6(17400 + 6000)}{1,005 \cdot (25,3-18)} = 11482 \text{ kg/y} (9568 \text{ m}^3/\text{y});$$

в) по избыткам влаги по формуле (3.3)

$$G_3 = \frac{8000}{7.7 - 7} = 11429 \text{ kg/q } (9524 \text{ m}^3/\text{q});$$

 Γ) по удалению CO_2 по формуле (3.4).

$$G_4 = \frac{1,2.8000}{3,7-0.9} = 3441 \text{ кг/ч (2867 м}^3/\text{ч}).$$

Как видно из приведенных расчетов, наибольшая производительность СКВ соответствует условию удаления полных теплоизбытков, ее в данном случае следует принять при проектировании типовой системы кондиционирования воздуха.

Пример 3.3. Определение производительности СКВ по условию удаления полных теплоизбытков

Исходные данные

- 1. Теплопоступления и параметры внутреннего воздуха принять по условиям предыдущего примера (пример 3.2).
 - 2. Подача приточного воздуха осуществляется на высоте 4 м.

Порядок расчета

1. Определим температуру приточного воздуха согласно формуле (3.9):

$$t_{\text{II}} = 20 - 6 = 14 \, ^{\circ}\text{C}.$$

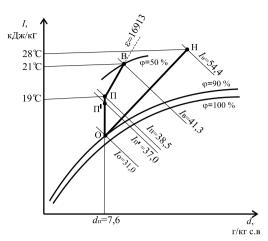
2. Определим массовую производительность СКВ по формуле (3.1) (объемная производительность СКВ определяется при $\rho_{_{+20\,^{\circ}C}} = 1,2~{\rm kr\,/\,m^3}$):

$$G_1 = \frac{3,6(23200+6000)}{45,1-31,0} = 7455$$
 кг/ч (6213 м³/ч).

Как видно из сравнения численных значений производительностей СКВ в приведенных примерах, уменьшить воздухообмен и габариты вентиляционного оборудования можно за счет повышения $\Delta t_{\text{доп}}$ — допустимой разности температур. Эта характеристика определяется выбором схемы воздухораспределения в помещении.

Пример 3.4. Построение процесса обработки воздуха на I-d-диаграмме влажного воздуха для прямоточной системы кондиционирования воздуха в теплый период года

Исходные данные


- 1. Параметры внутреннего воздуха $t_{\rm B} = 21$ °C, $\phi_{\rm B} = 50$ %.
- 2. Параметры наружного воздуха $t_H = 28$ °C, $I_H = 54,4$ кДж/кг.
- 3. Теплоизбытки в помещении составляют 48400 Вт, влагоизбытки $10.3~\rm kr/4$.
- 4. Приточный воздух подается непосредственно в рабочую зону помещения.

Порядок расчета

Определяем численное значение углового коэффициента луча процесса є по формуле (3.10):

$$\varepsilon = \frac{3,6 \cdot 48400}{10,3} = 16917$$
 кДж/кг.

На I-d-диаграмме влажного воздуха определяем положение точек B, H и через точку B проводим луч процесса (рис. 3.7).

Puc. 3.7. К примеру 3.4

Определяем положение точек Π на пересечении изотермы 19 °C с лучом процесса.

Температура приточного воздуха определится по выражению (3.9)

$$t_{\rm rr} = 21 - 2 = 19$$
 °C.

Из построения находим $I_{\rm II} = 38,5$ кДж/кг, $d_{\rm II} = 7,6$ г/кг.

Определяем положение точки О на пересечении $d_{\rm n}$ и $\phi=90$ %. Согласно построению, $I_{\rm o}=31$ кДж/кг.

Определяем положение точки Π' , соответствующей состоянию воздуха на выходе из воздухонагревателя второй ступени. Для этого откладываем отрезок вертикально вниз от точки Π на 1,5 °C. Из построения находим $I_{\Pi'}$ = 37 кДж /кг.

Соединяем базовые точки Н, О, П', П, В.

Таким образом, отрезок HO определяет процесс в форсуночной камере, $O\Pi'$ – нагрев воздуха во втором воздухонагревателе, $\Pi'\Pi$ – нагрев воздуха в вентиляторе, ΠB – процесс в помещении.

Расход теплоты в воздухонагревателе определяем по формуле (3.11). Расход приточного воздуха находим по выражению

$$G = \frac{3.6 \cdot Q_{\text{изб}}^{\text{пол}}}{I_{\text{в}} - I_{\text{п}}},$$

$$G = \frac{3.6 \cdot 48400}{41.3 - 38.5} = 62228.6 \text{ кг/ч}.$$

Тогда

$$Q_{\text{вн2}} = 62228,6 (37 - 31) = 373371 кДж/ч (103,7 кВт).$$

Расход холода определяем по формуле (3.12):

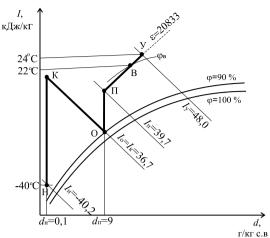
$$Q_{\text{хол}} = 62228,6 \cdot (54,4-31) = 1456149,2 \text{ кДж/ч } (404,5 \text{ кВт}).$$

Пример 3.5. Определение расхода теплоты и воды для тепловлажностной обработки воздуха в холодный период в СКВ, работающей по прямоточной схеме

Исходные данные

- 1. Параметры наружного воздуха $t_{\rm H}$ = -40 °C, $I_{\rm H}$ = -40,2 кДж/кг.
- 2. Расчетные параметры внутреннего воздуха $t_{\rm B}=22~{\rm ^{\circ}C},$ $\phi_{\rm B}=55~\%.$
 - 3. Температура удаляемого воздуха $t_v = 24$ °C.
- 4. Теплопоступления в помещении $Q_{\text{изб}}^{\text{пол}} = 250000$ кДж/ч; влагопоступления в помещении W = 12 кг/ч.
 - 5. Расход приточного воздуха $G = 30~000~{\rm kr/ч}$.

Порядок расчета


Определяем угловой коэффициент луча процесса в помещении по формуле (3.10):

$$\varepsilon = \frac{250000}{12} = 20833$$
 кДж/кг.

Изображаем процесс обработки воздуха на I-d-диаграмме согласно подразд. 3.2.3 (рис. 3.8).

Для определения положения точки Π вычислим энтальпию приточного воздуха по формуле (3.14):

$$I_{\rm II} = 48 - \frac{250000}{30000} = 39,7 \text{ кДж/кг.}$$

Рис. 3.8. К примеру 3.5

Из построения определяем $I_{\rm y}=48$ кДж/кг, $I_{\rm o}=I_{\rm k}=36,7$ кДж/кг, $d_{\rm H}=d_{\rm k}=0,1$ г/кг, $d_{\rm o}=9$ г/кг.

Расход теплоты:

- в воздухонагревателе первой ступени согласно (3.15)
- $Q_{\text{вн1}} = 30000 (36,7 + 40) = 2301000 кДж/ч (639,2 КВт);$
- в воздухонагревателе второй ступени согласно (3.16) $Q_{\text{BH}2} = 30000 \text{ (39,7} 36,7) = 90000 \text{ кДж/ч (25 КВт);}$
- количество воды, испаряющейся в ОКФ согласно (3.17) $W_{\text{исп}} = 30000 \ (9-0.1)10^{-3} = 267 \ \text{кг/ч}.$

Пример 3.6. Определение расхода холода для СКВ, работающей с одной рециркуляцией

Исходные данные

- 1. Все расчетные параметры принять, используя данные примера 3.4.
 - 2. Расход наружного воздуха принять равным 25000 кг/ч.

Порядок расчета

На *I-d*-диаграмме влажного воздуха определяем положение точки C, соответствующей состоянию смешанного воздуха (см. рис. 3.7).

Точка С находится на прямой НВ при пересечении с изоэнтальпой I_c , определяемой по формуле (3.18):

$$I_{\rm c}\!=\!\frac{G_{\rm H}\cdot I_{\rm H}\!+\!G_{\rm 1p}\cdot I_{\rm B}}{G}\,,$$

$$I_{\rm c}=\frac{25000\cdot 54,4\!+\!\left(62228,6\!-\!25000\right)\!41,3}{62228,6}=46,6\,$$
 кДж/кг.

Расход холода при рециркуляции воздуха по формуле (3.20)

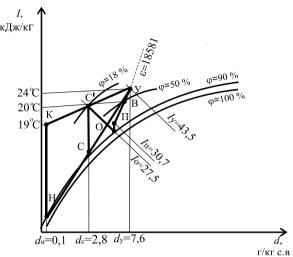
$$Q_{\text{хол}}^{\text{рец}} = 62228,6 (46,6-31) = 970766,2 кДж/ч (269,7 кВт).$$

Как видно из примеров 3.4 и 3.6, при рециркуляции воздуха происходит экономия расхода холода. Снижение расхода холода

$$\Delta Q_{\text{xon}} = Q_{\text{xon}} - Q_{\text{xon}}^{\text{peu}},$$
 (3.29)
 $\Delta Q_{\text{xon}} = 404, 5 - 269, 7 = 134, 8 \text{ kBt}.$

Пример 3.7. Определение возможности подмешивания рециркуляционного воздуха перед воздухонагревателем первой ступени в СКВ в холодный период

Исходные данные


- 1. Расчетные параметры наружного воздуха $t_{\rm H} = -39$ °C, $d_{\rm H} = 0,1$ г/кг, $I_{\rm H} = -38,9$ кДж/кг.
 - 2. Параметры внутреннего воздуха $t_{\rm B} = 20$ °C, $\phi_{\rm B} = 50$ %.
 - 3. Температура удаляемого воздуха равна 24 °C.
- 4. Расход приточного воздуха $45000~\rm kг/ч$. Расход наружного воздуха $29000~\rm kr/ч$.
- 5. Полные теплоизбытки в помещении равны $160000~\mathrm{Bt},$ влагоизбытки $31~\mathrm{kr/y}.$

Порядок расчета

Определим численное значение углового коэффициента луча процесса в помещении по формуле (3.10)

$$\varepsilon = \frac{3,6 \cdot 160000}{31} = 18581 \text{ кДж/кг.}$$

Построим схему процесса СКВ с первой рециркуляцией при подмешивании рециркуляционного воздуха перед воздухонагревателем первой ступени согласно подразд. 3.2.5 (рис. 3.9).

Рис. 3.9. К примеру 3.7

Энтальпию приточного воздуха вычислим по формуле (3.14)

$$I_{\text{п}} = 43,5 - \frac{160000}{0,278 \cdot 45000} = 30,7$$
 кДж/кг.

Определим влагосодержание воздушной смеси после подмешивания рециркуляционного воздуха к наружному воздуху по формуле (3.23)

$$d_{\rm c} = \frac{29000 \cdot 0.1 + (45000 - 29000)7.6}{45000} = 2.8 \text{ r/kg}.$$

Как видно из рис. 3.9, точка C, характеризующая состояние воздушной смеси перед воздухонагревателем первой ступени, лежит ниже линии $\phi = 100 \%$. Воздушная смесь соответствует насыщенному воздуху при $t \approx -11$ °C.

В реальных условиях в этом воздухе произойдет конденсация водяных паров с образованием снежинок. На входе в воздухо-

нагреватель будет образовываться «ледяная шуба», что может привести к его поломке (заморозить воздухонагреватель).

Для данных условий указанная схема обработки воздуха не может быть рекомендована.

Рассмотрим другой вариант. Наружный воздух предварительно нагревается в воздухонагревателе первой ступени и только затем к нему подмешивается рециркуляционный воздух.

В соответствии с подразд. 3.2.5 определим состояние наружного воздуха после воздухонагревателя (точка К). На *I-d*-диаграмме (рис. 3.9) отметим точку С', лежащую на пересечении изолиний, $d_c = 2.8$ г/кг и $I_o = 27.5$ кДж/кг.

Точка К определится на пересечении изолинии $d_{\scriptscriptstyle \rm H}$ с продолжением отрезка УС'.

Как видно из рис. 3.9, предварительный нагрев наружного воздуха до 19 °C и последующее подмешивание к нему части удаляемого воздуха позволяет получить смесь с $\phi \approx 18$ %. Эту схему можно рекомендовать для реализации на практике. Здесь тепловлажностная обработка воздуха включает следующие этапы: НК — нагрев наружного воздуха в ВН1; КУ — смешение наружного и рециркуляционного воздуха; С'О — адиабатическое увлажнение воздуха в ОКФ; ОП — нагрев воздуха в ВН2; ПВУ — процесс в помещении.

Пример 3.8. Определение воздухообмена зрительного зала кинотеатра на 300 мест г. Москвы для проектирования системы вентиляции

Исходные данные

- 1. Высота зала 5,5 м, площадь 273 м².
- 2. Теплопотери через ограждения в зимний период равны $70000~\mathrm{kДж/ч}.$
- 3. Теплопоступления от солнечной радиации (через остекление и перекрытия) 12500 кДж/ч.

Определить минимально необходимое количество приточного воздуха по борьбе с CO_2 . С целью экономии тепловой энергии предусмотреть организацию рециркуляции внутреннего воздуха и определить его количество. Произвести расчет тепловой мощности калорифера для подогрева наружного воздуха в зимний период с рециркуляцией и без рециркуляции.

Порядок расчета

Расчет производится сначала для летнего (теплого) периода года, затем для зимнего (холодного).

1. Определим расчетные параметры вентиляционного воздуха.

Для теплого периода года: (по параметрам А)

- наружная температура $t_{\rm H}^{\rm A}$ = 22,3 °C (табл. 3.5);
- энтальпия $I_{\rm H}^{\rm A}$ = 49,4 кДж/кг (табл. 3.5).
- температура внутреннего воздуха определяется по данным табл. 3.3, °C,

$$t_{\rm B} = t_{\rm H}^{\rm A} + 3 = 22.3 + 3 = 25.3 \, {}^{\circ}{\rm C}.$$

Относительная влажность должна быть не выше 65 %, скорость движения воздуха не должна превышать 0.5 м/c для теплого периода года (см. табл. 3.3).

Для холодного периода: (по параметрам Б)

- наружная температура $t_{\rm H}^{\rm E} = -26$ °C;
- энтальпия $I_{\rm H}$ = -25.3 кДж/кг;
- температура внутреннего воздуха $t_{\rm B}$ = 16–18 °C (табл. 3.6). Примем $t_{\rm B}$ = 18 °C.

Таблица 3.5 Расчетные параметры наружного воздуха для г. Москвы [15]

Период года	A		Б	
	t _н , °C	$I_{\scriptscriptstyle m H}$, кДж/кг	t _н , °C	$I_{\scriptscriptstyle m H}$, кДж/кг
Теплый	22,3	49,4	28,5	54
Холодный	-14	-11,7	-26	-25,3

Расчетная температура воздуха и кратность воздухообмена в зрительном зале кинотеатра

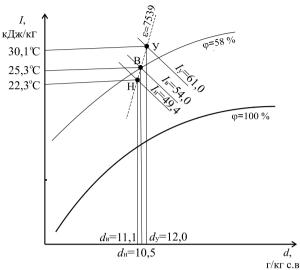
Помещение	Расчетная температура воздуха для холодного	Кратность воздухооб- мена или количества воздуха, удаляемого из помещений	
	периода года, °С	приток	вытяжка
Зрительный зал вместимостью до 800 мест с эстрадой	16-18	По расчету, но не менее 20 м ³ /ч наружного воздуха на 1 зрителя	

- 2. Выполним расчет параметров для теплого периода года.
- 1) Определим количество явной $Q_{_{\rm II}}^{_{\rm NBH}}$, полной $Q_{_{\rm II}}^{^{\rm non}}$ теплоты и влаги $W_{_{\rm II}}$, выделяемое людьми в зрительном зале при $t_{_{\rm IB}}$ = 25,3 °C для состояния покоя по выражениям (3.24) (3.26):

$$Q_{_{\Pi}}^{_{\mathrm{ЯВН}}} = 300 \cdot 58 = 17400 \; \mathrm{BT} = 17,4 \; \mathrm{кBT} = 62640 \; \mathrm{кДж/ч};$$
 $Q_{_{\Pi}}^{_{\mathrm{ПОЛ}}} = 300 \cdot 93 = 27900 \; \mathrm{BT} = 27,9 \; \mathrm{кBT} = 100440 \; \mathrm{кДж/ч};$ $W_{_{\Pi}} = 300 \cdot 50 = 15000 \; \mathrm{г/ч} = 15 \; \mathrm{кг/ч}.$

2) Определим значение углового коэффициента (луча процесса) по формуле (3.10), при этом избытки полной теплоты, кДж/ч, в помещении определяются из выражения

$$Q_{\text{изб}}^{\text{пол}} = Q_{\text{л}}^{\text{пол}} + Q_{\text{c,p}}, \qquad (3.30)$$


где $Q_{\rm c,p}$ — теплопоступления от солнечной радиации (через остекление и перекрытия):

$$Q_{\text{изб}}^{\text{пол}} = 100440 + 12500 = 112940 \ \text{кДж/ч} = 31372, 2 \ \text{Вт,}$$
 $\epsilon = \frac{112940}{15} = 7529 \ \text{кДж/кг.}$

3) Построим луч процесса на І-d-диаграмме (рис. 3.10).

Переносим параллельно линию, соединяющую начальную точку (t=0 °C и I=0 кДж/кг) с делением шкалы угловых коэффициентов по контуру *I-d*-диаграммы, соответствующим значе-

нию $\varepsilon = 7529$ кДж/кг, в точку $t_{\rm H}^{\ A} = 22,3$ °C и $I_{\rm H}^{\ A} = 49,4$ кДж/кг. Определяем $d_{\rm H} = 10,5$ г/кг.

Puc. 3.10. К примеру 3.8

- 4) По температуре $t_{\rm B}=25,3$ °C на луче процесса находим точку, соответствующую параметрам внутреннего воздуха для теплого периода: $I_{\rm B}=54~{\rm кДж/кг}$ и $d_{\rm B}=11,1~{\rm г/кг}$.
- 5) Определяем параметры удаляемого воздуха. Температуру уходящего воздуха определяем по формуле (3.5):

$$t_y = 25,3 + (5,5-1,5) 1,2 = 30,1 \,^{\circ}\text{C},$$

где grad t – градиент температуры по высоте помещения, принимаемый по табл. 3.4 в зависимости от удельного избытка явной теплоты, $B\tau/m^3$, определяемого по выражению (3.6). Избытки явного тепла в помещении определяются:

$$Q_{\text{изб}}^{\text{явн}} = Q_{\text{л}}^{\text{явн}} + Q_{\text{с.р.}},$$

$$Q_{\text{изб}}^{\text{явн}} = 62640 + 12500 = 75140 \text{ кДж/ч} = 20872 \text{ Bt.},$$

$$q_{\text{я}} = \frac{20872}{5.5 \cdot 273} = 13.9 \text{ Bt/m}^3.$$
(3.31)

На луче процесса по найденной температуре t_v находим точку, соответствующую остальным параметрам удаляемого воздуха: $I_v = 61,0$ кДж/кг и $d_v = 12,0$ г/кг.

6) Определяем воздухообмены для ассимиляции избыточного тепла и влаги в помещении по формулам (3.1) - (3.3):

$$G_1 = \frac{3,6 \cdot 31372,2}{\left(61,0-49,4\right)} = 9736 \text{ кг/ч},$$

$$G_2 = \frac{3,6 \cdot 20872}{1,005\left(30,1-22,3\right)} = 9585 \text{ кг/ч},$$

$$G_3 = \frac{15000}{12,0-10,5} = 10000 \text{ кг/ч}.$$

Значения G_1 и G_3 должны быть равны, но в результате неточности графического определения параметров получилась разница, равная 2,6 %, что свидетельствует о высокой точности получаемых результатов для подобного рода расчетов.

7) По действующим нормам количество свежего воздуха на одно зрительное место должно быть не менее 20 м³/ч (см. табл. 3.6). В нашем примере при плотности $ho_{\rm B}=1,2$ кг/м 3 количество приточного воздуха на одного зрителя $L=\frac{G_3}{\rho_{\rm s}\cdot 300}=\frac{10000}{1,2\cdot 300}=27,8\,\,{\rm m}^3/{\rm q},$

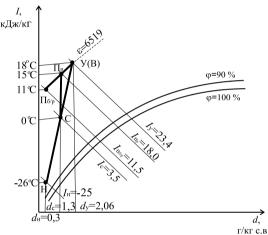
$$L = \frac{G_3}{\rho_{\text{\tiny B}} \cdot 300} = \frac{10000}{1, 2 \cdot 300} = 27,8 \text{ m}^3/\text{y},$$

что превосходит нормативные требования с избытком.

- 3. Выполним расчет параметров для холодного периода года.
- 1) Определим количество явной $Q_{\scriptscriptstyle \Pi}^{\scriptscriptstyle \rm ABH}$, полной $Q_{\scriptscriptstyle \Pi}^{\scriptscriptstyle \rm IOI}$ теплоты и влаги $W_{\rm II}$, выделяемые людьми в зрительном зале при $t_{\rm B}$ =18 °C для состояния покоя по выражениям (3.24) – (3.26):

$$Q_{_{\Pi}}^{_{\mathrm{ЯВН}}} = 300 \cdot 104 = 31200 \; \mathrm{B_{T}} = 112320 \; \mathrm{кДж/ч};$$
 $Q_{_{\Pi}}^{_{\mathrm{ПОЛ}}} = 300 \cdot 130 = 39000 \; \mathrm{B_{T}} = 140400 \; \mathrm{кДж/ч};$
 $W_{_{\Pi}} = 300 \cdot 36 = 10800 \; \mathrm{г/ч} = 10.8 \; \mathrm{кг/ч}.$

2) Определим значение углового коэффициента по формуле (3.10):


$$\varepsilon = \frac{140400 - 70000}{10.8} = 6519$$
 кДж/кг,

где $Q_{\text{изб}}^{\text{пол}}$ – избытки полной теплоты в помещении, кДж/ч:

$$Q_{\text{M36}}^{\text{пол}} = Q_{\text{п}}^{\text{пол}} - Q_{\text{пот}}, \qquad (3.32)$$

где $Q_{\text{пот}}$ — теплопотери через ограждения в холодный период года, к Π ж/ч.

3) Построим на *I-d*-диаграмме процесс обработки воздуха *без рециркуляции* (рис. 3.11).

Рис. 3.11. К примеру 3.8

- а) Определим параметры наружного воздуха: $t_{\rm H}$ = -26 °C; $I_{\rm H}$ = -25,3 кДж/кг. Наносим точку $H_{\rm x}$ на I-d-диаграмму и определяем влагосодержание наружного воздуха $d_{\rm H}$ = 0,3 г/кг.
- б) Определим параметры удаляемого воздуха по формулам (3.5) и (3.7). Температура уходящего воздуха:

$$t_{y} = t_{B} = 18 \, {}^{\circ}\text{C},$$

т. к. grad t = 0 (по табл. 3.4) для холодного периода года при $q_s = 7.8$ Вт/м³. Удельный избыток явной теплоты для холодного периода года, Вт/м³, определяется по выражению (3.6), при этом избытки явного тепла в помещении находим:

$$Q_{\text{M36}}^{\text{явн}} = Q_{\text{II}}^{\text{явн}} - Q_{\text{пот}}, \qquad (3.33)$$

 $Q_{_{\! ext{ iny HS}}}^{_{\! ext{ iny BBH}}} = 112320 - 70000 = 42320 \;\; кДж/ч = 11756 \; \mathrm{Bt},$

$$q_{\text{\tiny H}} = \frac{11756}{5, 5 \cdot 273} = 7,8 \text{ BT/M}^2.$$

Влагосодержание уходящего воздуха определяется по формуле

$$d_{y} = d_{H} + \frac{W_{I}}{G_{H}} = 0.3 + \frac{10800}{6124} = 2.06 \, \Gamma/\kappa\Gamma,$$

где $G_{\rm H}$ – количество наружного воздуха, определяемое из расчета по борьбе с углекислым газом ${\rm CO_2}$ (для удовлетворения санитарно-технических норм), кг/ч.

Воздухообмен по борьбе с CO_2 , $M^3/4$, можно определить по выражению (3.4), где количество углекислого газа, поступающего в помещение, рассчитывается по формуле (3.27):

$$m_{_{\rm II}} = 300 \cdot 40 = 12000 \, \text{г/ч},$$

$$G_4 = \frac{1,429 \cdot 12000}{3,7 - 0,9} = 6124 \text{ KeV/y},$$

где $\rho = \frac{353}{273 - 26} = 1,429$ кг/м³ – плотность наружного воздуха в холодный период года при $t_{\rm H} = -26$ °C.

Наносим точку Y_x на *I-d*-диаграмму и определяем теплосодержание удаляемого воздуха: I_v = 23,4 кДж/кг.

в) Определим параметры внутреннего воздуха.

Влагосодержание внутреннего воздуха, г/кг, будет определяться по формуле

$$d_{\scriptscriptstyle \rm B} = d_{\scriptscriptstyle \rm H} + \Delta d_{\scriptscriptstyle \rm H}, \qquad (3.34)$$

где $\Delta d_{_{\rm H}}$ — ассимилирующая способность приточного воздуха, г/кг, определяется по формуле

$$\Delta d_{\rm H} = \frac{W}{G_{\rm u}},\tag{3.35}$$

$$\Delta d_{\rm h} = \frac{10800}{6124} = 1,76 \text{ г/кг},$$

$$d_{\rm h} = 0,3+1,76=2,06 \text{ г/кг}.$$

Нанесем на *I-d*-диаграмму параметры внутреннего воздуха. Они совпадают с параметрами удаляемого воздуха, т. е. точка B_x совпадает с точкой Y_x .

г) Определим параметры приточного воздуха (без рециркуляции). Для этого на пересечении луча процесса, проведенного через точку $Y_x(B_x)$, и $d_{\Pi}=d_H=0.3$ г/кг ставим точку Π_x ^{б/р} и снимаем параметры приточного воздуха в этой точке: $t_{\Pi}=11$ °C; $I_{\Pi}=11.5$ кДж/кг; $d_{\Pi}=0.3$ г/кг с.в.

Следовательно, воздух должен быть подогрет от температуры $t_{\rm H}$ = -26 °C до температуры $t_{\rm H}$ = 11 °C, для чего потребуется расход тепловой энергии, кВт, обеспечиваемой калорифером, равный

$$Q = \frac{cG_{x}(t_{\pi} - t_{H})}{3.6},$$
 (3.36)

$$Q_1 = \frac{1,005 \cdot 10333(14 - (-26))}{3.6} = 115385 \text{ BT} = 115,4 \text{ kBt},$$

где $G_{\rm x}$ – общий воздухообмен для холодного периода года, кг/ч, определяется по формуле

$$G_{x} = L_{T} \cdot \rho(t_{y}^{x}) = \frac{G_{T}}{\rho(t_{y}^{T})} \rho(t_{y}^{x}) = G_{T} \frac{T_{y}^{T}}{T_{y}^{x}} = G_{T} \frac{t_{y}^{T} + 273}{t_{y}^{x} + 273}, \quad (3.37)$$

где $L_{\rm T}$ – объемный расход воздуха, который для холодного периода года сохраняется таким же, как и для теплого, м³/ч; $G_{\rm T}$ – расчетный воздухообмен для теплого периода года в весовых единицах, кг/ч; $\rho(t_{\rm y}^{\rm x})$ – плотность удаляемого воздуха, кг/м³, в

холодный период года при t_y = 18 °C; $\rho(t_y^T)$ – плотность удаляемого воздуха, кг/м³, в теплый период года при t_y = 27,7 °C;

$$G_{\rm x} = 10000 \frac{27,7+273}{18+273} = 10333$$
 кг/ч.

4) Построим на *I-d*-диаграмме процесс обработки воздуха с рециркуляцией внутреннего воздуха.

При отсутствии выделений пыли и газа применим частичную рециркуляцию внутреннего воздуха, которая повлечет за собой экономию теплоты и топлива, расходуемого на нагревание приточного воздуха.

Найдем количество рециркуляционного воздуха, кг/ч,

$$G_{\rm p} = G_{\rm x} - G_{\rm H},$$
 (3.38)
 $G_{\rm p} = 10333 - 6124 = 4209 \text{ kg/y}.$

5) Переходим к изображению процесса обработки воздуха на *I-d*-диаграмме *с внутренней рециркуляцией*.

Точки H_x , B_x (Y_x) оставляем без изменения, как и для процесса без рециркуляции.

Соединим точки H_x и B_x прямой линией смеси внутреннего и наружного воздуха. Отрезок $H_xB_x = 12,1$ см (по *I-d*-диаграмме).

Определим положение точки C – точки смеси. Для этого рассмотрим пропорции, учитывая, что общий расход воздуха будет равен общему воздухообмену для холодного периода года $G_{\rm x}$ (примем в целях упрощения эксплуатации систем вентиляции):

$$\frac{G_{x}}{H_{x}B_{x}} = \frac{G_{p}}{B_{x}C},$$

$$\frac{10333}{21,1} = \frac{4209}{B_{x}C}; \quad B_{x}C = 4,93 \text{ cm.}$$
(3.39)

Отложив отрезок $B_x C$ на *I-d*-диаграмме, определим параметры точки C:

$$t_c = 0$$
 °C; $d_c = 1.3$ г/кг; $I_c = 3.5$ кДж/кг.

Проводим луч подогрева от точки C до пересечения c лучом процесса ϵ , получая точку $\Pi_x^{\ p}$, соответствующую параметрам приточного воздуха c учетом рециркуляции:

$$t_{\Pi} = 15$$
 °C; $d_{\Pi} = d_{c} = 1.3$ г/кг; $I_{\Pi} = 18$ кДж/кг.

С параметрами точки Π_{x} воздух поступает в помещение.

Следовательно, воздух должен быть подогрет от температуры $t_{\rm H}=0$ °C до температуры $t_{\rm H}=15$ °C, для чего потребуется

расход тепловой энергии, обеспечиваемой калорифером, по формуле (3.36)

$$Q_2 = \frac{1,005 \cdot 10333(15 - 0)}{3,6} = 43269 \text{ BT} = 43,3 \text{ kBT}.$$

Как видим, при организации рециркуляции экономится тепло в количестве

$$Q_1 - Q_2 = 115,4 - 43,3 = 72,1 \text{ kBt.}$$

3.3. Основное оборудование центральных СКВ

3.3.1. Камеры орошения

Целью расчета оросительной камеры является выбор типа камеры и определение режимных параметров (расхода и давления воды перед форсунками, температуры воды на выходе из камеры).

3.3.1.1. Расчет камеры орошения по методике ВНИИКондиционер

Порядок расчета двухрядных оросительных камер ОКФЗ по методике ВНИИКондиционер [1, 33] приведен ниже. Сначала расчет камеры производят на теплый период, затем — на холодный период года:

1. Теплый период. Тип оросительной камеры определяют с учетом рекомендаций, приведенных в прил. 30. Производительность камеры орошения по воздуху соответствует производительности кондиционера. Расчет режимных параметров ОКФЗ производят с учетом характеристик луча процесса камеры при политропической обработке в теплый период.

Определяют коэффициент адиабатной эффективности процесса:

$$E_{\rm a} = \frac{I_1 - I_2}{I_1 - I_{\rm np}},\tag{3.40}$$

где I_1 , I_2 — энтальпии воздуха на входе и выходе из камеры орошения соответственно, кДж/кг; $I_{\rm np}$ — энтальпия предельного состояния воздуха на I-d-диаграмме, кДж/кг, определяется графически как точка пересечения луча процесса обработки воздуха в камере орошения с линией $\phi = 100$ %.

Вычисляют коэффициент орошения μ по формуле

$$\mu = \left[\frac{\left(\ln \frac{1}{1 - E_{a}} - 0.15 \right)}{A_{1}} \right]^{\frac{1}{\alpha_{1}}}, \tag{3.41}$$

где A_1 , α_1 – коэффициенты, определяемые по табл. 3.7.

Производительность $OK\Phi3$, тыс. M^3/Ψ	Исполнение	A_1	α_1	β_1
10; 20	2	0,503	1,91	0,387
20	1	0,505	1,71	0,567
63160; 250	2	0,611	1,96	0,387
10;63160; 250	1	0,655	2,02	0,387
31,5; 40; 200	2	0,055	2,02	0,367
31,5; 40; 200	1	0,716	2,07	0,387

Определяют приведенный коэффициент энтальпийной эффективности процесса:

$$E_{\rm II} = \frac{1 - e(\Phi \ln(1 - E_{\rm a}))}{\Phi}.$$
 (3.42)

Вспомогательный коэффициент Ф определяется по формуле

$$\Phi = \left(1 + \frac{0.725}{\mu}\right) \left(1 + \beta_1 \left(-\ln(1 - E_a)\right)^{-0.858}\right), \tag{3.43}$$

где β_1 – коэффициент, принимаемый по табл. 3.7.

Определяют относительный перепад температур воздуха:

$$\theta = 0.33 \cdot c_w \cdot \mu \left(\frac{1}{E_n} - \frac{1}{E_a} \right). \tag{3.44}$$

Вычисляют начальную температуру воды в камере, °С:

$$t_{w1} = t_{B_{np}} - \frac{\theta(I_1 - I_2)}{c_w \cdot \mu}, \tag{3.45}$$

где $t_{\rm в_{mp}}$ — предельная температура воздуха, °C, определяется графически на *I-d*-диаграмме как температура точки пересечения луча процесса камеры орошения с линией $\varphi = 100$ %; c_w — теплоемкость воды, принимаемая равной 4,19 кДж/кг °C.

Рассчитывают конечную температуру воды (на выходе из камеры):

$$t_{w2} = t_{w1} + \frac{(I_1 - I_2)}{c_{...} \cdot \mu}.$$
 (3.46)

Определяют расход разбрызгиваемой воды, кг/ч:

$$G_{W} = \mu \cdot G_{TTT} . \tag{3.47}$$

Вычисляют расход воды через форсунку (производительность форсунки), кг/ч:

$$g_{\phi} = \frac{G_{w}}{n_{\phi}},\tag{3.48}$$

где n_{ϕ} – общее число форсунок в ОКФ (прил. 30).

Необходимое давление воды перед форсункой типа ЭШФ 7/10, кПа, определяют по формуле

$$\Delta P_{\phi} = \left(\frac{g_{\phi}}{93.4}\right)^{1/0.49}.\tag{3.49}$$

Согласно [33], устойчивая работа форсунки соответствует $20\kappa\Pi a \le P_{\varphi} \le 300\kappa\Pi a$. Если условие не выполняется, принимают другой вариант исполнения ОКФЗ (прил. 30) или другой режим ее работы.

Расход холодной воды от холодильной станции, кг/ч, определяют по уравнению

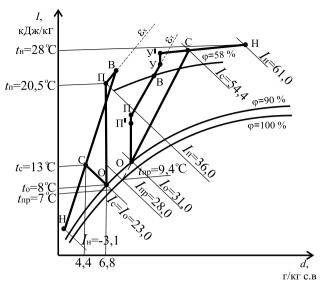
$$G_{w} = \frac{Q_{\text{хол}}}{c_{w}(t_{w_{2}} - t_{w_{1}})}.$$
 (3.50)

2. Холодный период. В этот период года ОКФЗ работает в режиме адиабатического увлажнения воздуха. Для расчета режимных параметров используют луч процесса в камере орошения.

Определяют коэффициент эффективности теплообмена по формуле

$$E_{\rm a} = \frac{t_1 - t_2}{t_1 - t_{\rm M_1}},\tag{3.51}$$

где t_1 , t_2 — температура воздуха на входе и выходе из камеры орошения соответственно, °C; $t_{\rm M1}$ — температура мокрого термометра воздуха на *I-d*-диаграмме, °C, определяется графически как точка пересечения луча процесса обработки воздуха в камере орошения с линией $\phi = 100$ %.


По формуле (3.41) определяют μ , по формуле (3.47) — $G_{\!_{w}}$, по формуле (3.48) — $g_{\scriptscriptstyle \varphi}$, по формуле (3.49) — $\Delta P_{\scriptscriptstyle \varphi}$.

На основании расчета режимов работы $OK\Phi3$ в теплый и холодный периоды года принимают требуемые расчетные параметры.

Пример 3.9. Расчет оросительной камеры ОКФЗ для теплого и холодного периода года

Исходные данные

- 1. Расход приточного воздуха составляет 32400 кг/ч.
- 2. Схемы обработки воздуха в центральном кондиционере приведены на рис. 3.12).

Рис. 3.12. Схемы процессов кондиционирования воздуха (к примерам 3.9, 3.10)

Порядок расчета

- 1. Теплый период года.
- 1) Определяем объемную производительность СКВ при $\rho_{_{+20}{}^{\circ}\mathrm{C}}$ = 1, 2 кг / м 3 :

$$\frac{32400}{1,2} = 27000 \,\mathrm{m}^3/\mathrm{y}.$$

В соответствии с прил. 30 принимаем оросительную камеру типа ОКФ3–31,5, индекс 03.01304, исполнение 1, общее число форсунок $n_{\rm o}=63\,$ шт. (ЭШФ 7/9).

2) Определяем коэффициент адиабатной эффективности процесса по формуле (3.40) с учетом характеристик луча процесса камеры (см. рис. 3.12, отрезок СО):

$$E_{\rm a} = \frac{54, 4 - 31}{54, 4 - 28} = 0,886$$
.

3) Вычисляем коэффициент орошения по формуле (3.41):

$$\mu = \left[\frac{\left(\ln \frac{1}{1 - 0,886} - 0,15 \right)}{0,716} \right]^{\frac{1}{2,07}} = 1,65.$$

Здесь A_1 = 0,716, α_1 = 2,07 — коэффициенты для ОКФ3–31,5 исполнения 1 (см. табл. 3.7).

4) Определяем приведенный коэффициент энтальпийной эффективности процесса по формуле (3.42), при этом вспомогательный коэффициент Ф определяется по формуле (3.43):

$$\Phi = \left(1 + \frac{0,725}{1,65}\right) \left(1 + 0,387\left(-\ln\left(1 - 0,886\right)\right)^{-0,858}\right) = 1,726,$$

здесь β_1 = 0,387 по табл. 3.7,

$$E_{\text{II}} = \frac{1 - e(1,726\ln(1 - 0,886))}{1,726} = 0,566.$$

5) Определяем относительный перепад температур воздуха по формуле (3.44):

$$\theta = 0,33 \cdot 4,19 \cdot 1,65 \left(\frac{1}{0,566} - \frac{1}{0,886} \right) = 1,456$$
.

6) Вычислим начальную температуру воды на входе в камеру по формуле (3.45):

$$t_{w1} = 9,4 - \frac{1,456(54,4-31)}{4,19\cdot1,65} = 4,5$$
 °C.

7) Определим температуру воды на выходе из камеры по формуле (3.46):

$$t_{w2} = 4.5 + \frac{(54.4 - 31)}{4.19 \cdot 1.65} = 7.9$$
 °C.

8) Расход разбрызгиваемой воды в соответствии с формулой (3.47):

$$G_{yy} = 1,65 \cdot 32400 = 53460 \text{ кг/ч}.$$

9) Вычисляем производительность форсунки по формуле (3.48):

$$g_{\phi} = \frac{53460}{63} = 848,6 \,\text{kg/y}.$$

10) Определим по формуле (3.49) необходимое давление воды перед форсункой:

$$\Delta P_{\phi} = \left(\frac{848,6}{93,4}\right)^{1/0,49} = 90,2 \text{ kHa}.$$

11) По формуле (3.50) рассчитаем расход холодной воды от холодильной станции:

$$G_{w} = \frac{32400(54, 4-31)}{4,19(7, 9-4, 5)} = 53219 \,\mathrm{K}\Gamma/\mathrm{Y}.$$

- 2. Холодный период года.
- 12) Определяем коэффициент эффективности теплообмена по формуле (3.51):

$$E_{\rm a} = \frac{13-8}{13-7} = 0.833$$
.

13) Вычисляем коэффициент орошения по формуле (3.41)

$$\mu = \left[\frac{\left(\ln \frac{1}{1 - 0.833} - 0.15 \right)}{0.716} \right]^{\frac{1}{2.07}} = 1,492.$$

14) Расход разбрызгиваемой воды в соответствии с формулой (3.47):

$$G_{yy} = 1,492 \cdot 32400 = 48346 \,\mathrm{кг/ч}.$$

15) Вычисляем производительность форсунки по формуле (3.48):

$$g_{\phi} = \frac{48346}{63} = 767,4 \text{ кг/ч}.$$

16) Определим по формуле (3.49) необходимое давление воды перед форсункой

$$\Delta P_{\phi} = \left(\frac{767,4}{93,4}\right)^{1/0,49} = 75,4 \text{ кПа.}$$

17) Вычислим расход испаряющейся воды при адиабатическом увлажнении воздуха в ОКФ по формуле (3.17)

$$W_{\text{исп}} = 32400(6.8 - 4.4) \cdot 10^{-3} = 77.8 \text{ кг/ч}.$$

Из проведенного расчета видно, что наибольший расход воды и давление перед форсунками соответствует теплому периоду года, поэтому эти параметры принимаются за расчетные при подборе насоса.

3.3.1.2. Расчет камеры орошения с использованием модели тепломассообмена

Физико-математическая модель тепломассообмена парогазового потока с каплями жидкости в оросительных форсуночных камерах представлена в [22]. В модели учтено влияние повышенной концентрации паров жидкости на тепломассообменные процессы, переменность массы капель жидкости. Параметры парогазового потока, входящие в уравнения сохранения по теплу и массе, отображают фазовые переходы испарения-конденсации на поверхности капель. Вязкость и теплопроводность парогазового потока определялись с помощью парциального давления пара и газа. Уравнения движения капель жидкости представлены в лагранжевой системе координат. Размер капель принимался среднемассовым, определяемым по расчету форсунок, а температуру поверхности капель жидкости Θ_{Π} принимали равной ее среднеобъемной температуре Θ .

Уравнения модели имеют следующий вид:

— уравнение движения капли жидкости среднемассового размера диаметра δ_{κ} с учетом переменности ее массы за счет процессов испарения-конденсации

$$d\vec{V}_{\kappa}/d\tau = \vec{g} + \vec{R} - (\vec{V}_{\kappa}/m_{\kappa})(dm_{\kappa}/d\tau), \qquad (3.52)$$

где τ – время, $\vec{V}_{\rm K}$ – вектор скорости капли, \vec{g} – вектор ускорения силы тяжести, \vec{R} – вектор силы сопротивления капли, приходящейся на единицу ее массы, $m_{\rm K}$ – масса капли;

- уравнение неразрывности для жидкости

$$\partial \rho_{\kappa} / \partial \tau + \nabla (\rho_{\kappa} \vec{V}_{\kappa}) = (\rho_{\kappa} / m_{\kappa}) (dm_{\kappa} / d\tau),$$
 (3.53)

где ρ_{κ} — некоторая по объему плотность капель (массовая концентрация жидкости);

 уравнение массообмена капли жидкости с потоком парогазовой смеси за счет испарения-конденсации

$$dm_{\kappa}/d\tau = -\beta\pi\delta_{\kappa}^{2}(\rho_{1\kappa} - \rho_{1}), \qquad (3.54)$$

где β – коэффициент массообмена капли с потоком по концентрационному напору пара, ρ_{1k} и ρ_1 – парциальные плотности пара на поверхности капли и в потоке;

- уравнение для влагосодержания

$$dd/d\tau = -(\rho_{\kappa}/m_{\kappa})(dm_{\kappa}/d\tau)(1/(1-\varepsilon_{\kappa})\rho_{2}), \quad \varepsilon_{\kappa} = \rho_{\kappa}/\rho_{\kappa}, \quad (3.55)$$

где d — влагосодержание, $\varepsilon_{\rm K}$ — объемная концентрация капель жидкости, ρ_2 — парциальная плотность сухого газа, $\rho_{\rm K}$ — плотность жидкости, $\rho_{\rm K}/m_{\rm K}=n_{\rm K}$ — текущая счетная концентрация капель в потоке;

уравнение теплообмена капли с потоком парогазовой смеси

$$c_{\kappa} m_{\kappa} \left(d\Theta / d\tau \right) = -\alpha_{\kappa} \pi \delta_{\kappa}^{2} \left(\Theta - T \right) + r_{\kappa} \left(dm_{\kappa} / d\tau \right), \quad (3.56)$$

где $c_{\rm ж}$ — удельная теплоемкость жидкости капель, $\alpha_{\rm k}$ — коэффициент теплоотдачи капли, Θ и T — текущие абсолютные температуры капли и потока, $r_{\rm ж}$ — удельная теплота испарения-конденсации;

- уравнение для температуры парогазовой смеси

$$\rho(\mathrm{d}cT/\mathrm{d}\tau) = \alpha_{\kappa}\pi\delta_{\kappa}^{2}(\Theta - T)(\rho_{\kappa}/m_{\kappa}), \qquad (3.57)$$

где c и ρ – удельная теплоемкость и плотность парогазовой смеси;

– уравнение для скорости парогазовой смеси вдоль оси форсуночной камеры для невысоких концентраций капель жидкости в потоке примем в форме:

$$U = U_0 \frac{T}{T_{00}} \frac{K+d}{K+d_0},$$
 (3.58)

где $K = M_1/M_2$, M_1 и M_2 – молекулярные массы пара и сухого газа, U_0 , T_{00} – начальные скорость и температура парогазового потока, для высоких концентраций капель в потоке

$$U = U_0 \frac{T}{T_{00}} \frac{K + d}{K + d_0} \frac{1 - q(U_0/V_{K0})}{1 - q(U_0/V_{KX})},$$
 (3.59)

где $V_{\rm k0}$ — начальная температура капель, $V_{\rm kx}$ — текущая составляющая скорости капель вдоль оси камеры, q — реальный коэффициент орошения.

В уравнении (3.54) коэффициент массообмена β определяется из полуэмпирической зависимости для массообменного числа Нуссельта

$$Nu' = \frac{\beta \delta_{K}}{D} = 2K_c \Phi. \tag{3.60}$$

Здесь $K_c = 1 + \left((P_{1\kappa} + P_1)/2B \right)$ — поправка на стефановский поток при высоких концентрациях пара в смеси, $P_{1\kappa}$ и P_1 — парциальные давления насыщенных паров жидкости при температуре Θ и ненасыщенных паров жидкости вдали от капли при температуре T, B — барометрическое давление для парогазовой смеси, $\Phi = 1 + 0,276\,\mathrm{Re}_\kappa^{0.5}\,\mathrm{Sc}^{0.33}$ — поправка Φ росслинга на инерционность обтекания капли жидкости, Re_κ — число Рейнольдса обтекания капли, D — коэффициент диффузии паров, $\mathrm{Sc} = \mu/\rho D$ — число Шмидта, μ — динамическая вязкость парогазовой смеси.

Коэффициент теплоотдачи α_{κ} определяется из формулы Дрейка для теплообменного числа Нуссельта:

$$Nu = 2 + 0,459 Re_{\kappa}^{0,55} Pr^{0,33}, \qquad (3.61)$$

где $\Pr = \mu c/\lambda$ — теплообменное число Прандтля, λ — коэффициент теплопроводности парогазовой смеси.

В стационарной постановке дифференциальные уравнения модели должны решаться при следующих граничных условиях:

- для прямотока при x=0

$$V_{\kappa x} = V_{\kappa 0}, \quad V_{\kappa y} = 0, \quad U = U_0, \quad \delta_{\kappa} = \delta_{\kappa 0}, \quad m_{\kappa} = m_{\kappa 0},$$

 $d = d_0, \quad \Theta = \Theta_0, \quad T = T_{00}, \quad \rho_{\kappa} = \rho_{\kappa 0},$ (3.62)

– для противотока

при
$$x=0$$
 $V_{\kappa x}=V_{\kappa 0}, V_{\kappa y}=0, \delta_{\kappa}=\delta_{\kappa 0}, \Theta=\Theta_{0}, \rho_{\kappa}=\rho_{\kappa 0},$ при $x=l$ $U=U_{0}, d=d_{0}, T=T_{00}.$ (3.63)

Предложенная в [22] физико-математическая модель тепломассообмена в оросительных камерах кондиционеров воздуха позволяет рассчитать все термодинамические параметры парогазового потока и жидкости, а также позволяет оптимизировать протекающие в камере термодинамические процессы с точки зрения сокращения энергозатрат на работу этих устройств.

Пример 3.10. Сравнение модели и методики расчета оросительной камеры ВНИИКондиционер

Исходные данные

- 1. Оросительная камера ОКФ-3 для центрального кондиционера марки КТЦ3-10 с общим числом форсунок 24 шт.
 - 2. Массовый расход воздуха $G_{\rm пp}$ = 11900 кг/ч.
 - 3. Коэффициенты A_1 = 0,503, α_1 = 1,91, β_1 = 0,387.
- 4. Температура воздуха, входящего в камеру орошения, T_{00} = 298,9 К, прошедшего обработку в камере T = 284,3 К, предельная температура воздуха $t_{_{\rm B_{\rm mp}}}$ = 9 °C.
- 5. Энтальпия воздуха, входящего в камеру орошения, I_0 = 52,8 кДж/кг, прошедшего обработку в камере I = 31 кДж/кг, энтальпия предельного состояния воздуха $I_{\text{пр}}$ = 27,3 кдж/кг.
- 6. Влагосодержание воздуха, входящего в камеру орошения, $d_0 = 10.4 \, \Gamma/\text{кг}$ с.в., прошедшего обработку в камере, $d = 7.8 \, \Gamma/\text{кг}$ с.в.
 - 7. Размеры камеры орошения: H = 0.825 м, A = 1.25 м.

Порядок расчета

1. Результаты расчета оросительной камеры по методике ВНИИКондиционер согласно пподразд. 3.3.1.1 заносим в табл. 3.8.

Tаблица 3.8 **Результаты расчета по методике ВНИИКондиционер**

E	'a	μ	E_{π}	Ω	Θ ₀ , °C	Θ, °C	$G_{\mathrm{ж}},$ кг/ч	g _ф , кг/ч	ΔP_{ϕ} , кПа
0,8	55	1,94	0,573	1,544	4,86	7,54	23086	961,9	116,4

- 2. Расчет режимных параметров обработки воздуха в камере орошения при помощи модели произведем по вышеприведенным исходным данным. Дополнительные параметры, не учитываемые в расчетах по инженерной методике, будем принимать исходя из габаритов камеры орошения и уже рассчитанных данных, представленных в табл. 3.8.
- 3. Реальный коэффициент орошения может быть определен исходя из объемных расходов газа и жидкости, проходящих через камеру орошения:

$$q = \frac{Q_{\text{m}}}{Q_{\text{p}}} = \frac{23086 \cdot 1, 2}{1000 \cdot 11900} = 0,00233 \text{ m}^3/\text{m}^3 = 2,33 \text{ m/m}^3. \quad (3.64)$$

4. Начальная скорость воздуха в оросительной камере определяется исходя из площади поперечного сечения камеры

$$U_0 = \frac{Q_{\Gamma}}{3600 \cdot H \cdot A} = \frac{11900}{1,2 \cdot 3600 \cdot 0,825 \cdot 1,25} = 2,67 \text{ m/c}. (3.65)$$

5. Начальные скорость и размер капель, распыливаемых форсунками, могут быть определены по зависимостям, приведенным в [22, 34]

$$V_{\kappa 0} = \sqrt{\frac{2P_{\text{ж}}}{\rho_{\text{ж}}}} = \sqrt{\frac{2 \cdot 116400}{1000}} = 15,26\,\text{м/c}$$
 (здесь $P_{\text{ж}}$ в Па); (3.66)

$$\begin{split} \delta_{\kappa 0} = & 1.81 \frac{\nu_{\kappa}^{0.59} \cdot g_{\Phi}^{0.205} \cdot \rho_{\kappa}^{0.192}}{P_{\kappa}^{0.397}} = \\ = & 1.81 \frac{0.01^{0.59} \cdot 961, 9^{0.205} \cdot 1^{0.192}}{1.187^{0.397}} = 457 \, \text{mkm}, \end{split}$$

где $v_{\text{ж}}$ – кинематическая вязкость жидкости, см²/с, g_{ϕ} – расход жидкости через форсунку, кг/ч, $\rho_{\text{ж}}$ – плотность жидкости, г/см³, $P_{\text{ж}}$ – давление подаваемой воды в форсунки, кгс/см².

6. В табл. 3.9 приведены данные режимных параметров в оросительной камере, рассчитанных по методике ВНИИКондиционер и модели тепломассообмена при следующих исходных данных: T_{00} = 298,9 K, d_0 = 10,4 г/кг с.в., U_0 = 2,67 м/с, $V_{\kappa 0}$ = 15,26 м/с, $\delta_{\kappa 0}$ = 457 мкм. Как видно из табл. 3.9, требуемые параметры обрабатываемого воздуха можно получить при различных начальных значениях температуры жидкости и коэффициента орошения, что невозможно осуществить при использовании инженерной методики расчета.

Таблица 3.9 Сравнение режимных параметров оросительной камеры

Пара- метры	Методика ВНИИКонди- ционер	Модель тепломассообмена								
q , л/м 3	2,33	2,33	2,33 2,1 1,95 1,8 1,7							
Θ ₀ , Κ	277,86	277,86	277,0	276,0	275,5	275,0				
<i>T</i> , K	284,3	285,05	285,18	285,08	285,36	285,49				
<i>d</i> , г/кг	7,8	7,3	7,3	7,2	7,2	7,2				
Θ, Κ	280,54	280,12	279,5	278,74	278,42	278,07				

В приведенном примере экономия жидкости, подаваемой на распыливание форсунками, составляет порядка 25 %, если ее температуру на входе задать равной минимально допустимой – 2 °С. Инженерная методика не позволяет варьировать режимные

параметры, что может вызывать перерасход жидкости, а следовательно, и энергозатраты на обработку воздуха, в отличие от разработанной модели расчета оросительных камер кондиционеров воздуха.

3.3.2. Расчет воздухонагревателей

Расчет воздухонагревателей осуществляют на два периода года: в начале производят расчет на холодный период, затем — на теплый период года. Также раздельно производят расчет воздухонагревателей первого и второго подогрева.

Целью расчета воздухонагревателей является определение требуемой и располагаемой поверхностей теплопередачи и режима их работы [1, 33].

Исходными данными для расчета являются: массовый расход воздуха через воздухонагреватель $G_{\rm np}$, кг/ч; начальная и конечная температура воздуха $t_{\rm H}$ и $t_{\rm K}$ соответственно в °C; начальная и конечная температура горячего теплоносителя (перегретой воды) $t_{\rm WH}$ и $t_{\rm WK}$ соответственно в °C (принимается для расчета $t_{\rm WH}$ = 150 °C, $t_{\rm WK}$ = 70 °C).

При поверочном расчете задаются типом и числом базовых воздухонагревателей исходя из марки центрального кондиционера (прил. 31), т. е. вначале принимают стандартную компоновку, а расчетом ее уточняют.

Вычисляют теплоту, необходимую для нагрева воздуха, Вт, по формуле

$$Q_{\text{\tiny BO3}} = 0.278 \cdot G_{\text{\tiny IID}} \cdot c_{\text{\tiny BO3}}(t_{\text{\tiny K}} - t_{\text{\tiny H}}), \qquad (3.68)$$

где $c_{воз}$ — удельная теплоемкость воздуха ($c_{воз}$ = 1,005 кДж/(кг °C)). Определяют расход горячей воды, кг/ч:

$$G_{W} = \frac{3.6 \cdot Q_{\text{BO3}}}{4.19(t_{WH} - t_{WK})} = 0.859 \frac{Q_{\text{BO3}}}{(t_{WH} - t_{WK})}.$$
 (3.69)

Вычисляют коэффициент теплопередачи, $BT/(M^2 {}^{\circ}C)$, по формуле

$$K = a(\rho \upsilon)^q w^r, (3.70)$$

Таблииа 3.10

где a, q, r – коэффициенты, принимаемые по табл. 3.10.

Коэффициенты *a*, *q*, *r*, *b*, *m*

Количество рядов h a q m теплообменника 28,0 0,448 0.129 4.16 1,707 1.5 25.3 0.47 0.087 3.92 1.761 25.5 0.485 0.127 0.94 1.716

В зависимости от марки кондиционера выбирают число и тип базовых теплообменников (прил. 31), для которых вычисляют массовую скорость движения воздуха в живом сечении воздухонагревателя $\kappa r/m^2c$:

$$\rho v = \frac{G_{\text{np}}}{3600 \cdot f_{\text{BO3}}}, \qquad (3.71)$$

где $f_{\text{воз}}$ — площадь живого сечения для прохода воздуха в воздухонагревателе, м².

Определяют скорость движения горячей воды по трубкам теплообменника, м/с:

$$w = \frac{G_{w}}{\rho_{w} \cdot f_{w} \cdot 3600},$$
 (3.72)

где ρ_w — плотность воды при ее средней температуре, кг/м³; f_w — площадь сечения для прохода воды, м².

Вычисляют среднюю разность температур между теплоносителями:

$$\Delta t_{\rm cp} = \frac{t_{\rm wH} + t_{\rm wK}}{2} - \frac{t_{\rm H} + t_{\rm K}}{2} \,. \tag{3.73}$$

Находят требуемую площадь теплообмена, м²:

$$F_{\rm rp} = \frac{Q_{\rm BO3}}{K \cdot \Delta t_{\rm cp}} \,. \tag{3.74}$$

При этом необходимо выполнять следующие условия: между располагаемой поверхностью $F_{\rm p}$ (предварительно выбранным воздухонагревателем) и требуемой поверхностью $F_{\rm rp}$ запас поверхности теплообмена не должен превышать 15 %:

$$\frac{F_{\rm p} - F_{\rm rp}}{F_{\rm rp}} 100 \le 15 \%. \tag{3.75}$$

При большем чем на 15 % расхождении величин ($F_p > F_{\tau p}$) рекомендуют уменьшить скорость движения воды до минимума, равного 0,15 м/с, откорректировать расход воды и ее конечную температуру, а также повторно произвести расчет требуемой поверхности теплообмена.

При наличии двух и более базовых теплообменников на каждой ступени кондиционера выполнить условия (3.75) возможно также путем изменения схемы обвязки воздухонагревателей. Снизить F_p можно путем уменьшения рядности теплообменника.

Расчет воздухонагревателей второго подогрева осуществляют по той же методике, что и расчет воздухонагревателей первого подогрева (при необходимости расчета воздухонагревателя для теплого периода года начальную температуру горячей воды следует принимать не выше 70 °C).

Для определения аэродинамического сопротивления воздухонагревателя, Па, применяют уравнение

$$\Delta P_{\rm BH} = b(\rho v)^m N_1, \qquad (3.76)$$

где b, m — коэффициенты, принимаемые по табл. 3.10; N_1 — число теплообменников, установленных последовательно по ходу воздуха.

Пример 3.11. Поверочный расчет воздухонагревателя второй ступени для холодного периода

Исходные данные

- 1. Процесс нагрева воздуха во второй ступени воздухонагревателя для холодного периода построен на рис. 3.12 примера 3.9.
- 2. В качестве теплоносителя применяется перегретая вода с параметрами $t_{\scriptscriptstyle \rm WH}=150$ °C, $t_{\scriptscriptstyle \rm WK}=70$ °C.

Порядок расчета

- 1. Согласно прил. 31 принимаем базовый теплообменник двухметровый, двухрядный, с располагаемой поверхностью $F_{\rm p}=120,8~{\rm m}^2,$ площадь фронтального сечения для воздуха $f_{\rm воз}=3,315~{\rm m}^2,$ площадь сечения для прохода воды $f_{\rm w}=0,00296~{\rm m}^2.$
- 2. Вычисляем теплоту, необходимую для нагрева воздуха, по формуле (3.68)

$$Q_{\text{BO3}} = 0,278 \cdot 32400 \cdot 1,005(22,5-8) = 131257 \,\text{Bt}.$$

3. Определяем расход горячей воды по формуле (3.69):

$$G_w = 0.859 \frac{131257}{(150-70)} = 1410 \text{ кг/ч}.$$

4. Массовая скорость движения воздуха в живом сечении воздухонагревателя согласно формуле (3.71) равна:

$$\rho v = \frac{32400}{3600 \cdot 3,315} = 2,715 \text{ KeV/M}^2 c.$$

5. Скорость движения горячей воды по трубам теплообменника согласно формуле (3.72) составит:

$$w = \frac{1410}{1000 \cdot 0,00296 \cdot 3600} = 0,132 \,\text{m/c}.$$

6. Коэффициент теплопередачи определим по формуле (3.70): $K = 25.5(2.715)^{0.485}0.132^{0.127} = 32.0 \text{ BT/(M}^2 \text{ °C}).$

7. Вычислим среднюю разность температур между теплоносителями по формуле (3.73):

$$\Delta t_{\rm cp} = \frac{150 + 70}{2} - \frac{8 + 22, 5}{2} = 94,75 \, {}^{\circ}\text{C}.$$

8. Требуемая площадь теплообмена согласно уравнению (3.74) равна:

$$F_{\rm rp} = \frac{131257}{32.0.94.75} = 43.3 \,\text{m}^2.$$

9. Согласно выражению (3.75) проверяем условие:

$$\frac{120,8-43,3}{43,3}100 \% = 179 \% > 15 \%.$$

Условие не выполняется.

- 10. Принимаем к установке однорядный теплообменник. Согласно прил. 31 $F_p = 60.4 \text{ m}^2$, $f_{BOS} = 3.315 \text{ m}^2$, $f_w = 0.001486 \text{ m}^2$.
- 11. Определим скорость воды по трубкам теплообменни-ка по формуле (3.72):

$$w = \frac{1410}{1000 \cdot 0,00148 \cdot 3600} = 0,265 \,\text{m/c}.$$

12. Коэффициент теплопередачи определим по формуле (3.70):

$$K = 28,0(2,715)^{0,448}0,265^{0,129} = 36,9 \text{ BT/(M}^2 \text{ °C}).$$

13. Требуемая поверхность по формуле (3.74):

$$F_{\rm rp} = \frac{131257}{36.9 \cdot 94.75} = 37.5 \,\mathrm{m}^2.$$

15. Согласно выражению (3.75) проверяем условие:

$$\frac{60,4-37,5}{37,5}100 \% = 61,1 \% > 15 \%.$$

Условие (3.75) не выполняется, тогда уменьшаем скорость движения воды до 0,16 м/с, корректируем расход воды и ее конечную температуру, повторно проводим расчет требуемой поверхности теплообмена.

$$G_{w} = 0.16 \cdot 1000 \cdot 0.00148 \cdot 3600 = 852.5 \text{ kg/y}.$$

16. Конечную температуру воды определим из формулы (3.69):

$$t_{wk} = 150 - \frac{0.86 \cdot 131257}{852.5} = 17.6 \text{ °C}.$$

17. Уточняем среднюю разность температур по формуле (3.73):

$$\Delta t_{\rm cp} = \frac{150 + 17.6}{2} - \frac{8 + 22.5}{2} = 68.55$$
 °C.

18. Уточним коэффициент теплопередачи по формуле (3.70):

$$K = 28,0(2,715)^{0,448}0,16^{0,129} = 34,6 \text{ BT/(M}^2 \text{ °C}).$$

19. Требуемая поверхность теплопередачи по формуле (3.74):

$$F_{\rm rp} = \frac{131257}{34,6.68,55} = 55,3 \,\mathrm{M}^2.$$

20. Запас поверхности по формуле (3.75):

$$\frac{60,4-55,3}{55,3}100 \% = 9,2 \% < 15 \%.$$

Условие выполнено. Расчет воздухонагревателя закончен.

3.3.3. Расчет воздухоохладителей

В качестве воздухоохладителей в СКВ могут применяться поверхностные теплообменники с наружным оребрением с циркуляцией холодной воды в трубном пространстве.

Охлаждение может осуществляться при постоянном влагосодержании (сухое охлаждение), а также при уменьшении влагосодержания, т. е. охлаждение сопровождается его осушением. Рассмотрим методики расчета воздухоохладителей в зависимости от режима работы.

3.3.3.1. Расчет воздухоохладителей при сухом охлаждении

Расчет и выбор режимов работы воздухоохладителей приводится с помощью показателей θ_i , N_i , W.

Показатель теплотехнической эффективности для сухого охлаждения воздуха имеет вид:

$$\theta_t = \frac{t_{\scriptscriptstyle H} - t_{\scriptscriptstyle K}}{t_{\scriptscriptstyle H} - t_{\scriptscriptstyle MH}}.\tag{3.77}$$

При этом должны выполняться (задаваться) условия: $t_{_{\rm WH}}\cong t_{_{\rm p}}$, $t_{_{\rm k}}>t_{_{\rm p}}$.

Таким образом, предлагается такая последовательность расчета воздухоохладителя [24]:

- 1. Задаются параметры воздуха G, $t_{\text{\tiny H}}$, $d_{\text{\tiny H}}$, $I_{\text{\tiny H}}$, $t_{\text{\tiny K}}$.
- 2. Принимают начальную температуру воды $t_{\scriptscriptstyle \mathrm{WH}} = t_{\scriptscriptstyle \mathrm{p}}$.
- 3. Задают показатель отношения теплоемкостей потоков (водяных эквивалентов) W = 0,1-0,6.

4. Определяют расход холодной воды, кг/ч:

$$G_{w} = \frac{Gc}{Wc_{w}}. (3.78)$$

5. Определяют и уточняют конечную температуру воды (на выходе из воздухоохладителя) t_{w_a} :

$$t_{wk} = t_{wH} + W(t_{H} - t_{K}). {(3.79)}$$

При этом ограничивают $\Delta t_w = t_{wk} + t_{wh} = 2-6$ °C путем изменения W и, соответственно, G_w по формуле (3.78).

6. В соответствии с расходом охлаждаемого воздуха G выбирают тип воздухоохладителя (прил. 31). В зависимости от конструктивных размеров блока воздухоохладителя, схем обвязки определяют скорости движения воздуха $\upsilon \rho$, $\kappa r/m^2 c$, воды w, m/c, по формулам (3.71) и (3.72).

Согласно рекомендациям [24], оптимальная скорость воды по трубкам теплообменника w = 0,6-1,0 м/с. Этой предельной величиной ограничивают данный параметр.

- 7. Определяют показатель теплотехнической эффективности θ , по формуле (3.77).
- 8. По графику (прил. 32) при известных θ_t и W находят значения показателя N_t . Рекомендуемые рациональные предельные значения N_t соответствуют 1,6–1,8 [1].
- 9. Определяют требуемую площадь поверхности воздухоохладителя:

$$F_{\rm rp} = \frac{N_t Gc}{3.6K},$$
 (3.80)

где K – коэффициент теплопередачи в воздухоохладителе, определяют по уравнению, аналогичному формуле (3.70).

10. Определяют запас поверхности воздухоохладителя по формуле (3.75). Он не должен превышать 10 %, в противном случае необходимо изменить режим работы теплообменника, приняв новое значение W, и повторить расчет [1].

3.3.3.2. Расчет воздухоохладителей при охлаждении и осушении воздуха

Расчет может проводиться по методике, которая предусматривает замену реального процесса охлаждения и осущения воздуха на «условно сухой режим охлаждения», эквивалентный по затратам холода [1, 24].

Порядок расчета воздухоохладителя

- 1. Задают начальные параметры воздуха $I_{\mu}, d_{\mu}(t_{\mu}, \varphi_{\mu}), G$.
- 2. Задают конечные параметры воздуха $I_{\kappa}, d_{\kappa}(t_{\kappa}, \varphi_{\kappa})$.

Указывается в [24], что выбор конечных параметров охлажденного и осушенного воздуха I_{κ} , ϕ_{κ} и др. не может быть произведен произвольно. В частности, ϕ_{κ} зависит от ϕ_{κ} .

Рекомендовано в [24]:

при
$$\phi_{_{\rm H}} < 45 \%$$
 $\phi_{_{\rm K}} = 88 \%;$ при $45 \% \le \phi_{_{\rm H}} \le 70 \%$ $\phi_{_{\rm K}} = 92 \%;$ при $\phi_{_{\rm H}} > 70 \%$ $\phi_{_{\rm K}} = 98 \%.$

3. Строят реальный процесс охлаждения и осушения воздуха на *I-d*-диаграмме (рис. 3.13.).

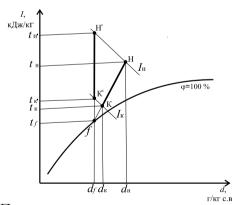


Рис. 3.13. Построение реального процесса охлаждения и осущения воздуха и «условно сухого режима охлаждения»: НК – луч реального охлаждения; Н'К' – луч «условно сухого охлаждения»

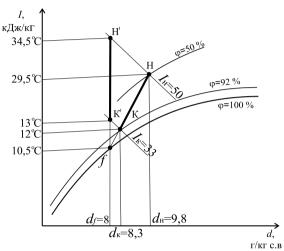
- 4. Определяют точку H (начальное состояние воздуха), точку K (конечное состояние воздуха), проводят отрезок HK, соответствующий лучу реального процесса охлаждения и осущения воздуха. На пересечении с продолжением отрезка HK с изолинией $\varphi = 100$ % находят точку f, для которой t_f соответствует средней температуре наружной поверхности воздухоохладителя. Из точки f проводят изолинию d_f до пересечения с изолиниями $I_{\rm K}$, $I_{\rm H}$, получают отрезок H'K', соответствующий лучу «условно сухого охлаждения воздуха».
 - 5. Выполняют пп. 3-10 подразд. 3.3.3.1.

Начальную температуру холодной воды на входе в воздухоохладитель определяют из условия $t_{\scriptscriptstyle \rm WH} \le t_f - 2$ °C [33]. С уменьшением $t_{\scriptscriptstyle \rm WH}$ требуемая поверхность воздухоохладителя снижается.

Показатель теплотехнической эффективности в «условно сухом режиме охлаждения воздуха» вычисляют в соответствии с формулой (3.77) и рис. 3.13:

$$\theta_t = \frac{t_{H'} - t_{K'}}{t_{H'} - t_{H'}} \,. \tag{3.81}$$

Пример 3.12. Определение конструктивных показателей поверхностного воздухоохладителя


Исходные данные

- 1. Расход смеси наружного и рециркуляционного воздуха составляет 21600 кг/ч.
 - 2. Параметры смеси: $I_{\scriptscriptstyle \rm H}$ = 50 кДж/кг, $d_{\scriptscriptstyle \rm H}$ = 9,8 г/кг с.в.
- 3. Смесь необходимо осушить и охладить до $I_{\rm k}$ = 33 кДж/кг, $d_{\rm k}$ = 8,3 г/кг с.в.

Порядок расчета

1. На *I-d*-диаграмме строим реальный процесс охлаждения и осушения воздуха НК (рис. 3.14), при этом принимаем

 $\phi_{\kappa} = 92 \%$. На пересечении продолжения отрезка НК с изолинией $\phi = 100 \%$ находим точку f, для которой t_f соответствует средней температуре наружной поверхности воздухоохладителя. Из точки f проводим изолинию d_f до пересечения с изолиниями I_{κ} , $I_{\rm H}$. Получаем отрезок Н'К', соответствующий лучу «условно сухого охлаждения воздуха».

Рис. 3.14. К примеру 3.11

2. Начальную температуру холодной воды на входе в воздухоохладитель определяем из условия $t_{\scriptscriptstyle \mathrm{WH}} \leq t_f - 2$ °C:

$$t_{WH} = 10,5 - 2 = 8,5 \, ^{\circ}\text{C}.$$

- 3. Задаем показатель отношения теплоемкостей потоков W = 0,2.
- 4. Уточняем конечную температуру воды на выходе из воздухоохладителя по формуле (3.3.40):

$$t_{wk} = 8,5 + 0,2(29,5-13) = 11,8 \,^{\circ}\text{C}.$$

5. Определяем расход холодной воды по выражению (3.78):

$$G_w = \frac{21600 \cdot 1,005}{0,2 \cdot 4,19} = 25923$$
 кг/ч.

- 6. По прил. 31 в соответствии с расходом охлаждаемого воздуха выбираем тип воздухоохладителя: двухрядный, с располагаемой поверхностью $F_{\rm p}\!=\!74,6\,{\rm\,m^2},\,$ с площадью фронтального сечения для воздуха $f_{\rm воз}\!=\!2,\!07\,{\rm\,m^2},\,$ площадью сечения для прохода воды $f_{\rm w}\!=\!0,\!00296\,{\rm\,m^2}.$
- 7. Массовая скорость движения воздуха в живом сечении воздухоохладителя по формуле (3.71) равна:

$$\rho v = \frac{21600}{3600 \cdot 2,07} = 2,9 \text{ } \kappa \Gamma/\text{M}^2\text{c}.$$

8. Скорость движения холодной воды по трубкам воздухоохладителя по формуле (3.72) составит:

$$w = \frac{25923}{1000 \cdot 0.00296 \cdot 3600} = 2,43 \,\text{m/c}.$$

9. Определяем показатель теплотехнической эффективности в «условно сухом режиме охлаждения воздуха» в соответствии с формулой (3.81):

$$\theta_t = \frac{29,5-13}{29,5-8,5} = 0,786$$

10. По прил. 32 при известных θ_t и W находим значение показателя N_t :

$$N_t = 1,7.$$

11. По формуле (3.70) рассчитываем коэффициент теплопередачи в воздухоохладителе:

$$K = 25,5(2,9)^{0,485}2,43^{0,127} = 47,87 \text{ BT/(M}^2 \text{ °C}).$$

12. Определяем требуемую площадь поверхности воздухоохладителя по формуле (3.80):

$$F_{\rm rp} = \frac{1,7 \cdot 21600 \cdot 1,005}{3.6 \cdot 47.87} = 214,1 \,\text{m}^2.$$

13. Определяем необходимое число двухрядных теплообменников 214,1/74,6 = 2,87 шт. Округляем до 3, и действительная поверхность воздухоохладителей составит:

$$F_{\text{TD}} = 74, 6 \cdot 3 = 223, 8 \,\text{m}^2.$$

14. Определяем запас поверхности воздухоохладителя по формуле (3.75):

$$\frac{223,8-214,1}{214,1}100 \% = 4,5 \% < 15 \%.$$

Условие выполнено.

К установке принимаем три двухрядных воздухоохладителя. Выбираем схему обвязки трубопроводов с параллельной подачей холодной воды в три двухрядных теплообменника, тогда скорость течения воды в трубках составит:

$$w = \frac{25923}{1000 \cdot 0,00296 \cdot 3 \cdot 3600} = 0,81 \text{ m/c}.$$

Расчет закончен, т. к. схема обвязки обеспечивает оптимальную скорость движения воды в воздухоохладителе.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Основная литература

- $1.\,Aверкин,\,A.\Gamma.\,$ Примеры и задачи по курсу «Кондиционирование воздуха и холодоснабжение» : учеб. пособие / А.Г. Аверкин. 2-е изд., испр. и доп. М. : Изд-во АСВ, 2003. 126 с.
- $2.\,$ Белова, E.M. Центральные системы кондиционирования воздуха в зданиях / E.M. Белова. M. : Изд-во «Евроклимат», 2006. 640 с.
- 3. Внутренние санитарно-технические устройства: в 3 ч. Ч. 1. Отопление / [В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.]; под ред. И.Г. Староверова, Ю.И. Шиллера. Курган: Изд-во «Интеграл», 2008 343 с.
- $4.\ \Gamma OCT \ 12.1.005-88^*. \ CCET.$ Общие санитарногигиенические требования к воздуху рабочей зоны.
- 5. ГОСТ 30494–96. Здания жилые и общественные. Параметры микроклимата в помещениях.
- 6. *Гримитлин, М.И.* Распределение воздуха в помещении / М.И. Гримитлин. М.: Авок Северо-Запад, 2004. 320 с.
- 7. *Еремкин, А.И.* Отопление и вентиляция жилого здания / А.И. Еремкин, Т.И. Королева, Н.А. Орлова. М. : Изд-во АСВ, $2003.-129~\rm c.$
- 8. *Еремкин, А.И.* Тепловой режим зданий / А.И. Еремкин, Т.И. Королева. М. : Изд-во АСВ, 2000. 368 с.
- 9. *Каменев*, *П.Н.* Вентиляция / П.Н. Каменев, Е.И. Тертичник. М.: Изд-во АСВ, 2008. 624 с.
- 10. Отопление, вентиляция и кондиционирование воздуха: Жилые здания со встроенно-пристроенными помещениями общественного назначения и стоянками автомобилей. Коттеджи: справочное пособие / под ред. Г.И. Стомахиной М.: Изд-во «Пантори», 2003. 308 с.
- $11.\ \Pi$ рименение средств автоматизации «Данфосс» в системах водяного отопления многоэтажных зданий. М. : ООО «Данфосс», 2008.-37 с.

- 12. *Системы вентиляции* и кондиционирования. Теория и практика / В.А. Ананьев, Л.Н. Балуева, А.Д. Гальперин, А.К., Городов, М.Ю. Еремин, С.М. Звягинцева, В.П. Мурашко, И.В. Седых. М.: Изд-во «Евроклимат», 2005. 416 с.
- 13. *Сканави, А.Н.* Отопление : учебник для вузов / А.Н. Сканави, Л.М. Махов. М. : Изд-во АСВ, 2002. 576 с.
 - 14. *СНиП* 2.01.07–85*. Нагрузки и воздействия.
 - 15. *СНиП 23–01–99**. Строительная климатология.
 - 16. СНиП 23-02-2003. Тепловая защита зданий.
- 17. $CHu\Pi$ 41–01–2003. Отопление, вентиляция и кондиционирование.
- 18. *СП 23–101–2004*. Проектирование тепловой защиты зданий.
- 19. СП 40–108–2004. Проектирование и монтаж внутренних систем водоснабжения и отопления зданий из медных труб.
- 20. СП 41–102–98. Проектирование и монтаж трубопроводов систем отопления с использованием металлополимерных труб.
- $21.\ Tеплоснабжение\ u\ вентиляция.$ Курсовое и дипломное проектирование / под ред. проф. Б.М. Хрусталева. М. : Изд-во АСВ, 2007.-784 с.
- 22. *Шиляев*, *М.И*. Интенсификация тепломассообмена в дисперсных средах при конденсации и испарении / М.И. Шиляев, Е.М. Хромова, А.Р. Богомолов. Томск : Изд-во ТГАСУ, 2010. 272 с.

Дополнительная литература

- 23. *Авчухов, В.В.* Задачник по процессам тепломассообмена : учебное пособие для вузов / В.В. Авчухов, Б.Я. Паюсте. М. : Энергоатомиздат, 1986.—144 с.
- 24. *Богословский, В.Н.* Кондиционирование воздуха и холодоснабжение : учебник для вузов / В.Н. Богословский, О.Я. Кокорин, Л.В. Петров. М. : Стройиздат, 1985. 367 с.
- 25. *Богословский, В.Н.* Отопление : учебник для вузов / В.Н. Богословский, А.Н. Сканави. М. : Стройиздат, 1991. 735 с.

- 26. *Богословский*, *В.Н.* Теплофизика аппаратов утилизации тепла систем отопления, вентиляции и кондиционирования воздуха / В.Н. Богословский, М.Я. Поз. М.: Стройиздат, 1983. 320 с.
- 27. Дроздов, В.Ф. Отопление и вентиляция. Ч. II. Вентиляция. / В.Ф. Дроздов М. : Высшая школа, 1984. 263 с.
- 28. Курсовое и дипломное проектирование по вентиляции гражданских зданий / В.П. Титов, Э.В. Сазонов, Ю.С. Краснов [и др.] М.: Стройиздат, 1985. 206 с.
- 29. *Нестеренко*, A.B. Основы термодинамических расчетов вентиляции и кондиционирования воздуха. Изд. 2-е / A.B. Нестеренко. M. : Высшая школа, 1965. 395 с.
- 30. Ответи и вентиляция. Ч. ІІ. Вентиляция / В.Н. Богословский, В.И. Новожилов, Б.Д. Симаков, В.П. Титов. М. : Стройиздат, 1976. 439 с.
- 31. *Ривкин, С.Л.* Термодинамические свойства воды и водяного пара / С.Л. Ривкин, А.А. Александров. М. : Энергоатомиздат, 1994. 80 с.
- 32. Справочник проектировщика. Внутренние санитарнотехнические устройства. Ч. 3. Вентиляция и кондиционирование воздуха. Книга 1 / под. ред. Н.Н. Павлова и Ю.И. Шиллера. 4-е изд., перераб. и доп. М.: Стройиздат, 1992. 320 с.
- 33. *Справочник проектировщика*. Внутренние санитарнотехнические устройства. Ч. 3. Вентиляция и кондиционирование воздуха. Книга 2 / под. ред. Н.Н. Павлова и Ю.И. Шиллера. 4-е изд., перераб. и доп. М.: Стройиздат, 1992. 416 с.
- 34. *Хавкин, Ю.И.* Центробежные форсунки / Ю.И. Хавкин. Л. : Машиностроение (Ленингр. отделение), 1976. 168 с.

Таблица для гидравлического расчета трубопроводов водяного отопления при перепадах температуры воды в системе 95–70 °C, 105–70 °C и $A_{\rm m}$ = 0,2 мм

Потери	Количество проходящей воды (верхняя строка), кг/ч, и скорость движе-								
давления на	ния воды (нижняя строка), м/с, по трубам стальным водогазопровод-								
трение	ным обыкновенным (ГОСТ 3262-75*) условным проходом, мм								
на 1 м, Па	15	20	25	32	40	50			
0.55	5,5	18,7	50,7	121	159	288			
0,55	0,008	0,015	0,25	0,034	0,034	0,037			
0.6	6,0	20,4	55,3	124	168	303			
0,6	0,009	0,016	0,027	0,035	0,036	0,039			
0.65	6,5	22,1	59,9	127	172	317			
0,65	0,009	0,018	0,029	0,036	0,037	0,041			
0.7	7,0	23,8	64,5	131	173	329			
0,7	0,01	0,019	0,032	0,037	0,037	0,042			
0,75	7,5	25,5	69,1	133	176	342			
0,73	0,011	0,02	0,034	0,037	0,038	0,044			
0,8	8,0	27,2	75,9	135	177	355			
0,8	0,012	0,022	0,037	0,038	0,038	0,046			
0,85	8,5	28,9	75,9	136	182	368			
0,85	0,012	0,023	0,037	0,038	0,039	0,047			
0,9	9,0	3,06	77,9	140	188	380			
0,9	0,013	0,024	0,038	0,039	0,040	0,049			
0,95	9,5	32,3	80,0	143	194	392			
0,93	0,014	0,026	0,039	0,040	0,041	0,050			
1,00	10,0	34,0	82,0	147	199	403			
1,00	0,015	0,027	0,040	0,041	0,043	0,052			
1,10	11,0	37,4	84,0	150	211	426			
1,10	0,016	0,030	0,041	0,042	0,045	0,055			
1,2	12,0	40,8	86,1	154	222	445			
1,2	0,017	0,033	0,042	0,043	0,047	0,057			
1.2	13,0	44,2	88,1	161	231	466			
1,3	0,019	0,035	0,043	0,045	0,049	0,060			
1.4	14,0	47,6	90,2	167	241	486			
1,4	0,020	0,038	0,044	0,047	0,052	0,062			
1.5	15,0	51,0	92,2	174	250	505			
1,5	0,022	0,041	0,045	0,049	0,054	0,065			
1,6	16,0	54,4	94,2	180	260	523			
1,0	0,023	0,044	0,046	0,050	0,056	0,067			

Потери давления на трение	Количество проходящей воды (верхняя строка), кг/ч, и скорость движения воды (нижняя строка), м/с, по трубам стальным водогазопроводным обыкновенным (ГОСТ 3262–75*) условным проходом, мм								
на 1 м, Па	15	20	25	32	40	50			
1.7	17,0	57,2	96,3	186	268	541			
1,7	0,025	0,046	0,047	0,052	0,057	0,069			
1.0	18,0	58,4	98,3	193	277	559			
1,8	0,026	0,047	0,048	0,054	0,059	0,072			
1,9	19,0	59,7	100	199	286	576			
1,9	0,028	0,048	0,049	0,055	0,061	0,074			
2.0	20,0	60,9	102	204	294	592			
2,0	0,029	0,049	0,050	0,057	0,063	0,076			
2.2	22,0	62,2	103	216	311	623			
2,2	0,032	0,050	0,050	0,060	0,067	0,080			
2,4	24,0	64,7	105	226	325	654			
2,4	0,035	0,052	0,051	0,063	0,070	0,084			
2,6	26,0	65,9	110	236	340	683			
2,0	0,038	0,053	0,054	0,066	0,073	0,088			
2,8	28,0	67,2	114	246	354	712			
2,0	0,041	0,054	0,056	0,069	0,076	0,091			
3,0	30,0	69,7	118	256	368	739			
3,0	0,044	0,056	0,058	0,071	0,079	0,095			
3,2	31,9	70,9	123	265	381	766			
3,2	0,047	0,057	0,060	0,074	0,082	0,098			
3,4	33,9	72,1	127	274	394	792			
3,4	0,050	0,058	0,062	0,077	0,084	0,101			
3,6	35,9	73,4	131	283	407	817			
3,0	0,052	0,059	0,064	0,079	0,087	0,105			
3,8	37,9	74,6	135	292	419	842			
5,6	0,056	0,060	0,066	0,082	0,090	0,108			
4,0	39,2	75,9	139	300	431	865			
7,0	0,057	0,061	0,068	0,084	0,092	0,111			
4,5	41,2	77,1	149	321	461	920			
4,3	0,060	0,062	0,073	0,90	0,099	0,118			
5,0	43,3	80,3	158	339	486	974			
5,0	0,063	0,064	0,077	0,095	0,104	0,125			
5,5	44,6	84,8	166	357	512	1026			
3,3	0,065	0,068	0,081	0,100	0,110	0,131			
6,0	46,0	88,6	174	374	537	1076			
0,0	0,067	0,071	0,085	0,105	0,115	0,138			

Потери давления на трение	Количество проходящей воды (верхняя строка), кг/ч, и скорость движения воды (нижняя строка), м/с, по трубам стальным водогазопроводным обыкновенным (ГОСТ 3262–75*) условным проходом, мм								
на 1 м, Па	15	20	25	32	40	50			
(5	47,4	92,7	182	391	561	1123			
6,5	0,069	0,074	0,089	0,109	0,120	0,144			
7.0	48,8	96,6	189	408	584	1169			
7,0	0,071	0,077	0,093	0,114	0,125	0,150			
7,5	49,4	100	198	423	607	1214			
7,5	0,072	0,080	0,097	0,118	0,130	0,155			
8,0	50,8	104	204	438	628	1256			
8,0	0,074	0,083	0,100	0,122	0,135	0,161			
8,5	52,2	108	211	453	649	1298			
0,5	0,076	0,086	0,103	0,127	0,139	0,166			
9,0	52,9	111	218	467	670	1338			
7,0	0,077	0,089	0,107	0,130	0,143	0,171			
9,5	54,2	114	224	481	689	1378			
7,5	0,079	0,092	0,110	0,134	0,148	0,176			
10,0	54,9	118	230	495	709	1416			
10,0	0,080	0,094	0,113	0,138	0,152	0,181			
11,0	55,5	124	242	520	745	1487			
11,0	0,080	0,099	0,119	0,145	0,159	0,191			
12,0	56,9	130	254	545	780	1558			
12,0	0,083	0,104	0,125	0,152	0,167	0,200			
13,0	59,5	136	265	569	815	1626			
13,0	0,087	0,109	0,130	0,159	0,174	0,280			
14,0	62,1	142	276	592	848	1691			
1 1,0	0,091	0,113	0,135	0,165	0,182	0,217			
15,0	64,5	147	287	615	880	1754			
15,0	0,094	0,118	0,141	0,172	0,188	0,225			
16,0	66,8	152	297	636	910	1815			
10,0	0,098	0,122	0,146	0,178	0,195	0,233			
17,0	69,1	157	307	657	940	1875			
	0,101	0,126	0,150	0,184	0,201	0,240			
18,0	71,3	162	317	678	969	1932			
	0,104	0,130	0,155	0,189	0,208	0,248			
19,0	73,5	167	326	698	998	1988			
- ,-	0,107	0,134	0,160	0,195	0,214	0,255			
20,0	75,6	172	335	717	1025	2042			
20,0	0,110	0,138	0,167	0,200	0,219	0,262			

Потери давления на трение	Количество проходящей воды (верхняя строка), кг/ч, и скорость движения воды (нижняя строка), м/с, по трубам стальным водогазопроводным обыкновенным (ГОСТ 3262–75*) условным проходом, мм									
на 1 м, Па	15	20	25	32	40	50				
22.0	79,5	181	352	753	1077	2145				
22,0	0,116	0,145	0,173	0,210	0,231	0,275				
24.0	83,4	189	369	789	1128	2246				
24,0	0,122	0,152	0,181	0,220	0,241	0,288				
26.0	87,1	198	385	832	1176	2342				
26,0	0,127	0,158	0,189	0,230	0,252	0,300				
28,0	90,7	206	401	856	1224	2435				
28,0	0,132	0,165	0196	0,239	0,262	0,312				
30,0	94,2	214	416	888	1269	2525				
30,0	0,138	0,171	0,204	0,248	0,272	0,323				
32,0	97,6	221	430	919	1313	2611				
32,0	0,142	0,177	0,211	0,257	0,281	0,335				
34,0	101	228	444	948	1355	2695				
34,0	0,147	0,183	0,218	0,265	0,290	0,345				
36,0	104	236	458	978	1396	2777				
30,0	0,152	0,189	0,225	0,273	0,299	0,356				
38,0	107	243	472	1006	1437	2856				
36,0	0,156	0,194	0,231	0,281	0,308	0,366				
40,0	110	249	484	1033	1476	2934				
40,0	0,161	0,200	0,237	0,289	0,316	0,376				
45,0	117	265	515	1097	1567	3115				
43,0	0,171	0,212	0,252	0,306	0,336	0,399				
50,0	124	280	544	1160	1656	3290				
50,0	0,181	0,224	0,267	0,324	0,355	0,422				
55,0	130	294	572	1213	1740	3457				
23,0	0,190	0,236	0,280	0,340	0,373	0,443				
60,0	136	308	599	1276	1821	3617				
00,0	0,199	0,247	0,294	0,356	0,390	0,463				
65,0	142	322	624	1330	1899	3770				
00,0	0,208	0,258	0,306	0,372	0,407	0,483				
70,0	148	335	649	1383	1973	3917				
. 3,0	0,217	0,268	0,318	0,386	0,423	0,502				
75,0	153	347	679	1433	2045	4060				
, , .	0,225	0,278	0,330	0,400	0,438	0,520				
80,0	156	359	696	1482	2115	4197				
00,0	0,233	0,288	0,341	0,414	0,453	0,538				

Потери давления на трение	Количество проходящей воды (верхняя строка), кг/ч, и скорость движения воды (нижняя строка), м/с, по трубам стальным водогазопроводным обыкновенным (ГОСТ 3262–75*) условным проходом, мм								
на 1 м, Па	15	20	25	32	40	50			
95.0	164	371	719	1529	2182	4330			
85,0	0,240	0,297	0,352	0,427	0,467	0,555			
90,0	169	382	741	1576	2248	4460			
90,0	0,248	0,306	0,363	0,440	0,481	0,571			
95,0	174	393	762	1620	2312	4586			
93,0	0,255	0,315	0,374	0,453	0,495	0,588			
100	179	404	783	1664	2374	4708			
100	0,262	0,324	0,384	0,465	0,508	0,603			
110	188	421	822	1747	2492	4942			
110	0,275	0,346	0,403	0,488	0,534	0,633			
120	197	444	860	1827	2606	5168			
120	0,288	0,356	0,421	0,510	0,558	0,662			
130	206	463	896	1904	2716	5384			
130	0,300	0,371	0,439	0,532	0,582	0,690			
140	213	481	931	1979	2822	5593			
140	0,312	0,385	0,457	0,553	0,604	0,717			
150	221	499	965	2051	2924	5795			
130	0,324	0,400	0,473	0,573	0,626	0,742			
160	229	516	998	2120	3022	5989			
100	0,335	0,413	0,489	0,592	0,647	0,767			
170	236	532	1030	2187	3118	6178			
170	0,346	0,426	0,505	0,611	0,668	0,792			
180	244	548	1061	2252	3211	6361			
100	0,356	0,439	0,520	0,629	0,688	0,815			
190	250	564	1091	2316	3301	6539			
190	0,366	0,452	0,535	0,647	0,707	0,838			
200	257	579	1120	2377	3389	6713			
200	0,376	0,464	0,549	0,664	0,726	0,860			
220	270	608	1176	2495	3556	7044			
220	0,395	0,487	0,576	0,697	0,762	0,903			
240	283	636	1230	2609	3718	7364			
240	0,413	0,510	0,603	0,729	0,796	0,944			
260	295	663	1281	2718	3874	7671			
260	0,431	0,531	0,628	0,759	0,830	0,983			
200	306	689	1331	2823	4023	7966			
280	0,448	0,552	0,653	0,789	0,862	1,021			

Потери давления на трение	Количество проходящей воды (верхняя строка), кг/ч, и скорость движения воды (нижняя строка), м/с, по трубам стальным водогазопроводным обыкновенным (ГОСТ 3262–75*) условным проходом, мм								
на 1 м, Па	15	20	25	32	40	50			
300	317	714	1379	2925	4168	8251			
	0,464	0,572	0,676	0,817	0,892	1,057			
320	328	738	1426	3023	4307	8526			
	0,480	0,591	0,699	0,844	0,922	1,092			
340	339	761	1471	3118	4443	8793			
	0,495	0,610	0,721	0,871	0,951	1,127			
360	349	784	1514	3210	4574	9052			
	0,510	0,628	0,742	0,897	0,979	1,160			
380	359	806	1557	3300	4702	9304			
	0,525	0,646	0,763	0,92	1,007	1,192			
400	369	827	1598	3388	4826	9702			
	0,539	0,663	0,783	0,946	1,033	1,243			
450	391	878	1696	3592	5121	10291			
	0,572	0,704	0,831	1,004	1,097	1,319			
500	413	927	1790	3793	5403	10848			
	0,604	0,743	0,878	1,059	1,157	1,390			
550	434	974	1880	3982	5765	11377			
	0,634	0,780	0,921	1,112	1,234	1,458			
600	454	1018	1965	4162	6021	11883			
	0,663	0,816	0,963	1,162	1,289	1,523			
650	473	1061	2047	4406	6267	12368			
	0,691	0,850	1,003	1,231	1,342	1,585			
700	491	1101	2126	4573	6504	12835			
	0,718	0,882	1,042	1,277	1 ,393	1,645			
750	509	1141	2202	4733	6732	13286			
	0,744	0,914	1,079	1,322	1,441	1,702			
800	526	1179	2275	4888	6953	13721			
	0,769	0,945	1,115	1,365	1,489	1,758			
850	543	1216	2346	5039	7167	14144			
	0,793	0,974	1,15	1,407	1,535	1,812			
900	559	1252	2415	5185	7375	14554			
	0,817	1,003	1,184	1,448	1,579	1,865			
950	574	1287	2523	5327	7577	14953			
	0,839	1,031	1,237	1,488	1,622	1,916			

Продолжение прил. 1

Потери давления на трение		Количество проходящей воды (верхняя строка), кг/ч, и скорость движения воды (нижняя строка), м/с, по трубам стальным электросварным прямошовным (ГОСТ 10704—76*) условным проходом, мм							
на 1 м, Па	15	20	25	32	40	50	65	80	100
1,6	10,0	52,3	101	155	260	497	1131	1789	3110
	0,018	0,043	0,046	0,048	0,056	0,066	0,082	0,093	0,107
1,7	10,6	55,3	101	161	268	514	1170	1849	3214
	0,028	0,045	0,046	0,050	0,057	0,068	0,085	0,096	0,110
1,8	11,2	56,5	103	166	277	530	1207	1908	3316
	0,021	0,046	0,047	0,052	0,059	0,071	0,088	0,099	0,114
1,9	11,9	57,8	105	171	286	547	1244	1965	3414
	0,022	0,047	0,048	0,053	0,061	0,073	0,090	0,102	0,117
2,0	12,5	59,0	106	176	294	562	1279	2021	3510
	0,025	0,048	0,049	0,055	0,063	0,075	0,093	0,105	0,120
2,2	13,7	61,4	109	186	311	591	1344	2124	3689
	0,025	0,50	0,050	0,058	0,067	0,079	0,098	0,110	0,127
2,4	15,0	62,7	115	196	325	621	1410	2227	3867
	0,028	0,051	0,053	0,061	0,070	0,083	0,102	0,115	0,133
2,6	16,2	65,1	119	204	340	649	1473	2326	4038
	0,030	0,053	0,055	0,063	0,073	0,086	0,107	0,120	0,139
2,8	17,5	66,3	125	212	354	676	1534	2422	4202
	0,032	0,054	0,057	0,066	0,076	0,090	0,111	0,125	0,144
3,0	18,7	67,6	130	221	368	702	1593	2514	4361
	0,034	0,055	0,059	0,069	0,079	0,093	0,116	0,130	0,150
3,4	21,2	71,2	139	237	394	752	1705	2690	4664
	0,039	0,058	0,064	0,074	0,084	0,100	0,124	0,139	0,160
3,6	22,5	72,5	144	244	407	776	1758	2774	4809
	0,041	0,059	0,066	0,074	0,087	0,103	0,128	0,144	0,165
3,8	23,7	73,7	148	252	419	799	1811	2855	4950
	0,044	0,060	0,068	0,078	0,090	0,106	0,131	0,148	0,170
4,0	25,0	74,9	152	259	431	822	1862	2935	5087
	0,046	0,061	0,070	0,081	0,092	0,109	0,135	0,152	0,175
4,5	28,1	74,0	163	277	461	874	1978	3119	5404
	0,052	0,060	0,075	0,086	0,099	0,116	0,144	0,161	0,185
5,0	31,2	78,2	173	294	486	925	2094	3300	5717
	0,057	0,064	0,079	0,091	0,104	0,123	0,152	0,171	0,196

Продолжение прил. 1

Потери давления на трение		ство про нижняя (мошов	строка), і	м/с, по т		альным	электро	сварны	
на 1 м, Па	15	20	25	32	40	50	65	80	100
5,5	34,4	82,6	181	308	512	975	2204	3474	6015
	0,063	0,067	0,083	0,096	0,110	0,130	0,160	0,180	0,206
6,0	35,6	86,8	190	323	537	1022	2310	3639	6300
	0,065	0,071	0,087	0,101	0,115	0,136	0,168	0,188	0,216
7,0	37,8	94,1	207	352	584	1111	2509	3950	6855
	0,069	0,077	0,095	0,109	0,125	0,148	0,182	0,204	0,235
7,5	38,8	97,8	215	365	607	1153	2603	4098	7089
	0,071	0,080	0,099	0,114	0,130	0,153	0,189	0,212	0,243
8,0	39,0	101	223	378	628	1194	2694	4240	7335
	0,073	0,083	0,102	0,118	0,135	0,159	0,196	0,219	0,252
8,5	40,5	105	230	391	649	1233	2782	4379	7573
	0,074	0,086	0,106	0,122	0,139	0,164	0,202	0,260	0,260
9,0	41,6	108	238	403	670	1271	2868	4513	7804
	0,076	0,088	0,109	0,126	0,143	0,169	0,208	0,234	0,268
9,5	42,1	112	245	415	689	1309	2951	4644	8029
	0,077	0,091	0,112	0,129	0,148	0,174	0,214	0,240	0,276
10,0	42,7	115	252	427	709	1345	3033	4771	8248
	0,078	0,094	0,116	0,133	0,152	0,179	0,220	0,247	0,283
11,0	44,3	121	265	449	745	1413	3185	5011	8661
	0,081	0,099	0,122	0,140	0,159	0,188	0,231	0,259	0,297
12,0	45,9	127	278	470	780	1480	3335	5246	9065
	0,084	0,103	0,127	0,146	0,167	0,197	0,242	0,271	0,311
14,0	48,1	138	302	511	848	1607	3618	5689	10187
	0,088	0,113	0,139	0,159	0,182	0,214	0,263	0,294	0,350
16,0	48,8	148	325	549	910	1725	3882	6101	10536
	0,090	0,121	0,149	0,171	0,195	0,230	0,282	0,316	0,362
18,0	52,0	158	346	585	969	1836	4129	6489	11202
	0,096	0,129	0,159	0,182	0,208	0,244	0,300	0,336	0,384
20,0	55,2	168	366	619	1025	1941	4364	6855	11832
	0,101	0,137	0,168	0,193	0,219	0,258	0,317	0,355	0,406
22,0	58,0	176	385	650	1077	2038	4582	7197	12421
	0,106	0,144	0,177	0,202	0,231	0,271	0,333	0,372	0,426

Продолжение прил. 1

Потери давления на трение		оличество проходящей воды (верхняя строка), кг/ч, и скорость движения воды (нижняя строка), м/с, по трубам стальным электросварным прямошовным (ГОСТ 10704—76*) условным проходом, мм							
на 1 м, Па	15	20	25	32	40	50	65	80	100
24,0	60,9	185	403	681	1128	2134	4795	7531	12995
	0,112	0,151	0,185	0,212	0,241	0,284	0,348	0,390	0,446
26,0	63,6	193	421	711	1176	2226	5000	7851	13545
	0,117	0,157	0,193	0,221	0,252	0,296	0,363	0,406	0,465
28,0	66,2	201	438	739	1224	2314	5197	8160	14075
	0,122	0,164	0,201	0,230	0,262	0,308	0,377	0,422	0,483
30,0	68,8	208	454	767	1269	2399	5387	8457	14586
	0,126	0,170	0,209	0,239	0,272	0,319	0,391	0,438	0,501
32,0	71,3	216	470	794	1313	2482	5571	8744	15080
	0,131	0,176	0,216	0,247	0,281	0,330	0,405	0,452	0,518
34,0	73,7	223	486	819	1355	2562	5749	9023	15559
	0,135	0,182	0,223	0,255	0,290	0,341	0,417	0,467	0,534
36,0	76,0	230	500	844	1396	2639	5922	9294	16024
	0,140	0,187	0,230	0,263	0,299	0,351	0,430	0,481	0,550
38,0	78,3	236	515	869	1437	2715	6090	9557	16476
	0,144	0,193	0,236	0,236	0,308	0,361	0,442	0,495	0,566
40,0	80,5	243	529	893	1476	2788	6254	9814	16917
	0,148	0,198	0,243	0,278	0,316	0,371	0,454	0,508	0,581
45,0	85,5	258	562	948	1567	2960	6639	10417	17956
	0,157	0,211	0,258	0,295	0,336	0,394	0,482	0,539	0,616
50,0	44,4	273	594	1002	1656	3127	7011	11000	18956
	0,137	0,223	0,273	0,312	0,355	0,416	0,509	0,569	0,651
55,0	95,4	287	625	1053	1740	3286	7365	11553	19907
	0,175	0,234	0,287	0,328	0,373	0,437	0,535	0,598	0,683
60,0	99,9	300	654	1102	1821	3438	7703	120820	20816
	0,184	0,246	0,300	0,343	0,390	0,458	0,559	0,625	0,714
65,0	104	314	682	1149	1899	3583	8028	12590	21687
	0,192	0,256	0,313	0,358	0,407	0,477	0,583	0,651	0,744
75,0	112	338	735	1239	2045	3859	8641	13549	23335
	0,701	0,276	0,338	0,386	0,438	0,514	0,628	0,701	0,801
80,0	57,4	350	760	1281	2115	3989	8933	14005	24111
	0,214	0,286	0,349	0,399	0,453	0,531	0,649	0,725	0,949

Продолжение прил. 1

Потери давления на трение		Количество проходящей воды (верхняя строка), кг/ч, и скорость движения воды (нижняя строка), м/с, по трубам стальным электросварным прямошовным (ГОСТ 10704–76*) условным проходом, мм							
на 1 м, Па	15	20	25	32	40	50	65	80	100
85,0	120	361	785	1322	2182	4116	9215	14446	24876
	0,221	0,295	0,361	0,412	0,467	0,548	0,669	0,748	0,854
90,0	124	373	809	1362	2248	4239	9490	14875	25613
	0,228	0,304	0,371	0,424	0,481	0,564	0,689	0,770	0,879
95,0	127	383	832	1401	2312	4359	9756	15292	26329
	0,235	0,313	0,382	0,436	0,495	0,580	0,708	0,791	0,904
100	131	394	855	1439	2374	4476	10015	15698	27026
	0,241	0,321	0,392	0,448	0,508	0,596	0,727	0,813	0,928
110	137	413	897	1510	2492	4697	10511	16473	28359
	0,253	0,338	0,412	0,470	0,534	0,625	0,763	0,852	0,973
120	144	433	939	1580	2606	4912	10989	17222	29645
	0,265	0,353	0,431	0,492	0,558	0,654	0,798	0,891	1,018
130	150	451	979	1647	2716	5118	11449	17940	30878
	0,277	0,368	0,449	0,513	0,582	0,681	0,832	0,928	1,060
140	156	469	1017	1711	2822	5317	11890	18631	32065
	0,288	0,383	0,467	0,533	0,604	0,708	0,863	0,863	1,101
150	162	486	1054	1773	2924	5508	12317	19298	33209
	0,298	0,397	0,484	0,552	0,626	0,733	0,894	0999	1,140
160	168	503	1090	1833	3022	5693	12729	19942	24317
	0,309	0,411	0,500	0,571	0,647	0,758	0,924	1,032	1,178
170	173	519	1125	1891	3118	5873	13129	20567	35957
	0319	0,424	0,516	0589	0,668	0,782	0,953	1,064	1,234
180	178	534	1158	1948	3211	6047	13517	21174	36999
	0,328	0,436	0,532	0,606	0,688	0,805	0,982	1,096	1,270
190	183	550	1191	2002	3301	6216	13894	21764	38013
	0,338	0,449	0,547	0,624	0,707	0,827	1,009	1,126	1,305
200	188	564	1223	2056	3389	6381	14261	22339	39001
	0,347	0,461	0,561	0,640	0,726	0,849	1,036	1,156	1,339
220	198	592	1283	2158	3556	6696	14964	23821	40904
	0,364	0,484	0,589	0,672	0,762	0,891	0,087	1,233	1,404
240	207	620	1342	2256	3718	7000	15641	24880	42723
	0,381	0,506	0,616	0,703	0,796	0,932	1,136	1,287	1,466

Окончание прил. 1

Потери давления на трение		Количество проходящей воды (верхняя строка), кг/ч, и скорость движения воды (нижняя строка), м/с, по трубам стальным электросварным прямошовным (ГОСТ 10704–76*) условным проходом, мм							
на 1 м, Па	15	20	25	32	40	50	65	80	100
260	216	646	1399	2351	3874	7292	16291	25896	44468
	0,398	0,528	0,642	0,732	0,830	0,971	1,183	1,340	1,526
280	225	672	1453	2442	4023	7573	17187	26874	46147
	0,413	0,548	0,667	0,760	0,862	1,008	1,248	1,391	1,584
300	233	696	1505	2530	4168	7843	17791	27817	47766
	0,428	0,568	0,691	0,787	0,892	1,044	1,292	1,439	1,640
320	241	719	1556	2615	4307	8105	18374	28730	49333
	0,443	0,587	0,714	0,814	0,922	1,079	1,334	1,487	1,693
340	249	742	1605	2697	4443	8359	18940	29614	50851
	0,457	0,606	0,737	0,840	0,951	1,113	1,375	1,532	1,745
360	256	764	1653	2777	4574	8606	19489	30472	52325
	0,471	0,624	0,759	0,865	0,979	1,145	1,415	1,577	1,796
380	263	786	1699	2855	4702	8845	20023	31307	53759
	0,484	0,642	0,780	0,889	1,177	1,177	1,454	1,620	1,845
400	270	807	1744	2930	4826	9226	20543	32121	55156
	0,497	0,659	0,801	0,912	1,033	1,228	1,192	1,662	1,893
450	287	1851	3109	5121	9785	21789	34069	58502	102220
	0,528	0,850	0,968	1,097	1,302	1,582	1,863	2,008	2,008
500	303	904	1954	3281	5403	10315	22968	35912	61666
	0,557	0,738	0,897	1,022	1,157	1,373	1,668	1,858	2,117
550	318	949	2051	3445	5765	10818	24089	37665	64676
	0,585	0,775	0,942	1,073	1,234	1,440	1,749	1,949	2,220
600	333	992	2144	3601	6021	11299	25160	39340	67552
	0,612	0,810	0,985	1,121	1,289	1,504	1,827	2,036	2,319
650	347	1034	2234	3750	6267	11761	26187	40946	70310
	0,638	0,844	1,026	1,168	1,342	1,565	1,902	2,119	2,413
700	361	1074	2319	3958	6504	12204	27176	42492	72964
	0,663	0,877	1,065	1,232	1,393	1,624	1,973	2,199	2,504
750	374	1112	2402	4097	6734	12633	28130	43983	75525
	0,687	0,908	1,103	1,276	1,441	1,681	2,043	2,276	2,592
800	386	1150	2483	4231	6953	13047	29052	45426	78002
	0,71	0,939	1,14	1,317	1,489	1,737	2,11	2,351	2,677

Коэффициент местных сопротивлений **ξ** для стальных трубопроводов

	Коэфо	рициен	тξприу	/СЛОВНО	ом диам	иетре,
Местное сопротивление	15	20	25	32	40	50 и более
Тройники: проходные поворотные на ответвление на противотоке	1 1,5 3	1 1,5 3	1 1,5 3	1 1,5 3	1 1,5 3	1 1,5 3
Крестовины: проходные поворотные	2 3	2 3	2 3	2 3	2 3	2 3
Вентили: обыкновенные прямоточные запорный муфтовый	16 3 15,9	10 3 10,5	9 3 9,3	9 2,5 8,6	8 2,5 7,6	7 2 6,9
Задвижки параллельные	_	_	0,5	0,5	0,5	0,5
Отвод гнутый под углом 90° под углом 45°	0,8 0,8	0,6 0,7	0,5 0,6	0,5 0,6	0,4 0,6	0,3 0,6
Кран регулирующий трехходовой: при проходе на повороте	3,5 4,5	3 3	<u> </u>	_ _	_ _	_ _
Кран регулирующий проходной	3,5	3	_	_	_	_
Кран двойной регулировки	4	2	2	2	_	_
Проточный воздухосборник	1,5	1,5	1,5	1,5	1,5	1,5
Радиатор чугунный	1,3	1,4	1,5	_	_	_
Стальные панельные радиаторы: РСВ РСГ	0,6 1,2	2,0 4,1	5,3 11,0	_ _	_ _	_ _
Конвекторы: «Ритм» «Комфорт–20» «Аккорд»	0,94 1,6 1,2	3,2 5,4 4,0	8,5 14,4 10,7	_ _ _	_ _ _	_ _ _

Приложение 3

Потери давления на местные сопротивления для расчетов трубопроводов водяного отопления

		uc icio		onpobo		диного		. 1111171	
v	Z'	v	Z'	ν	Z'	v	Z'	ν	Z'
0,010	0,05	0,185	16,8	0,360	63,3	0,57	159	1,40	958
0,015	0,11	0,190	17,6	0,365	65,1	0,58	164	1,45	1028
0,020	0,19	0,195	18,6	0,370	66,9	0,59	170	1,50	1100
0,025	0,30	0,20	19,6	0,375	68,7	0,60	176	1,55	1174
0,030	0,44	0,205	20,5	0,380	70,6	0,61	182	1,60	1251
0,035	0,60	0,210	21,6	0,385	72,5	0,62	188	1,65	1331
0,040	0,78	0,215	22,6	0,390	74,3	0,63	194	1,70	1413
0,045	0,99	0,220	23,7	0,395	76,3	0,64	200	1,75	1497
0,050	1,22	0,225	24,7	0,40	78,2	0,65	206	1,80	1583
0,055	1,48	0,230	25,9	0,405	80,1	0,66	213	1,85	1673
0,060	1,76	0,235	27,0	0,410	82,2	0,67	219	1,90	1764
0,065	2,06	0,240	28,1	0,415	84,2	0,68	226	1,95	1859
0,070	2,39	0,245	29,3	0,420	86,2	0,69	233	2,00	1955
0,075	2,75	0,250	30,5	0,425	88,3	0,70	239	2,05	2054
0,080	3,13	0,255	31,8	0,430	90,4	0,71	246	2,10	2156
0,085	3,53	0,260	33,0	0,435	92,5	0,72	253	2,15	2260
0,090	3,96	0,265	34,3	0,440	94,6	0,73	260	2,20	2366
0,095	4,41	0,270	35,6	0,445	96,8	0,74	268	2,25	2475
0,10	4,89	0,275	37,0	0,450	99,0	0,75	275	2,30	2586
0,105	5,39	0,280	38,3	0,455	101	0,76	282	2,35	2700
0,110	5,91	0,285	39,7	0,460	103	0,77	290	2,40	2816
0,115	6,46	0,290	41,1	0,465	105	0,78	297	2,45	2934
0,120	7,04	0,295	42,5	0,470	107	0,79	305	2,50	3055
0,125	7,64	0,300	44,0	0,475	110	0,80	313	2,55	3179
0,130	8,26	0,305	45,5	0,480	112	0,85	353	2,60	3305
0,135	8,91	0,310	47,0	0,485	115	0,90	396	2,65	3433
0,140	9,58	0,315	48,5	0,490	117	0,95	441	2,70	3564
0,145	10,3	0,320	50,0	0,495	120	1,00	489	2,75	3697
0,150	11,7	0,325	51,6	0,500	122	1,05	539	2,80	3833
0,155	11,7	0,330	53,2	0,51	127	1,10	592	2,85	3971
0,160	12,5	0,335	54,9	0,52	132	1,15	646	2,90	4111
0,165	13,3	0,340	56,5	0,53	137	1,20	704	2,95	4254
0,170	14,1	0,345	58,2	0,54	142	1,25	764	3,00	4399
0,175	15,0	0,350	59,9	0,55	148	1,30	826		
0,180	15,7	0,355	61,6	0,56	153	1,35	891		

0,100 13,7 0,355 61,6 0,56 153 1,35 891 10,000

Приложение 4
Теплоотдача открыто проложенных стальных трубопроводов (вертикальных – верхняя, горизонтальных – нижняя строка)

$t_{\scriptscriptstyle \Gamma} - t_{\scriptscriptstyle \mathrm{R}}$	1			Tei	плоотд	цача 1	м труб	ы, Вт/	'M ² ,		
${}^{t_{\Gamma}-t_{B}}$, ${}^{\circ}C$	d, mm	0	1	2	при <i>t</i> _г	$-t_{\rm B}$, -4	м трус С, чере 5	6	7	8	9
		28	30	30	31	32	34	34	35	36	37
	15	38	39	41	42	43	44	44	46	47	49
	20	36	37	38	39	41	42	43	44	45	46
	20	46	47	50	52	53	55	57	58	59	60
	25	44	46	47	49	51	52	53	55	56	58
40	23	57	59	63	65	66	68	71	72	74	75
40	32	56	58	60	61	64	65	67	68	71	73
	32	74	77	79	81	84	86	89	92	94	96
	40	64	66	68	70	72	74	77	78	80	82
	40	77	79	80	84	86	88	89	92	94	97
	50	79	82	85	87	88	93	95	97	100	103
	30	93	95	99	101	105	107	110	113	115	118
	15	38	38	39	41	41	43	44	44	45	46
	13	50	51	52	53	56	57	58	59	60	61
	20	47	49	50	51	52	53	54	56	57	58
	20	60	61	64	65	66	68	70	71	73	74
	25	59	60	62	64	65	67	68	70	71	73
50	23	73	74	76	79	80	82	85	86	88	91
50	22	74	76	78	80	82	84	86	88	91	92
	32	91	92	94	96	99	101	103	106	108	112
	40	85	86	88	91	93	96	97	99	101	103
	40	100	102	106	108	110	113	116	118	121	124
	50	106	108	111	114	117	120	123	125	128	131
	50	122	125	129	132	135	138	141	144	148	151
	1.5	47	49	50	51	52	53	55	55	56	57
	15	63	65	66	67	69	70	71	73	74	75
(0)	20	59	61	63	64	65	66	67	68	70	72
60		77	79	80	81	83	85	86	88	89	92
		74	76	78	79	81	83	85	86	88	89
	25	92	94	96	98	100	102	104	106	108	110

Окончание прил. 4

$t_{\Gamma}-t_{\mathrm{B}},$	<i>d</i> , мм			Tei	плоотд при <i>t</i> -	(ача 1 — t _ъ °(м труб С, чере	ы, Вт/ гз 1 °С	'M ² ,		
°C	<i>w</i> , 11111	0	1	2	3	4	5	6	7	8	9
	32	94	96	98	100	102	105	106	108	110	113
	32	114	115	118	121	123	125	128	130	132	135
60	40	107	109	111	114	116	119	121	123	125	128
00	40	127	129	132	135	137	141	143	145	149	151
	50	134	137	141	143	146	149	152	156	158	162
	30	155	157	160	164	167	171	174	177	182	185
	15	59	60	61	63	64	65	66	67	68	70
	13	77	79	80	81	82	84	86	87	89	91
	20	74	75	77	78	80	81	83	84	86	87
	20	93	95	96	97	100	102	103	105	107	108
	25	93	94	96	97	100	101	103	107	107	109
70	23	113	114	116	118	121	123	125	128	128	131
70	32	117	119	121	123	125	128	130	133	135	137
	32	138	141	143	145	148	151	153	156	159	162
	40	132	135	137	140	143	145	148	151	152	154
	40	155	157	160	163	166	168	172	174	178	180
	50	165	167	171	174	178	180	185	187	191	194
	30	187	191	194	198	202	205	208	213	215	218
	15	71	72	73	74	75	77	78	79	81	81
	13	92	93	94	96	98	100	101	101	102	105
	20	88	89	92	93	94	96	98	99	101	102
	20	109	111	114	115	117	120	121	123	125	127
	25	110	113	114	116	119	120	122	124	125	128
80		134	136	138	141	143	145	146	149	151	153
00	32	139	142	144	146	149	151	153	156	158	160
	J <u>2</u>	164	166	170	172	174	178	180	182	184	186
	40	158	160	165	166	169	173	174	177	180	182
		184	186	189	192	195	198	201	204	208	210
		196	200	203	207	210	214	217	221	224	228
		223	227	230	235	238	242	246	250	253	257

Приложение 5 Техническая характеристика отопительных приборов

	Площадь	Номиналь-	Стро	ительны	е размер	ы, мм	
Обозначение	нагревательной		1	1	1	1	Macca,
прибора	поверхности f_c ,	вой поток $Q_{ m np},{ m Bt}$	ι	l_1	l_2	l_3	ΚΓ
Pa	циаторы чугун	ные секцион	ные (Г	OCT 31	311–200	05)	
MC-140-108	0,244	185	500	558	140	108	7,62
MC-140-98	0,240	174	500	558	140	98	7,4
M-90	0,2	140	500	582	90	96	6,15
MC-90-108	0,187	150	500	588	90	108	6,15
	Pa	циаторы алю	миние	вые			
«ELEGANCE»	0,413	190	500	577	85	80	1,5
«СИАЛКО»	0,188	112	500	530	93	30	0,925
«Термал»	0,413	167	500	531	92	67	1,83
Конвекторь	и настенные с	кожухом «У	ниверс	ал-С» (1	ГОСТ 3	1311–20	005)
КН20-1,593к	4,61	1593	850	728	865	650	20,21
КН20-1,716к	4,97	1716	900	778	915	700	23,4
КН20-1,838к	5,325	1838	950	828	965	750	24,73
КН20-1,961к	5,68	1961	1000	878	1015	800	26,16
КН20-2,063к	6,035	2063	1050	928	1065	850	27,47
КН20-2,206к	6,39	2206	1100	978	1115	900	29,16
КН20-2,348к	6,745	2328	1150	1028	1165	950	30,46
КН20-2,451к	7,1	2451	1200	1078	1215	1000	31,91
Конвекторі	ы настенные с	кожухом «К	Сомфор	г-20» (Г	OCT 3	1311–20	005)
КН20-0,372к	0,81	372	340	200	300	140	5,6
КН20-0,515к	1,12	515	440	300	400	240	7,15
КН20-0,655к	1,42	655	540	400	500	340	8,68
КН20-0,820к	1,775	820	640	500	600	440	10,24
КН20-0,985к	2,13	985	740	600	700	540	11,75
КН20-1,150к	2,485	1150	840	700	800	640	13,32
КН20-1,315к	2,84	1315	940	800	900	740	14,87
КН20-1,475к	3,195	1475	1040	900	1000	840	16,39
КН20-1,640к	3,55	1640	1140	1000	1100	940	17,94
КН20-1,805к	3,905	1805	1240	1100	1200	1040	19,51
КН20-1,970к	4,26	1970	1340	1200	1300	1140	21,02

Приложение 6

Размеры каналов из кирпича

Размер,	Площадь поперечного сечения, м ²	Размер,	Площадь поперечного сечения, м ²	Размер,	Площадь поперечного сечения, м ²
140×140	0,02	400×400	0,16	530×650	0,35
140×270	0,038	400×530	0,21	530×790	0,42
270×270	0,073	400×650	0,26	530×1060	0,56
270×400	0,111	400×790	0,32	650×650	0,43
270×530	0,143	530×530	0,28	650×790	0,52

Приложение 7

Площадь живого сечения каналов из шлакогипсовых и шлакобетонных плит, м^2

Б,			A	, MM		
MM	150	250	350	450	550	650
220	0,033	0,055	0,077	0,096	0,121	0,143
320	0,048	0,08	0,112	0,144	0,176	0,208
420	0,063	0,105	0,147	0,189	0,231	0,273
520	0,078	0,13	0,182	0,234	0,286	0,338
620	0,093	0,155	0,217	0,279	0,341	0,402
720	0,108	0,18	0,257	0,324	0,396	0,467
820	0,123	0,205	0,297	0,37	0,45	0,532
920	0,138	0,23	0,322	0,415	0,505	0,6

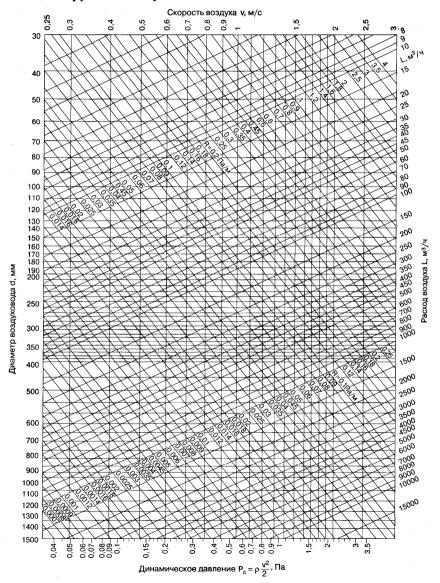
Приложение 8

Нормируемые размеры круглых воздуховодов из листовой стали

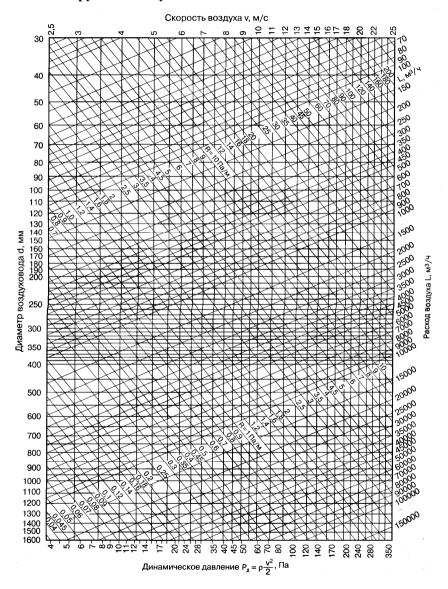
d, mm	Площадь попереч- ного сечения, м ²	d, mm	Площадь попереч- ного сечения, м ²
100	0,0079	630	0,312
125	0,0123	710	0,396
160	0,02	800	0,501
200	0,0314	900	0,635
250	0,0049	1000	0,785
315	0,0615	1120	0,985
355	0,099	1250	1,23
400	0,126	1400	1,54
450	0,159	1600	2,01
500	0,96	1800	2,54
560	0,246	2000	3,14

Приложение 9

Нормируемые размеры прямоугольных воздуховодов из листовой стали


Внутренний размер, мм	Площадь поперечного сечения, м ²	Внутренний размер, мм	Площадь поперечного сечения, м ²
100×150	0,015	600×600	0,36
150×150	0,0225	600×800	0,48
150×250	0,0375	600×1000	0,6
150×300	0,045	600×1250	0,75
250×250	0,0625	800×800	0,64
250×300	0,075	800×1000	0,8
250×400	0,1	800×1200	0,96
250×500	0,125	800×1600	1,28
400×400	0,16	1000×1000	1,0
400×500	0,2	1000×1250	1,25
400×600	0,24	1000×1600	1,6
400×800	0,32	1000×2000	2,9
500×500	0,25	1250×1250	1,56
500×600	0,3	1250×1600	2,0
500×800	0,4	1250×2000	2,5
500×1000	0,5	1600×2000	3,2

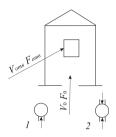
Приложение 10


Абсолютная эквивалентная шероховатость материалов, применяемых для изготовления воздуховодов

Материал	k_3 , mm	Материал	$k_{\scriptscriptstyle 9}$, мм
Листовая сталь	0,1	Шлакобетонные плиты	1,5
Асбестоцементные плиты или трубы	0,11	Кирпич	4
Фанера	0,12	Штукатурка (по сетке)	10
Шлакоалебастровые плиты	1		

Номограмма для определения потерь давления на трение в круглых воздуховодах естественной вентиляции

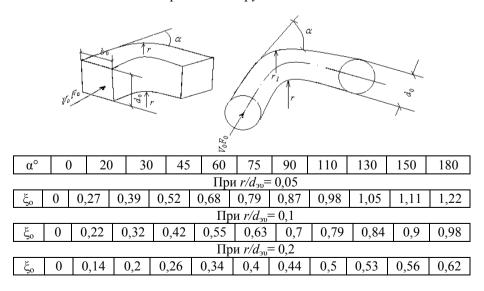
Номограмма для определения потерь давления на трение в круглых воздуховодах механической вентиляции



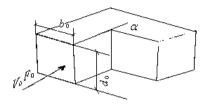
Приложение 13 Коэффициент шероховатости поверхности канала

Скорость дви-		Материал воз	здуховода	
жения воздуха, м/с	шлакогипс	шлакобетон	кирпич	штукатурка по сетке
0,2	1,04	1,06	1,15	1,31
0,4	1,08	1,11	1,25	1,48
0,6	1,11	1,16	1,33	1,6
0,8	1,13	1,19	1,4	1,69
1	1,16	1,23	1,46	1,77
1,2 1,4	1,18	1,25	1,5	1,84
1,4	1,2	1,28	1,55	1,95
1,6	1,22	1,31	1,58	1,95
3	1,25	1,35	1,65	2,04
	1,32	1,43	1,77	2,2
4	1,37	1,49	1,86	2,32
5	1,41	1,54	1,93	2,41
6	1,44	1,58	1,98	2,48
7	1,47	1,61	2,03	2,54
8	1,49	1,64	2,06	2,58
9	1,51	1,66	2,1	2,62
10	1,53	1,68	2,12	2,66
11	1,54	1,7	2,15	2,69
12	1,56	1,71	2,17	2,72

Значения коэффициентов местных сопротивлений


Значения ξ первого бокового отверстия

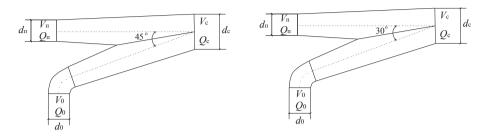
1. Одно отверстие


				0 7	-1				
$F_{\text{отв,}}/F_0$	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
ξο	64,5	30	14,9	9	6,27	4,54	3,54	2,7	2,28
		2. Дв	а отверс	тия (од	но проти	ив друго	го)		
$2F_{\text{отв,}}/F_0$	0,4	0,5	0,6	0,7	0,8	0,9	1	1,4	1,8
ξο	17	12	8,75	6,85	5,5	4,54	3,84	2,01	1,1

Значения *ξ* колена с закругленными кромками квадратного и круглого сечений

Продолжение прил. 14

Значения *ξ* колена с острыми кромками квадратного и круглого сечений



α°	0	20	30	45	60	75	90	110	130	150	180
ξ_0	0	0,13	0,16	0,32	0,56	0,81	1,2	1,9	2,6	3,2	3,6

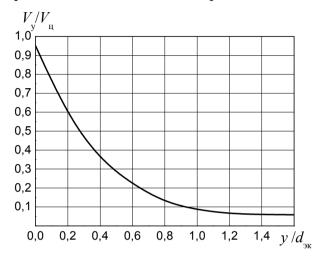
Значения ξ_{o} и ξ_{π} тройника прямого 90^{o} вытяжного прямоугольного сечения F_{π} = F_{c}

$F_{\rm o}/F_{\rm m}$		Значен	ия ξ _о (в	числит	геле) и	ξπ (в зн	аменат	еле) при	$L_{\rm o}/L_{\rm c}$	
Ι' 0/ Ι' П	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
0,1	0,3	<u>0,9</u> 0,5	<u>1</u> 0,9	<u>1</u> 1,5	1 2,5	<u>1</u> 4,4	<u>1</u> 8,4	$\frac{1}{20}$	1 82	<u>1</u>
0,1	$\frac{0.3}{0.2}$			1,5	2,5	4,4	8,4	20	82	∞
0,2	$\frac{-1,7}{0,2}$	0,6 0,4	1 0,8	<u>1</u>	<u>1</u> 2,1	<u>1</u> 3,7	1	1/16,7	<u>1</u> 69	<u>1</u>
0,2	0,2		0,8	<u>1</u> 1,3			7,1	16,7		∞
0,4	-2,4 0,2 -21 0,2	-0.6	<u>0,7</u> 0,6	<u>1</u> 1	1,1 1,6	$\frac{1,1}{2,8}$	$\frac{1,1}{5,2}$	<u>1,1</u>	1,1 51	<u>1,1</u> ∞
0,4	0,2	0,4		1		2,8	5,2	1,1 12,3		
0,6	<u>-21</u>	-2,7	<u>0,1</u> 0,6	0,9	1,1 1,3	<u>1</u>	1,2	1,2 9,5 1,3 7,6	1,2 39	<u>1,2</u>
0,0	0,2	0,4	0,6	0,8	1,3	2,2	4,1	9,5	39	∞
0.0	- <u>37</u>	- <u>5,5</u> 0,4		0,6	<u>1,1</u>	<u>1,2</u>	1,3 3,3	1,3	1,2 31	1,2 ∞
0,8	0,8	0,4	- <u>0,7</u> 0,5	$\frac{0.6}{0.7}$	1,1 1,1	1,2 1,8	3,3	7,6	31	∞
1	- <u>50</u>	-8,8	-1,7	<u>0,3</u> 0,7	1,1 1	1,3 1,6	1,3 2,8	1,3 6,3	1,3 2,5	1,3 ∞
1	$ \begin{array}{r} -37 \\ 0.8 \\ -50 \\ 0.3 \end{array} $	0,4	0,5	0,7	1	1,6	2,8	6,3	2,5	∞

Продолжение прил. 14 Значения *ξ* при слиянии и разделении потока

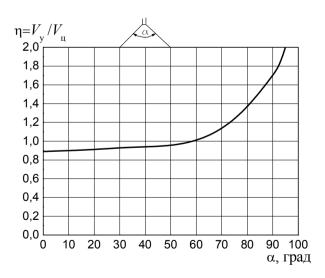
Отно-	31	начен	ия Е	вот	ветвл	ении	(верх	княя	строк	а) и :	значе	ния д	£п В П	poxo.	ле (н	ижня	я стр	ока)	при С) _n < () c
шение $d_{\rm o}$						0,05							0,7		0,5			0,7	0,6		0,4
и d _c			d_{Π}	$=d_{c}$					$d_{\Pi} < d_{c}$	на К				<i>d</i> _π <	$d_{\rm c}$ на	2K		a	$d_{\rm II} < d_{\rm c}$	на ЗК	
					Тр	ойни	к выт	яжно	ой пр	ямой	30° ı	сругл	ого с	ечен	ия						
$d_{\rm o} < d_{\rm c}$	-0,2	-1	-3,7				-0,1	-0,5	-1,5	-4,8											i l
на К	0,3	0,4	0,3				0,1	0,3	0,3	0,3											i l
$d_{\rm o} < d_{\rm c}$	0,3	0	-1,3	-7,4			0,4	0,2	-0,3	-1,8	-9,5		0,4	0,3	0	-0,6	-2,5				
на 2К	0,3	0,3	0,3	0,3			0	0,2	0,3	0,3	0,3		-0,9	-0,1	0,2	0,3	0,3				İ
$d_{\rm o} < d_{\rm c}$	0,8	0,6	0	-3			0,8	0,7	0,5	-0,3	-3,9		0,8	0,8	0,7	0,4	-0,6	0,7	0,7	0,5	0,2
на 3К	0,1	0,3	0,3	0,3			-0,2	0,1	0,3	0,3	0,3		-1,2	-0,3	0,1	0,3	0,3	-1,2	-0,3	0,1	0,3
$d_{\rm o} < d_{\rm c}$	1	1	0,7	-0,9	-21,4		1	1	0,9	0,5	-1,4			1	1	0,8	0,3	1	0,9	0,9	0,7
на 4К	-0,1	0,2	0,2	0,3	0,2		-0,6	0	0,2	0,2	0,3			-0,5	0	0,2	0,3	-1,5		0	0,3
$d_{\rm o} < d_{\rm c}$	1.1	1	0.9	0.1	-10,2		1,1	1	1	0,8	-0.2	-13,1		1	1	0.9	0.6				
на 5К	-0,4	0	0,2	0,2	0,2		-1	-0,2	0,1	0,2	0,2	0,2		-0,7	-0,2	0,1	0,2				İ
$d_{\rm o} < d_{\rm c}$	1,1	1	0,9	0,5	-4,3			1	1	0.9	0,4	-5,6			1	0.9	0.8				
на 6К		-0,2	0,1	0,2	0,2			-0,5	-0,1	0,1	0,2	0,2			-0,4	0	0,1				İ
$d_0 \leq d_c$		1,1	1	0,7	-1,8				1	0.9	0,6	-2,4									
на 7К		-0,6	-0,1	0,1	0,1				-0,3	0	0,1	0.2									i l
$d_{\rm o} < d_{\rm c}$			1.1	0.9	-0.5	-14,7			1.1	1	0.8	-0.9									
на 8К			-0,4	-0.1	0,1	0,1			-0,6	-	0,8	0,1									i l
$d_0 < d_c$			1,4	1,1	0,3	-5,9			- ,-	1,2	1	0									
и₀~ис на 9К			-1	-0,3		0				-0,4	0.1	0									i l
$d_0 < d_c$				1,4	0,7	-2,3				-,.	-,-	_									
<i>и</i> _о <i>и</i> _с на 10К				-0.8		-0.2															i l
nu ron				0,0	,	-0,2 ойни	K BLIT	ажы	й пр	ямой	45° 1	cnvr	OFO C	euen	иа			<u> </u>			Щ
$d_0 < d_c$	0,2	-0,6	-3,2		. p	OFIII PI	0,4	0	-1.1	-4,3	1 01	тругл	0100	~ 1011							\Box
<i>a</i> ₀ <i>`a</i> с на К	0,2	0,4	0,3				0,4	0,4	0,4	0,4											
	Ĺ			7 2							0.2		0.5	0.4	0.2	0.5	2.4				\vdash
<i>d</i> ₀< <i>d</i> с на 2К	0,5 0,3	0,1 0,3	-1,2 0,3	-7,3 0,3			0,5	0,3	-0,1 0,4	-1,7 0,4	-9,3 0,3		0,5	0,4	0,2 0,4	-0,5 0,5	-2,4 0,4				
-	ŕ		ŕ	ŕ					<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>	0.5	0.4	0.2	0.1
<i>d</i> ₀< <i>d</i> с на 3К	0,5	0,4	-0,2 0,3	-3,2 0,3			0,5	0,5	0,3	-0,5 0,3	-4,2 0,3		0,5 -0.5	0,5 0,1	0,4	0,1 0,4	-0,9	0,5	0,4	0,3	-0,1 0,6
	-,		ŕ	ŕ			-,		<u> </u>		<u> </u>		-0,3	-,			0,4			- ,-	L -
$d_{\rm o} < d_{\rm c}$	0,6	0,5	0,2	-1,3	-21,9 0.2		0,6	0,6	0,5	0,1	-1,8			0,5	0,5	0,4	-0,2	0,5	0,5	0,4	0,2
на 4К	-0,1	0,2	0,2	0,3	0,2		-0,4	0,1	0,3	0,3	0,3			-0,1	0,2	0,4	0,4	-0,4	0,1	0,4	0,3

Значения է диафрагм для воздуховодов прямоугольного сечения


3.5			Pa	Размеры отверстия диафрагмы, мм, при сечении прямоугольного воздуховода, мм	ерстия ди.	афрагмы,	мм, при с	ечении пр	ымоуголы	ного возду	/ховода, м	IM		
ம	100×150	150×150	150×250	250×250	250×300	250×400	250×500	400×400	$250{\times}400 \hspace{0.1cm} 250{\times}500 \hspace{0.1cm} 400{\times}400 \hspace{0.1cm} 400{\times}500 \hspace{0.1cm} 400{\times}600 \hspace{0.1cm} 400{\times}800$	400×600	400×800	500×500	200×600	500×800
0,2	93×143	141×141	138×238	235×235	233×283	281×381	229×479	375×375	373×473	370×570	367×767	469×469	466×566	462×762
0,3	89×139	137×137	133×233		228×228 226×276 223×373		221×471 364×364	364×364	361×461	357×557	353×753	465×455	452×552	445×745
0,4	87×137	134×134	130×230	130×230 224×224 221×271 218×368	221×271	218×368	215×465 358×358	358×358		353×453 349×549 344×744	344×744	447×447	442×542	435×735
0,5	86×136	133×133	128×228	128×228 221×221 218×268 214×364 211×461 353×353	218×268	214×364	211×461	353×353	348×448	348×448 344×544 338×738 442×442	338×738	442×442	436×536	428×728
9,0	84×134	130×130	125×225	125×225 217×217	214×264 209×359	209×359	206×456 346×346	346×346		341×441 336×536 329×729	329×729	433×433	427×527	418×718
0,7	83×133	128×128	123×223	214×214 210×260	210×260	205×355	202×452	342×342		335×435 330×530 323×723	323×723	427×427	421×521	411×711
8,0	82×132	127×127		122×222 212×212 209×259 204×354	209×259	204×354	200×450 340×340	340×340	333×433	333×433 328×528 320×720	320×720	424×424	417×517	407×707
6,0	81×131	126×126		120×220 209×209	206×256 200×350	200×350	196×446 335×335	335×335		228×428 322×522 314×714	314×714	418×418	411×511	400×700
-	80×130	125×125	118×218	208×208 204×254 196×348	204×254	196×348	194×444	332×332	194×444 332×332 325×425 319×519 311×711	319×519	311×711	415×415	408×508	396×96E
1,1	78×128	123×123	116×216	205×205	201×251	195×345	190×440 327×327	327×327	320×420 313×513	313×513	304×704	409×409	401×501	389×688
1,2	78×128	122×122	115×215	203×203	199×249 193×343		188×438	325×325	$188{\times}438 \ \ 325{\times}325 \ \ 317{\times}417 \ \ 310{\times}510 \ \ 301{\times}701$	$310\!\!\times\!\!510$	301×701	406×406 398×498	398×498	385×685
1,3	77×127	121×121	114×214	202×202	197×247 191×341		186×436 323×323	323×323	314×414	314×414 307×507 298×698	298×698	403×403	394×494	382×682
1,4	76×126		120×120 113×213	200×200 196×246 189×339 184×434 320×320 311×411 305×505 295×695	196×246	189×339	$184{\times}434$	320×320	$311{\times}411$	$305 \!\!\times\!\! 505$	295×695	400×400	391×391	378×678
1,6	75×125	119×119	112×212	861×861	194×244 187×337		182×432	318×318		309×409 302×502 292×692	292×692	397×397	388×498	374×674
1,8	74×124	117×117	109×109	109×109 195×195 190×240 183×333 178×428 312×312	190×240	183×333	178×428	312×312		303×403 296×496 285×685	285×685	391×391	381×481	366×666
2	72×122	115×115		107×207 192×192	187×237 179×329 174×424 307×307	179×329	174×424	307×307	297×397	297×397 289×489 278×678	278×678	384×384	374×474	358×658
2,2	72×122	114×114	106×206	106×206 190×190 185×235 177×327	185×235	177×327	172×422 305×305	305×305	294×394	294×394 286×486 275×675	275×675	381×381	370×470	355×655
2,4	70×120	112×112	$103{\times}203$	187×187	182×232 173×323	173×323	168×418	299×299	168×418 299×299 288×388 280×480 268×668	280×480	268×668	374×374	363×463	347×647
2,6	69×119	111×111	102×202	185×185	180×230 171×321		$166 {\times} 416$	297×297		285×385 277×477 265×665	265×665	371×371	359×459	342×642
2,8	68×118		$101{\times}201$	$100\times110 \mid 101\times201 \mid 184\times184 \mid 178\times228 \mid 169\times319 \mid 163\times413 \mid 294\times294 \mid 282\times382 \mid 274\times474 \mid 261\times661 \mid 367\times367 \mid 356\times456 \mid 281\times281 \mid 281\times$	$178{\times}228$	$169{\times}319$	$163{\times}413$	294×294	282×382	274×474	261×661	367×367	356×456	$338{\times}638$
3	$68{\times}118$		$100{\times}200$	109×109 100×200 182×182 176×226 167×317 161×411 291×291 279×379 270×470 258×658 364×364 352×452 334×634	176×226	$167 \!\!\times\! 317$	$161{\times}411$	291×291	279×379	270×470	258×658	364×364	352×452	334×634

3.5			Pa	Размеры отверсгия диафрагмы, мм, при сечении прямоугольного воздуховода, мм	ерстия ди	афрагмы, 1	мм, при се	ечении пр	ямоуголы	ного возду	/ховода, м	IM		
ហ	100×150		150×150 150×250	250×250	250×300	250×400 250×500 400×400 400×500	250×500	400×400	400×500	400×600	400×800	500×500	500×500 500×600	500×800
3,2	67×117	108×108	861×86	180×180	174×224	165×315	159×409	288×288	288×288 276×376	267×467	254×654	361×361	348×448	330×630
3,4	66×116	108×108	861×86	$6L1\times6L1$	179×179 173×223	164×314 158×408		287×287	287×287 275×375	266×466 253×653	253×653	359×359	359×359 346×446 328×628	328×628
3,6	66×116	107×107	$L61\times L6$	179×179 172×222	172×222	163×313	157×407	286×286	286×286 273×374	264×464	251×651	357×357	344×344	326×626
3,8	65×115	106×106	95×195	176×176 169×219	169×219	160×310 153×403	153×403	281×281	269×369	281×281 269×369 259×459 245×645 352×352	245×645	352×352	339×439	320×620
4	64×114	105×105	95×195	175×175 168×218	168×218	150×309 152×402 280×280 267×367	152×402	280×280	267×367	257×457	244×644	350×350	244×644 350×350 337×437	317×617
4,5	63×113	103×103	92×192	171×171 164×214		154×304 148×398		273×274 261×361		250×450 237×637 343×343 329×429 309×609	237×637	343×343	329×429	309×608
2	61×111	$101{\times}101$	061×06	169×169 161×214	161×214	151×301	143×394	270×270	270×270 256×356	245×445	231×631	337×337	323×423	302×602
5,5	60×110	100×100	88×188	166×166 158×208	158×208	148×298	141×391	265×265 251×351	251×351	240×440	225×625 332×332	332×332	317×417	296×596
9	59×109	86×86	87×187	164×164 156×206	156×206	146×296 138×288 262×262 248×348 237×437	138×288	262×262	248×348	237×437	221×621 328×328	328×328	313×413	291×591
7	57×107	96×96	$84{\times}184$	160×160 152×202	152×202	141×291 134×384 256×256 241×341	134×384	256×256	241×341	229×429	214×614	320×320	229×429 214×614 320×320 304×504 282×582	282×582
7,5	56×106	56×56	$82{\times}182$	158×158 150×200	150×200	139×289 131×381		253×253	237×337	253×253 237×337 226×426 210×609 316×316 300×400 277×577	210×609	$316 {\times} 316$	300×400	277×577
8	$55{\times}105$	63×63	$80{\times}180$	155×155 147×197	147×197	135×285 128×378		248×248 232×332	232×332	220×420	204×604	$310{\times}310$	220×420 204×604 310×310 294×394 270×570	270×570
8,5	$55{\times}105$	63×63	621×62	_	146×196	134×284 126×376	126×376	247×247	247×247 230×330	218×418	202×602	$308{\times}308$	292×392	268×568
6	$54{\times}104$	91×91	$78{\times}178$	$152 {\times} 152$	$143{\times}193$	132×282 124×374		243×243 227×327	227×327	214×414 198×598	198×598	$304{\times}304$	287×387 263×563	$263{\times}563$
9,5	$53{\times}103$	06×06	77×177	_	$141{\times}191$	129×279 121×371	121×371	240×240 223×323	223×323	211×411 194×594	194×594	$300{\times}300$	300×300 282×382 258×558	258×558
10	52×102	68×68	921×92	149×149 140×190	140×190	$128{\times}278 \ \ 120{\times}370 \ \ 238{\times}238 \ \ 221{\times}321$	120×370	238×238	221×321	209×409	192×592	298×298	209×409 192×592 298×298 280×380 256×556	256×556
11	$51{\times}101$	88×88	74×174	147×147 138×188	$138{\times}188$	125×275	117×367	235×235	235×235 217×317	205×405 188×588	188×588	294×294	294×294 276×376 251×551	$251{\times}551$
12	50×100	98×98	72×172	144×144	134×184	122×271	114×364	230×230 212×311	212×311	199×399 182×582		287×287	269×369 243×543	243×543
13	49×99	85×85	0.1×0.7	141×141	132×182	119×269 111×361		226×226 208×308		195×395	177×577	283×283	264×364 238×538	238×538
14	48×98	84×84	$70{\times}170$	140×140 131×181		118×268 110×360 225×225 206×306	110×360	225×225	206×306	193×393 175×575 281×281 261×361 235×535	175×575	$281{\times}281$	$261 {\times} 361$	235×535
15	48×98	84×84	691×69	139×139	130×180	139×139 130×180 116×266 108×358 223×223 204×304 191×391 173×573 278×278 259×359 233×533	108×358	223×223	204×304	191×391	173×573	278×278	259×359	233×533

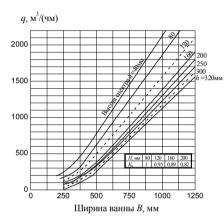
Окончание прил. 14 3начения ξ диафрагм для воздуховодов круглого сечения

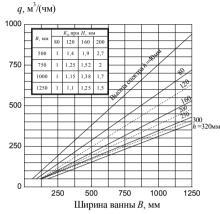

ĸ		Į	Циамет	р отве	рстия д	циафра	гмы, м	м, при	диаме	тре во	здухов	ода, мі	М	
ξ	100	125	160	200	250	315	355	400	450	500	560	630	710	800
0,3	91	110	146	182	228	287	324	365	410	456	511	574	647	729
0,5	88	110	141	176	220	278	313	353	397	441	494	555	626	705
0,7	86	107	137	172	215	270	305	343	386	429	481	541	609	687
0,9	84	105	134	168	210	264	298	336	378	420	470	529	596	671
1,1	82	103	132	165	206	260	292	329	370	411	461	518	584	658
1,4	80	100	128	160	201	253	285	321	361	401	449	505	570	642
1,6	89	99	126	158	198	249	281	316	356	395	443	498	561	632
1,8	78	97	125	156	195	246	277	312	351	390	436	491	553	624
2,0	77	96	123	154	192	242	273	308	346	385	431	485	546	616
2,2	76	95	122	152	190	239	270	304	342	380	426	479	540	608
2,4	75	94	120	150	188	237	267	301	338	376	421	474	534	601
2,8	74	92	118	147	184	232	261	295	331	368	412	464	523	589
3,2	72	90	116	145	181	228	257	289	325	361	405	455	513	578
3,6	71	89	114	142	178	224	252	284	320	355	398	448	505	569
4,0	70	87	112	140	175	220	248	280	315	350	392	441	497	560
4,5	69	86	110	137	172	217	244	275	309	344	385	433	488	550
5,5	67	83	107	133	167	210	236	266	300	33	373	420	473	533
6,5	65	81	104	130	162	204	230	259	292	324	363	408	460	518
7,5	63	79	101	127	158	199	225	253	285	316	354	399	449	506
8,5	62	77	99	124	155	195	220	248	279	310	347	390	440	495
9,5	61	76	97	121	152	191	215	243	273	303	340	382	431	486
10	60	75	96	120	150	189	213	241	271	301	337	379	427	481
11	59	74	95	118	148	186	210	236	266	296	331	372	420	473
12	58	73	93	116	145	183	206	233	262	291	326	366	413	465
13	57	72	92	115	143	180	203	229	258	286	321	361	407	458
14	56	71	90	113	141	178	201	226	254	282	316	356	401	452
15	56	70	89	111	139	176	198	223	251	279	312	351	396	446

Определение относительной скорости по оси зонта

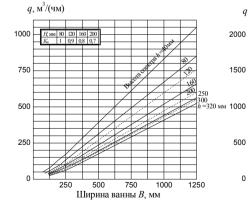
Приложение 16

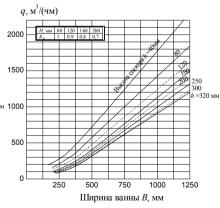
Определение относительной центральной скорости

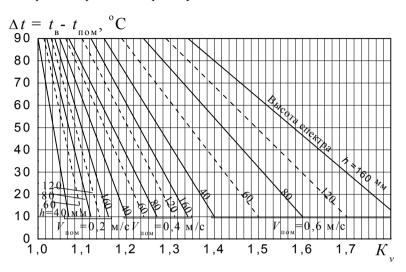


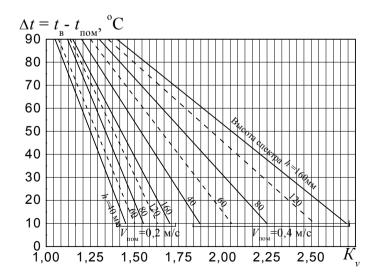

Приложение 17 Высота спектра вредных выделений

Назначение ванн	Обрабатывае- мый материал	t _ж , °C	Химикаты	Вредные выделения	h, MM
	Сталь	15–60	Серная кислота	Аэрозоль серной кислоты	80
Трориациа	Сталь	30–40	Соляная кислота	Хлористый водород	80
Травление	Сталь	15–20	Азотная кислота	Пары азотной кислоты	40
	Медь	15–20	Плавиковая кислота	Фтористый водород	40
Декапирова-	Медь и сплавы	15–20	Цианистый калий	Цианистый водород	80
ние	Сталь	15–20	Хромпик	Аэрозоль серной кислоты	80
Матирование	Медь	15–20	Азотная и серная ки- слота	Пары азотной и серной кислоты	40
Меднение	Сталь	18–25	Цианистый калий	Цианистый калий	80
Лужение	Медь	60–70	Едкий на- трий	Пары ще- лочи	80
Железнение	Сталь	100	Серная кислота	Пары сер- ной кисло- ты	80
Промывка в горячей воде	-	70–80	_	Пары воды	16 0

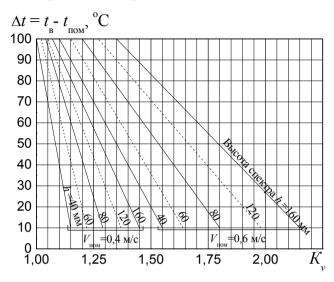

Удельная величина отсасываемого воздуха, поправка на глубину уровня

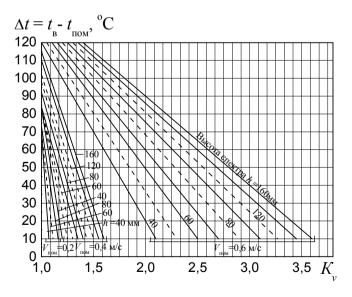

- а) простой однобортовой отсос
- б) простой двухбортовой отсос

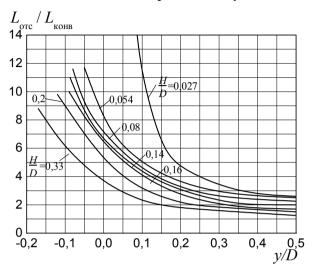

- в) опрокинутый двухбортовой отсос
- г) опрокинутый однобортовой отсос



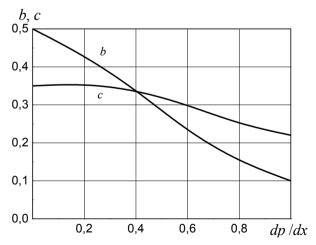
Поправка на скорость движения воздуха в помещении


а) однобортовой простой и опрокинутый отсосы

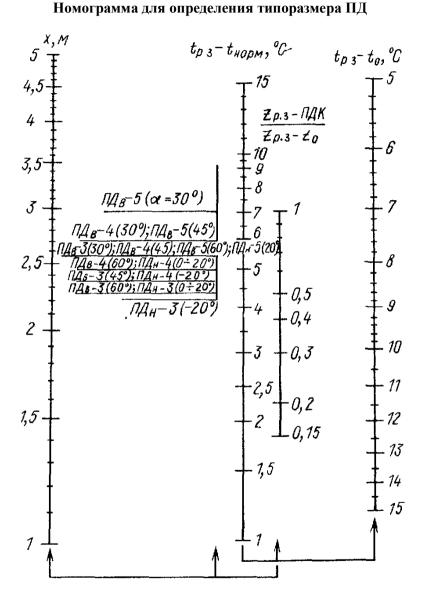

б) простой двухбортовой отсос при H = 80 мм


в) простой двухбортовой отсос при H = 200 мм

г) опрокинутый двухбортовой отсос



Относительный расход воздуха K

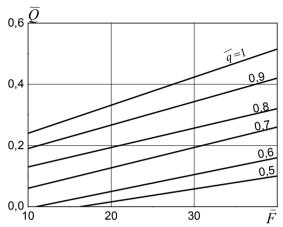


Приложение 21

График для определения коэффициентов b и c для расчета воздушных душей

Приложение 22

Расстояние по вертикали от центра проема до уровня нулевых давлений


Высота здания, м	Значен	ия $h_{\text{расч}}$, м, 1	при размера	ах проема во	орот, м
	3×3	3,6×3	$3,6 \times 3,6$	4,2×4,2	4,8×5,4
7,2	5,6/2,9	5,4/2,5	4,8/2	4,1/2,1	2,7/2,7
8,4	6,4/3,4	6,1/2,9	5,6/2,4	4,8/2,1	3/2,7
10,8	7,8/4,4	7,6/3,8	7/3,2	6,1/2,8	4/2,7
15,6	10,9/6,2	10,5/5,5	9,8/4,8	8,7/3,8	6,2/2,7

Примечание. Над чертой приведены значения $h_{\text{расч}}$ для зданий со светоаэрационными фонарями, под чертой – для зданий с зенитными фонарями.

Приложение 24 Основные расчетные показатели боковых двухсторонних воздушно-тепловых завес

Шифр завесы	Производительность		Ширина	Размер проема		Относительная	
			щели,	воро	OT, M	площадь	
	по воздуху,	по теплу	MM	ширина	высота	$\frac{\overline{F}}{F}$	
	G_3 , кг/ч	Q_3 , Bt				T'	
3Т.В2-25.01.У3	30000	180000	100	3	3	15	
3Т.В2-28.01.У3	33600	200000	100	3,6	3,6	18	
A5-01	18500	173300	70	3 3,6	3	21	
715 01	10300	173300	70		3	26	
3BT1.00.000	28800	232600	90	3	3	17	
3D11.00.000	28800	232000	70	3,6	3	20	
3BT1.00.000-01	40800	511700	100	3,6	3	18	
3BT2.00.000-01	40000	311700	100	3,0	3	10	
3BT1.00.000-02	28800	232600	75	3,6	3,6	24	
3BT2.00.000-02	20000	232000	13	4,2	3,0	28	
3BT1.00.000-03	40800	511700	90	3,6	2.6	20	
3BT2.00.000-03	40800	311/00	90	4,2	3,6	23	
3BT3-1	39000	368200	150	2.6	4.2	12	
3BT6-1	39000	308200	130	3,6	4,2	12	
3BT3-2	41400	423100	150	2.6	4.2	12	
3BT6-2	41400	423100	130	3,6	4,2	12	
3BT3-3	42700	481600	150	2.6	2.2	12	
3BT603	43700	401000	150	3,6	3,2	12	
3BT3-4	44100	383400	150	4.2	4.2	14	
3BT6-4	44100	363400	130	4,2	4,2	14	

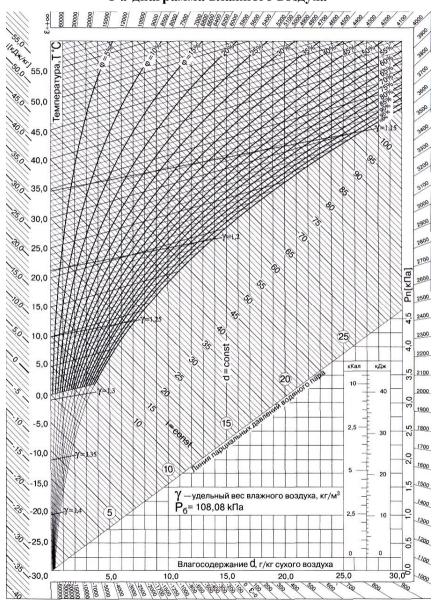
Приложение 26 Поправочный коэффициент k_2 для завес смешивающего типа

Место забо-	Двери	Значен	ия $k_{_2}$ г	три чис	ле люде	ей <i>п</i> , пр	оходяц	цих чере	з вход з	за 1 час
ра воздуха	двери	100	200	300	500	700	900	1100	1300	1500
Забор	Одинарные	0,05	0,1	0,15	0,25	0,31	0,39	0,47	0,55	0,61
воздуха из	Двойные или	0,04	0,08	0,11	0,19	0,26	0,34	0,41	0,48	0,54
	вращающиеся									
вестибюля	Тройные	0,03	0,06	0,08	0,14	0,2	0,28	0,35	0,41	0,46
	Одинарные	0,05	0,09	0,14	0,22	0,27	0,35	0,43	0,49	0,55
То же,	Двойные или	0,03	0,07	0,1	0,17	0,23	0,31	0,47	0,43	0,49
закрытого	вращающиеся									
	Тройные	0,02	0,05	0,07	0,12	0,18	0,25	0,32	0,37	0,42
Забор										
воздуха	Одинарные	0,04	0,08	0,12	0,2	0,24	0,31	0,38	0,44	0,49
снаружи	Двойные или	0,03	0,06	0,09	0,15	0,21	0,27	0,33	0,38	0,43
или при	вращающиеся									
вестибюле	Тройные	0,02	0,04	0,07	0,11	0,16	0,23	0,28	0,33	0,37
открытом										
	Одинарные	0,04	0,07	0,11	0,17	0,22	0,28	0,34	0,38	0,42
То же,	Двойные или	0,03	0,05	0,08	0,13	0,18	0,24	0,29	0,33	0,38
закрытом	вращающиеся									
_	Тройные	0,02	0,04	0,06	0,1	0,15	0,2	0,24	0,29	0,33

Приложение 27 Данные для подбора воздухонагревателей КСк3

υρ, κΓ/M²·c	Коэффициент теплопередачи k , $\mathrm{Bt/(m^{2}.^{\circ}C)}$ при скорости движения теплоносителя по трубам $\mathrm{U_{Tp}}$, $\mathrm{m/c}$										ения	Аэродинамиче- ское сопротив- ление $\Delta P_{\mathbf{k}}$, Па
υρ,	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,2	Аэрод ское с ление
1,5	24,2	26,69	28,58	29,98	31,14	32,11	32,96	33,69	34,35	34,98	36,07	12,73
2	28,8	30,27	32,41	34	35,31	36,42	37,37	38,2	38,96	39,67	40,9	21,56
2,5	31,9	33,36	35,72	37,46	38,91	40,13	41,18	42,1	42,93	43,72	45,07	32,43
3	34,6	36,13	38,68	40,58	42,14	43,47	44,6	45,6	46,5	47,35	48,82	45,3
3,5	36.1	38,65	41,39	43,42	45,09	46,51	47,72	48,79	49,75	50,66	52,23	60.08
4	39,5	40,98	43,88	46,03	47,8	49,3	50,59	51,72	52,74	53,71	55,37	76,73
4,5	41,6	43,12	46,18	48,44	50,3	51,89	53,24	54,43	55,5	56,52	58,27	95,2
5	43,7	45,16	48,35	50,72	52,68	54,33	55,75	57	58,12	59,19	61.02	115,47
5,5	45,6	47,08	50,41	52,88	54.92	56,65	58,13	59,42	60,6	61,71	63,62	137,5
6	47,4	48,91	52,38	54,94	57,06	58,85	60,39	61,74	62,95	64,11	66,1	161,26
6,5	49,1	50,66	54,24	56,9	59,09	60,95	62,54	63,93	65,2	66,39	68.45	186,73
7	51,8	52,32	56,03	58,77	61,03	62,95	64,6	66,04	67,34	68,58	70,7	213,89

Технические данные фильтров


Фильтры ФРС

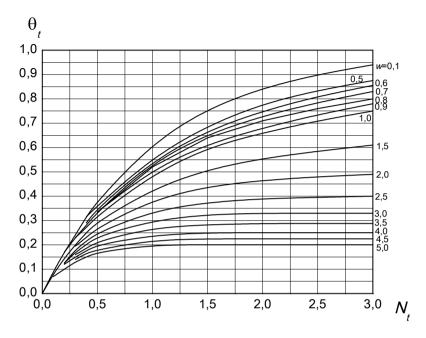
Показатель	Ф12РС	Ф8РС	Ф6РС	Ф4РС	ФЗРС			
Номинальная пропускная способность, м ³ /ч, при удельной воздушной нагрузке 10000 м ³ /(ч·м ²)	125000	80000	60000	40000	31500			
Масса, кг	600	500	450	350	250			
Габаритные размеры $H \times A \times B$, мм	4954× 3453× 3825	3452× 3453× 3835	2952× 3453× 3835	3452× 1703× 2105	2952× 1703× 2105			
Вид фильтрующего ма- териала	Ткань капроновая для сит арт. 25 ОСТ 1746–82							
Начальное сопротивление, Па	Не более 50							
Эффективность очистки, %		80						

Фильтры ФЯ

Показатель	ФяВБ	ФяПБ	ФяУБ	ФяРБ	ФяУК			
Фильтрующий материал	Перфорированная сетка винипласта	Пенополиуретан	Материал ФСВУ	Стальная сетка	Материал ФСВУ			
Номинальная пропускная способность, м³/ч, при удельной воздушной нагрузке 10000 м³/(ч·м²)	1540	1540	1540	1540	1540			
Начальное со- противление, Па	60	60	40	50	40			
Габаритные размеры $H \times A \times B$, мм	514× 514×32	514× 514×32	514× 514×32	514× 514×50	514× 514×50			
Эффективность очистки, %	95							
Масса, кг	4,2	3,4	2,8	6	2,4			

Приложение 29 I-d-диаграмма влажного воздуха

Приложение 30 Количество форсунок по рядам в камере орошения ОКФ-3


Конди	ционер	Исполнение	Количество форсунок в ряду стояков по ходу воздуха				
индекс	тип		первом	втором	всего		
01.01304	КТЦЗ-10	1 2	12 12	6 12	18 24		
02.01304	КТЦ3-20	1 2	24 24	18 24	42 48		
03.01304	КТЦЗ-31,5	1 2	36 36	27 36	63 72		
04.01304	КТЦ3-40	1 2	48 48	36 48	84 96		
06.01304	КТЦЗ-63	1 2	81 81	63 81	144 162		
08.01304	КТЦ3-80	1 2	108 108	84 108	182 216		
12.01304	КТЦЗ-125	1 2	162 162	126 162	288 324		
16.01304	КТЦЗ-160	1 2	216 216	168 216	384 432		
20.01304	КТЦ3–200	1 2	234 234	180 234	414 468		
25.01304	КТЦ3–250	1 2	312 312	240 312	552 624		

Приложение 31 Технические характеристики воздухонагревателей (без обводного канала)

Конди- ционер	Кол-во рядов	рядов ников при высоте т					Площадь фронтального сече-
		1	,,		сти $F_{\rm p}$, м ²	ния, м ²	
	1	0	1	0	0	18,4	1,03
КТЦ3–10	1,5	0	1	0	0	24,2	1,03
	2	0	1	0	0	36,8	1,03
	1	0	1	0	0	37,3	2,07
КТЦ3–20	1,5	0	1	0	0	55,25	2,07
	2	0	1	0	0	74,6	2,07
	1	0	0	0	1	60,4	3,315
КТЦЗ-31,5	1,5	0	0	0	1	88,7	3,315
	2	0	0	0	1	120,8	3,315
	1	0	2	0	0	74,6	4,14
КТЦ3-40	1,5	0	2	0	0	110,5	4,14
	2	0	2	0	0	149,2	4,14
	1	0	0	0	2	120,8	6,63
КТЦЗ-63	1,5	0	0	0	2	177,4	6,63
	2	0	0	0	2	241,6	6,63
	1	0	4	0	0	149,2	8,28
КТЦЗ-80	1,5	0	4	0	0	221,0	8,28
	2	0	4	0	0	298,4	8,28
	1	0	0	0	4	241,6	13,25
КТЦЗ-125	1,5	0	0	0	4	354,8	13,25
	2	0	0	0	4	483,2	13,25
	1	0	0	4	2	300,8	16,55
КТЦЗ-160	1,5	0	0	4	2	439,4	16,55
	2	0	0	4	2	601,6	16,55
	1	0	0	0	6	362,4	19,88
КТЦЗ-200	1,5	0	0	0	6	532,2	19,88
	2	0	0	0	6	724,8	19,88
	1	0	0	6	3	451,2	24,84
КТЦЗ-250	1,5	0	0	6	3	659,1	24,84
	2	0	0	6	3	902,4	24,84

Примечание: площадь сечения для прохода воды принимают равной 0,00148 м 2 – для однорядных, 0,00215 м 2 – для полуторарядных и 0,00296 м 2 – для двухрядных теплообменников.

Показатель $N_{\scriptscriptstyle t}$ для расчета воздухоохладителей

Учебное издание

Михаил Иванович Шиляев Елена Михайловна Хромова Юлия Николаевна Дорошенко

ТИПОВЫЕ ПРИМЕРЫ РАСЧЕТА СИСТЕМ ОТОПЛЕНИЯ, ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Учебное пособие

Редактор Е.А. Кулешова Оригинал-макет подготовлен Е.М. Хромовой

Подписано в печать 23.07.2012. Формат $60\times84/16$. Бумага офсетная. Гарнитура Таймс. Уч.-изд. л. 15,16. Усл. печ. л. 16,74. Тираж 200 экз. Зак. № 403.

Изд-во ТГАСУ, 634003, г. Томск, пл. Соляная, 2. Отпечатано с оригинал-макета в ООП ТГАСУ. 634003, г. Томск, ул. Партизанская, 15.